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INVITED PAPER Special Section on Blind Signal Processing: ICA and BSS

Blind Separation of Independent Sources from

Convolutive Mixtures

Pierre COMON†a) and Ludwig ROTA†, Nonmembers

SUMMARY The problem of separating blindly independent
sources from a convolutive mixture cannot be addressed in its
widest generality without resorting to statistics of order higher
than two. The core of the problem is in fact to identify the parau-
nitary part of the mixture, which is addressed in this paper. With
this goal, a family of statistical contrast is first defined. Then it is
shown that the problem reduces to a Partial Approximate Joint
Diagonalization (PAJOD) of several cumulant matrices. Then,
a numerical algorithm is devised, which works block-wise, and
sweeps all the output pairs. Computer simulations show the good
behavior of the algorithm in terms of Symbol Error Rates, even
on very short data blocks.
key words: blind source separation, blind equalization, statisti-
cal contrasts

1. Introduction

When channel inputs are not observed, equalization or
identification is referred to as blind, as opposed to pilot-
aided techniques. They do not need the eye to be open,
hence their name. Pilot sequences are difficult to fully
exploit when channels are fast varying, or have long
impulse responses. In addition, the present tendency
is to reduce the length of pilot sequences, in order to
increase the throughput, among others.

Even if Multiple Input Multiple Output (MIMO)
equalization can be sometimes carried out with the help
of second-order statistics, in particular cases exploiting
either the source color [1] or their discrete character
[12], it generally requires the use of High-Order Statis-
tics (HOS) [14], [20], at least in a final stage [4], [18].
See [13, ch.5] for further references. It is believed that
HOS require “very long convergence times”; this be-
lief is actually often due to an on-line (time recursive)
implementation. In fact, on-line blind equalization al-
gorithms require long data blocks to converge (typically
from 10,000 to 100,000 symbols); therefore, it is of inter-
est to devise off-line algorithms able to converge much
faster (typically 500 symbols), in order to cope with
channels with shorter stationarity durations. There-
fore, it is exclusively focussed on such block algorithms
in the present paper.

The case of static mixtures (as opposed to convo-

Manuscript received August 8, 2002.
Manuscript revised October 22, 2002.
Final manuscript received November 13, 2002.

†The authors are with the I3S Laboratory, CNRS,
Sophia-Antipolis, France.
a) E-mail: comon@i3s.unice.fr

lutive) has also retained a lot of attention because its
simpler form allows a deeper treatment. This special
instance will not be addressed here; we refer to [13] for
various aspects of that question.

On-line algorithms generally suffer from a number
of drawbacks: they cumulate the convergence times of
the optimization algorithm, and the estimation of mo-
ments. They are also very sensitive to initialization,
and may lead to local extrema, and consequently spu-
rious solutions. On the other hand, block algorithms
enjoy some advantages. They fully exploit the data (in
the sense of a better weighting), are well matched to
TDMA transmission formats, and allow the design of
analytical algorithms. Their main drawback has been
for a long time their excessive computational complex-
ity. But this bottleneck seems to be today much less
critical. Let us insist eventually on one striking prop-
erty of MIMO systems: Finite Impulse Response (FIR)
filters can have a FIR inverse [15], which is of course
impossible in the SISO case.

The paper is organized as follows. In Sect. 2, as-
sumptions and notation are stated. The HOS-based
contrast criterion is defined in Sect. 3. The block algo-
rithm, aiming at reaching acceptable performances on
very short data records (e.g., 500 symbols), is then de-
scribed in Sect. 4. Extensive computer experiments are
eventually concisely reported in Sect. 5.

2. System Model

Consider the following linear time-invariant (LTI) in-
vertible system:

x(n) =
∞∑

k=−∞
F (k)s(n− k) (1)

where s(n) denotes the N-dimensional source vec-
tor, x(n) the N-dimensional observation, and {F } =
{F (n), n ∈ Z} denotes the N ×N channel impulse re-
sponse matrix sequence, as depicted in Fig. 1.

Fig. 1 Observation x is equalized by H; the global system is
denoted G.
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For convenience, vectors and matrices are denoted
with bold lowercase and bold uppercase letters, respec-
tively. For examples, I denotes the identity matrix.
Throughout the paper, (T) stands for transposition, (H)
for conjugate transposition, end (∗) for complex conju-
gation. Also denote by Z the set of integers, by N the
subset of positive integers, and by Ğ(z) the Z-transform
of the time sequence G(n): Ğ(z) =

∑∞
−∞ G(k)z−k.

The MIMO equalization problem consists of find-
ing a filter {H} = {H(n), n ∈ Z} from the sole obser-
vation of the channel outputs x(n). Thus the outputs
y(n) of the equalizer are estimations of the inputs s(n).

The following hypothesis are assumed:

H1. Inputs si(n), i ∈ {1, . . . , N} are mutually indepen-
dent i.i.d. zero-mean processes, with unit variance

H2. s(n) is stationary up to the considered order, r,
r ≥ 3, i.e. ∀i ∈ {1, . . . , N}, the order-r marginal
cumulants,

Cqp [si] = Cum[si(n), . . . , si(n)︸ ︷︷ ︸
p terms

, s∗i (n), . . . , s
∗
i (n)︸ ︷︷ ︸

q=r−p terms

]

(2)

do not depend on n; for definitions of cumulants,
refer to [17] and references therein.

H3. At most one source has a zero marginal cumulant
of order r.

H4. The global transfer matrix, Ğ(z) = F̆ (z)H̆(z),
satisfies the property

Ğ(z)ĞH(1/z∗) = I (3)

where I denotes the N × N identity matrix; in
other words, F̆ (z) and Ğ(z) are paraunitary, and
hence H̆(z).

The interest in using cumulants is that cross cumu-
lants of independent random variables cancel (whereas
moments do not necessarily do) [16]. In addition, as
pointed out in introduction, HOS are mandatory to re-
store identifiability.
Remark 1. More generally, if sources are not i.i.d. but
are still linear processes, our approach of this problem
holds valid. It suffices to assume H1 in a first stage
in order to equalize the channel, and to extract the
original sources in a second stage by linear regression
between each equalizer output and the observations. In
fact the equalizer outputs are the driving processes of
the sources.
Remark 2. Hypothesis H4 is not restrictive. Indeed,
one can always whiten the observations, by using a fil-
ter that factorizes the second-order power spectrum.
This whitening filter is not unique, and one can merely
choose it to be minimum phase.

3. Contrasts

The results stated in this section show how contrast-
based blind MIMO equalization can be posed in terms

of a Partial Joint Approximate Diagonalization (PA-
JOD) of a set of cumulant matrices. This may be very
convenient from the numerical point of view, since we
are more familiar with the manipulation of matrices
than that of tensors. Proposition 1 defines the con-
trast optimization criterion, and Proposition 2 proves
that the maximization problem deflates into a joint ma-
trix diagonalization. Proposition 3 allows to choose the
subset of matrices to be diagonalized. For the sake of
clarity, we shall subsequently consider only cumulants
of order r = 4, but principles hold for orders 3 and
higher.

3.1 Definitions

To start with, denote the following cumulant:

C2,y2 [i, j, 	]
= Cum[yi(n), yi(n)∗, yj1(n−�1), yj2(n−�2)∗]

(4)

where j = (j1, j2) and 	 = (�1, �2). Also define
J= {1, 2, . . . , N}2, and L a subset of Z

2; unless oth-
erwise specified, L = Z

2. The delays �1 and �2 are in-
troduced in the above definition, because they will be
necessary to devise an optimization criterion (Proposi-
tion 1) that will be reducible to matrix diagonalization
(Proposition 2). This reduction, together with the ad-
equate numerical algorithm, constitues the core of our
contribution.

Next, define the following terms:

• Trivial filters. Clearly, the blind equalization
problem we have stated contains inherent indeter-
minacies. In fact, the set S of source processes is
characterized by assumptions, such as H1. One
defines the set T of trivial filters, as containing
all filters that do not affect these assumptions. In
other words, S is stable by the operation of T . For
instance, filters of the form Λ(z) · P , where P is
a permutation matrix, and Λ(z) a diagonal filter,
do not affect mutual independence between com-
ponents of s(n). If in addition s(n) is an i.i.d. non
Gaussian process, Λ(z) should contain only pure
delays, integer multiples of the sampling period,
and fixed complex factors; in other words, the en-
tries of Λ(z) are of the form λzk, k ∈ Z.

• Contrasts. Let H be a set of filters, and denote
H · S the set of processes obtained by operation
of filters of H on processes of S. An optimization
criterion, Υ(H ;x), will be referred to as a contrast
defined on H ∈ H,x ∈ H · S, if it satisfies the
three properties below [5]:

P1. Invariance: The contrast should not change
within the set of acceptable solutions, which
means that Υ(H;x) = Υ(I;x), ∀H ∈
T , ∀x ∈ H · S.
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P2. Domination: If sources are already sepa-
rated, any filter should decrease the contrast.
In other words, ∀x ∈ S, ∀H ∈ H, then
Υ(H;x) ≤ Υ(I;x).

P3. Discrimination: The maximum contrast
should be reached only for filters linked
to each other via trivial filters: ∀x ∈
S,Υ(H;x) = Υ(I;x) ⇒ H ∈ T .

In the remaining, and in accordance with assumptions
H1 through H4, H will denote the set of paraunitary
filters, and S the set of i.i.d. processes with mutually
independent components. As a consequence, H · S is
the set of standardized linear processes (i.e., second-
order white with unit covariance). Lastly, trivial filters
of T are of the form Λ(z)·P , where P is a permutation,
and Λ(z) a diagonal filter, whose entries are of the form
λzk, with k ∈ Z and |λ| = 1.

3.2 Particular Contrast Proposed

We are now in a position to prove the proposition below:

Proposition 1. The functional

J 2
2 (H;x) =

N∑
i=1

∑
j∈J

∑
�∈L

|C2,y2 [i, j, 	] |2 (5)

is a contrast when observations x(n), and hence the
outputs y(n) of the paraunitary equalizer, are stan-
dardized.

Let us first comment this criterion. As in the static
case [2], [10], the idea is to contract the fourth order
cumulant tensor on two indices in order to get a set
of matrices to be diagonalized. Because the mixture
is convolutive, the contraction should also apply on all
delays associated with the contracted indices. Other
contrasts of the same family can be defined [7], but will
not be discussed here. Let us now turn to the proof.

Proof. The input-output relations of the global
system is

yi(n) =
∑
q,m

Giq(m)sq(n−m). (6)

Thus, using the multilinearity of cumulants and the
definition of J 2

2 , we get:

J 2
2 =

∑
i

∑
j1,j2

∑
	1,	2

∣∣∣∣∑
q,m

∑
q′,m′

∑
k1,p1

∑
k2,p2

Giq(m)

G∗
iq′(m

′)Gj1k1(p1)G
∗
j2k2

(p2) ·
Cum[sq(n−m), s∗q′(n−m′),

sk1(n− �1 − p1), s∗k2
(n− �2 − p2)]

∣∣∣∣
2

(7)

Since si(n) are i.i.d. (assumption H1), the only non-
zero cumulants are obtained for m = m′ = �1 + p1 =

�2 + p2. Next, since si(n) are mutually independent,
non-zero terms also need that q = q′ = k1 = k2. Delet-
ing the null terms, and expanding the squared modulus
yields:

J 2
2 =

∑
i

∑
j1,j2

∑
	1,	2

∑
q,m

∑
q′,m′

G2iq(m)G2∗iq′(m
′)

Gj1q(m− �1)G∗
j1q′(m

′ − �1)Gj2q(m− �2)
G∗
j2q′(m

′ − �2)C22[sq]C2∗2 [sq′ ] (8)

Yet, since G ∈ H · S is standardized, it satisfies (3),
and in particular, its columns are orthogonal and of
unit modulus [5], which means:∑

j,	

Gjq(k − �)G∗
jq′(k

′ − �) = δqq′δkk′ (9)

Applying this property to the pairs of indices (j1, �1)
and (j2, �2), we get:

J 2
2 =

∑
i

∑
q,m

∣∣G2iq(m)
∣∣2 ∣∣C2∗2 [sq]

∣∣2 (10)

Last from (9), we have in particular [5], [19]:∑
k,i |Gij(k)|

4 ≤ 1 which eventually yields J 2
2 ≤∑

i

∣∣C22[si]∣∣2 which proves that J 2
2 (H;x) ≤ J 2

2 (I;x),
for any G ∈ H and s ∈ S. Equality holds if and only
if

∑
k,i |Gij(k)|

4 = 1, which is possible only for trivial
filters. ✷

Now denote the cumulant tensor of observations:

Ta,b(α, β) = Cum[xa1(n− α1),
x∗a2

(n− α2), xb1(n− β1), x∗b2(n− β2)] (11)

where a, α, b, β are vectors of size 2. The entries of a
and b belong to 1, . . . , N , by construction.

Consider a FIR equalizer {H(n), 0 ≤ n ≤ L −
1}, and store the whole impulse response in the block
matrix below:

H = [H(0),H(1), . . .H(L− 1)]. (12)

The range of variation of β is left unspecified for the
moment, whereas that of α is set to {0, 1, . . . , L− 1}2.
The reasons for this choice will become clear in the
proof of Proposition 2.

This tensor can be stored in a set of NL×NL ma-
trices, denoted M(b, β). In fact, for any fixed (b, β),
the entries of these matrices are given by:

Mηµ(b, β) = Ta,b(α, β), (13)

with η = α1N + a1, µ = α2N + a2. In short, we shall
denote this matrix storage by M(b, β) in the sequel.
Define ‖Diag{A}‖2 =

∑
i |Aii|2, we have the following

[9]:

Proposition 2. The contrast J 2
2 can be rewritten as
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PAJOD criterion of a set of NL×NL matrices:

J 2
2 (H;x) =

∑
b

∑
γ

‖Diag{HM(b, γ)HH}‖2 (14)

with

Mη,µ(b, γ) = Ta,b(α, γ) = Cum[xa1(n− α1),
x∗a2

(n− α2), xb1(n− γ1), x∗b2(n− γ2)] (15)

where H is N×NL semi-unitary, i.e, satisfies HHH = I,
and M(b, γ) is defined as in (13). Here, b varies in
{1, . . . , N}2, and γ in Z2.

Proof. The relations between equalizer inputs and
outputs can be written as:

C2,y2 [i, j, 	] =
∑
a,b

∑
α,β

Hia1(α1)H
∗
ia2

(α2)Hj1b1(β1)

H∗
j2b2(β2)Ta,b(α,β + 	). (16)

Yet the paraunitary condition H4 on Ğ(z) yields that
H̆(z) is itself paraunitary, which yields the same or-
thogonality property as (9):∑

j	

H∗
jr(τ + �)Hjr′(τ

′ + �) = δrr′δττ ′ . (17)

Thus, taking the square modulus of (16), making the
change of variables γk = βk + �k, and eliminating the
unuseful indices leads to

J 2
2 =

∑
iaa′αα′bb′γγ′

Hia1(α1)Hia2(α2)H
∗
ia′1

(α′
1)

H∗
ia′2

(α′
2)Ta,b(α, γ)T ∗

a′,b′(α′, γ′)

·δ(b − b′)δ(γ − γ′), (18)

which can be rearranged into

J 2
2 (H;x) =

∑
ibγ

|Hia1(α1)Hia2(α2)Ta,b(α, γ)|2 .

(19)

Lastly, grouping indices aj and αj together in a single
index pj , one can remark that the L matrices H(α)
can be stored in the N ×NL matrix H, defined in (12),
with full compatibility with (13), so that eventually
J 2
2 =

∑
ibγ |

∑
p1p2

Hip1
Hip2

Mp1p2
(b, γ)|2. Here the

paraunitary property of H(τ ) implies that HH
H = I.

✷

Remark 3. The paraunitarity of H̆(z) implies that
H is semi-unitary, but the reverse is not true. In other
words, only part of the information is exploited.

Remark 4. The criterion J 2
2 differs from that pro-

posed in [2] in several respects: (i) the matrices M(b, γ)
are built completely differently, because of the convo-
lutive model, (ii) the matrix sought for is not square
unitary but rectangular, which involves quite different

calculations, as will be subsequently seen.

Proposition 3. If the equalizer is of finite length L,
and the channel of finite length M, then contrasts J 2

2 ,
defined in Proposition 2, can be rewritten as PAJOD
criteria of a finite set of at most (2M +L− 2)2N2 ma-
trices, where H is semi-unitary, b varies in {1, . . . , N}2,
and γ in {−M + 1, . . . ,M + L− 2}2.

Lemma 5 If channel and equalizer are both of finite
length M and L, respectively, then the cumulant tensor
T = {Ta,b(α, γ)}, is null whenever an entry γk of γ
falls outside the interval {−M + 1, . . . ,M + L− 2}.

Proof. In fact, Proposition 2 still apply. Consider
Proposition 2 for instance (q = 2), and let’s prove the
lemma. From definition (11) and input-output channel
equations xi(n) =

∑
qm Fiq(m)sq(n − m), we get by

multi-linearity of cumulants:

Ta,b(α, γ) =
M−1∑
i,j=0

∑
�

N∑
u,v=0

∑
w∈J

Fa1u(i)F
∗
a2v(j)

Fb1w1(�1)F
∗
b2w2

(�2)
Cum[su(t− α1 − i), s∗v(t− α2 − j),
sw1(t− γ1 − �1), s∗w2

(t− γ2 − �2)],
(20)

with 	 ∈ {0, . . . ,M−1}2. Yet, fromH1, su(n) are i.i.d.
processes, and the expression is null unless α1 + i =
α2 + j = γ1 + �1 = γ2 + �2. Next, from H1, su(n) are
mutually independent, so that the expression is also
null unless u = v = w1 = w2. this yields

Ta,b(α, γ) =
M−1∑
i=0

N∑
u=0

Fa1u(i)F
∗
a2u(i+ α1 − α2)

Fb1u(i+ α1 − γ1)F ∗
b2u(i+ α1 − γ2)C

2
2[su]

(21)

since the support of F (·) is {0, 1, . . . ,M−1}, the above
quantity is null outside the intervals 0 ≤ i+ α1 − γk ≤
M − 1, ∀k, 1 ≤ k ≤ 2. The fact that 0 ≤ α1 ≤ L − 1
proves eventually the lemma. Proposition 3 then di-
rectly follows.

Remark 5. In practice, it is sufficient to vary the en-
tries γk in the central third of the set {−M+1, . . . ,M+
L − 2}, namely {0, 1, . . . , L − 1}. This choice may be
suboptimal, and could be improved.

4. Numerical Algorithms

The goal of this section is to demonstrate that the com-
putation of the equalizer can be carried out within a
limited (polynomial) number of operations. From now
on, we shall assume that (i) the channel length M is
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Fig. 2 The semi-unitary matrix H aims at diagonalizing jointly
the N×N leading sub-matrices (shaded area) of the N2L2 matri-
ces. In the above picture, they are stacked one above the other,
as slices of a cube.

known, (ii) the equalizer has the same length L = M ,
and (iii) L = {0, 1, . . . , L− 1}2.

The propositions of the previous section teach
us that a semi-unitary matrix, H, of size N × NL,
must be found, which should diagonalize approximately
and jointly the set of N2L2 matrices, M(b1, b2, γ1, γ2).
Each of these matrices is of size NL × NL. The goal
is to maximize the sum of the squared moduli of the N
first diagonal entries of the N2L2 matrices as shown in
Fig. 2.

4.1 Jacobi Sweeping

In order to reach this goal, one looks for a NL × NL
unitary matrix, V, whose leading N × NL submatrix
(the first N rows) will yield matrix H. This unitary
matrix can be built by accumulating Givens rotations,
as proposed in the Jacobi algorithm [11]:

V =
∏

1≤i<j≤NL
Θ[i, j]H, (22)

where Θ[i, j] coincides with the identity matrix except
for 4 entries, namely:

Θii[i, j] = Θjj [i, j] = cos(θ[i, j])
and Θji[i, j] = −Θij [i, j]∗ = sin(θ[i, j])eψ[i,j]

with  =
√
−1. This rotation can indeed always be im-

posed to have a real cosine [11]. The cosine, c, and the
sine, s, must be determined so as to maximize, succes-
sively for every pair [i, j]:

J 2
2 =

∑
b,β

N∑
k=1

∣∣∣∣∣
NL∑
η,µ=1

Θ∗
ηk[i, j]Θµk[i, j]Mηµ(b,β)

∣∣∣∣∣
2

.

(23)

Put in other words, a PAJOD of a set of matrices

M(b, β) is performed, which means that the NL×NL
matrix

VM(b, β)VH (24)

has an approximatively diagonal N ×N leading block.

4.2 Processing Every Pair

Indices [i, j] do not need to describe all possible pairs
from the set {1, . . . , NL}2. In fact, since k ≤ N in
criterion (23), plane rotations Θ[i, j] will have no effect
if i > N and j > i. Therefore, it suffices to consider
rotations for which i ≤ N , since j > i by construction.

As a consequence, two cases must be distinguished,
depending on the fact that j ≤ N or not. In the two
cases, we have to find the roots of polynomials (sta-
tionary points of a contrast, a rational function in the
unknown). Denote in this section c = cos(θ[i, j]) and
s = sin(θ[i, j])eψ[i,j]:

Θ[i, j] =
(
c −s∗
s c

)
(25)

and drop provisionally (b, β) in M(b, β) for the sake
of convenience.

• Case j ≤ N : One maximizes the sum of the 2
diagonal terms on which one has some action. For
J 2
2 , this is a classical expression [3]:

J 2
2 =

∑
b,β

∣∣c2Mii + cs∗Mji + csMij + ss∗Mjj

∣∣2

+
∣∣ss∗Mii − cs∗Mji − csMij + c2Mjj

∣∣2 ,
(26)

• Case j > N : here only the first diagonal term
should be maximized, so that:

J 2
2 =

∑
b,β

∣∣c2Mii + cs∗Mji + csMij + ss∗Mjj

∣∣2

(27)

with appropriate definitions of matrices M(b, β).

4.3 Complex Framework

One considers in this section complex data, channel,
and equalizer. In this framework, stationary points are
defined by two polynomial equations in two (real) vari-
ables, which makes the solution a little more compli-
cated than real framework, described in [8]. In the first
case (j ≤ N), with the help of a change of variables,
this rooting can be converted into the solving of two
trinomials of degree 2, as in [3]. This transformation is
not possible in the second case (j > N), and the rooting
of the eighth global degree polynomial is mandatory.

We consider a set of 2×2 sub-matrices, say M(k),
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and a plane rotation θ, that we decide to parameterize
by the tangent of its angle, ρ and its complex phase, ψ:

M(k) =
(
αk βk
γk δk

)
(28)

and

Θ =
1√

1 + ρ2

(
1 −ρe−ψ
ρeψ 1

)
(29)

with ρ = tan θ.

The transformed matrices are expressed as ΘHM(k)Θ.
Define Φ1 (resp. Φ2) as the sum of the squared moduli
of the first (resp. second) diagonal entries of all trans-
formed matrices. Then we have:

Φ1 =
1

(1 + ρ2)2
∑
k

∣∣αk + ρe−ψγk + ρeψβk + ρ2δk∣∣2
(30)

Φ2 =
1

(1 + ρ2)2
∑
k

∣∣δk − ρe−ψβk − ρeψγk + ρ2αk∣∣2
(31)

Of course, by construction, Φ2(ρ, ψ) = Φ1( 1ρ ,−ψ + π).

Case j > N : here, the unknowns ρ and ψ should
be found so as to maximize Φ1. For this purpose, the
variable t = tanψ/2 is introduced. Then, (1+ ρ2)2(1+
t2)2Φ1 is a polynomial in t and ρ. Stationary values in
ρ and t exactly cancel both the polynomials below:

P (ρ, t) = (1 + ρ2)3(1 + t2)2
∂Φ1
∂ρ

Q(ρ, t) = (1 + ρ2)2(1 + t2)3
∂Φ1
∂t




(32)

P (ρ, t) contains 22 monomials, whose leading one is
ρ4t4, whereas Q(ρ, t) contains 13 monomials, whose
leading one is ρ2t4. We note that the second one is
much simpler, and that is of degree 2 in ρ.

Considered as polynomials in ρ, P and Q admit a
common solution if and only if their resultant (deter-
minant of a Sylvester matrix) is null, which yields:∣∣∣∣∣∣∣∣∣∣∣

Q4 0 P2 0 0 0
Q3 Q4 P1 P2 0 0
Q2 Q3 P0 P1 P2 0
Q1 Q2 0 P0 P1 P2
Q0 Q1 0 0 P0 P1
0 Q0 0 0 0 P0

∣∣∣∣∣∣∣∣∣∣∣
(33)

where Qi(t) (resp. Pi(t)) denote the coefficients of
ρi, 0 ≤ i ≤ 4 in Q(ρ, t) (resp. of ρj , 0 ≤ j ≤ 2 in
P (ρ, t)). This determinant is a polynomial in t only,
and its roots contain all the roots of system (32). It
turns out that this polynomial is of degree 24, and that
it generally admits no more than 8 real roots, which is

consistent with Bézout theorem, stating that maximal
number of solutions should be 42. Plugging back these
real roots in Q(ρ, t) allows to compute two candidates
for ρ associated with each candidate for t. The best
solution (ρ, t) (i.e. leading to the global maximum) is
then selected by computing the value of the rational
function Φ1(ρ, t).

Case j ≤ N : now, the optimization criterion is
J = Φ1 + Φ2. Because of symmetries, this criterion is
much simpler to maximize [3], [6]. In fact, define

(
ak bk
ck dk

)
= ΘHM(k)Θ. (34)

Then, one can first notice that

J 2
2 =

∑
k

|ak|2 + |dk|2

=
1
2

∑
k

{|ak − dk|2 + |ak + dk|2} (35)

and next, that ak + dk = αk + δk, which is thus con-
stant with respect to Θ. The maximization of J 2

2 is
consequently equivalent to that of

∑
k |ak − dk|2.

Yet, if ρ = tan θ, one can check out that

ak − dk = (αk + δk) cos θ
+ (βk + γk) sin θ cosψ
+ (βk − γk) sin θ sinψ (36)

Then, it is easy to show that J 2
2 can be expressed as a

quadratic form:

wT�[BBH]w + constant, (37)

where

w = [cos 2θ, sin 2θ cosψ, sin 2θ sinψ]T, (38)

and where the k-th column of B is:

Bk = [αk + δk, βk + γk, (βk − γk)]T. (39)

As a consequence, finding the maxima of J 2
2

amounts to maximizing a real quadratic form in 3 vari-
ables.

It has been possible to arrange criterion J 2
2 in

a quadratic form because some terms in Φ1 and Φ2
have cancelled each other, in particular those involv-
ing: sin2 θ, cos θ, sin θ sinψ, and sin θ sinψ, which are
not present in (37).

Space is lacking to give the exact analytical ex-
pressions of the solutions θ[i, j] and ψ[i, j]; see [7] for
further a details. Once the plane rotation is obtained, it
is applied to the set of cumulant matrices as ΘHM(k)Θ
for criteria J 2

2 .
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5. Computer Results

One considers a Finite Impulse Response (FIR) com-
plex mixture of length L = 5 of N = 2 QPSK white
processes. Thus, there are N2L2 = 100 square matri-
ces, each of size NL = 10, and the goal is to jointly
and approximately diagonalize their 2× 2 leading ma-
trix by congruent transform. With this goal, a 10× 10
unitary matrix, V is estimated. Matrix H corresponds
to the first two rows of V. The channel is parauni-
tary, to preserve second-order whiteness as explained is
Sect. 2. According to the general decomposition of pa-
raunitary matrices [21], the channel has been generated
as follows:

F̆ (z) = R(φ0) ·
4∏

m=1

(Z(z)R(φm)) (40)

where

Z(z) =
(

1 0
0 z−1

)
(41)

and

R(φ) =
(

cosφ − sinφe−ψ

sinφeψ cosφ

)
(42)

Because of the 10 free parameters above,we have
some control on the location of zeros of the 4 length-5
SISO channels. In this section, the 10 angles φi, ψi, 1 ≤
i ≤ 5, are drawn according to a uniform distribution in
[0, 2π) in order to generate paraunitary random chan-
nels. For each randomly generated channel, blocks of
noisy observations are generated according to:

x(n) =
2∑

k=0

F (k)s(n− k) + ρw(n) (43)

where w(n) is a white circular complex Gaussian noise
with identity covariance, and si(n) are unit covariance
QPSK white sequences. Parameters ρ is introduced
in order to control the Signal to Noise Ratio per bit
(SNR), that we may define as follows:

SNRdB =
Eb
N0

= −20 log10 ρ (44)

In fact, signal and noise parts are both standardized
(i.e. second-order space-time white).

When evaluating performances of blind MIMO
equalizers, a difficulty to overcome stems from inher-
ent indeterminacies. In fact, equalizer H̆(z), and hence
global filter Ğ(z), can be estimated only up to a multi-
plicative matrix of the form D(z) = Λ(z)P , as defined
in Sect. 3.1. Let us store the global impulse response
G(n) in a N×N(2L−1) array G. then finding the best
matrix D(z) amounts to searching every row of G for
the entry of largest modulus, under the constraint that

Fig. 3 Performances obtained for data blocks of length 500 and
1000 symbols: Symbol Error Rates (SER) are obtained for ran-
dom paraunitary channels of length 5, and with a blind equalizer
of length 5.

their column index are different modulo N . This fixes
delay and permutation indeterminacies. The phase de-
lay is easier to fix because the alphabet is known: it
suffices to compare to 1 the output raised to the fourth
power. In other words, we calculate the error rate of
N !N(L +M − 1) potential estimators, and chose the
best. For N = 2 and L = 5, we have thus explore 18
different cases (9 possible delays for each row), for each
of the 2 permutations.

Results are reported in Fig. 3 for blocks of 500 an
1000 symbols, as a function of SNR. 45 trials have been
run. For every trial, two blocks of data have been inde-
pendently generated, of length 500 (or 1000) and 5000,
respectively. Once the equalizer has been calculated
from the the whole block of length 500 (or 1000), it
has been tested on the other block of 5000 symbols
to compute the SER; this is a hold-out type perfor-
mance testing that avoids over-fitting. This procedure
has been repeated 45 times, in order to obtain an av-
erage SER; the median of the 45 trials is plotted in
Fig. 3. As a consequence, the minimal resolution is
(45 ∗ 5000)−1 = 4.4 × 10−6. After a SNR of 13dB,
the SER falls below the latter resolution. These curves
demonstrate the good behavior of the algorithm for
short data blocks. As a basis for comparisons, the per-
formances obtained with the exact inverse channel are
also represented; it corresponds in the present case to
the Zero-Forcing (ZF) equalizer, optimal in the absence
of noise.

6. Conclusions

The numerical algorithm described in Sect. 4, perform-
ing a Partial Joint Diagonalization of cumulant ma-
trices, was based on preliminary theoretical results re-
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ported in Sect. 3. This algorithm demonstrates that
it is possible to equalize blindly FIR MIMO channels
from data records as short as 500 symbols, contrary to
what is often believed. In addition, the block approach
we proposed is attractive in all TDMA transmission
modes. Performances of the proposed algorithm remain
quite attractive for random channels up to length 5, but
could probably be improved by refining the paraunitary
constraint. This is the subject of current research.
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