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�� Introduction

Supervised learning is performed usually by minimizing some objective func�
tion� that can be an error e in �tting an arbitrary desired function� or a mis�
classi�cation rate �� The computation of the latter often raises di�culties� In
fact� if the Bayesian approach is assumed� densities need to be estimated� and
this can become quite di�cult in large dimensions� There are direct ways of
computing the total misclassi�cation rates� without going through the Bayesian
formalism� but they are computationally heavy� Yet� they can still be appro�
priate if the best achievable performance are sought under memory constraints
�e	g	 low�cost neural networks��

In this paper� links between e�minimization and ��minimization are pointed
out under di�erent aspects� Emphasis is given on kernel estimator of densities�
which seem to perform very well in practical experiments� The principles ex�
posed give birth essentially to o��line algorithms� and recursive algorithms are
not presented for reasons of space�

A side goal of this paper is to give a �avour of the theory on which the
developments of the Elena project were based� and to report some choices that
have been made� The implementation of the subsequently presented tools and
algorithms in the packlib software is being currently completed �
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Organization of the paper

The �rst section aims mainly at de�ning notation� and introduces the confusion
matrix� Section 	� summarizes how performance has been chosen to be evalu�
ated� Section 
� reports a result that justi�es the use of an ��criterion rather
than a �tting e�criterion� Fixed and variable kernel estimators are described
in section ��� and a suboptimal implementation with clusters is described in
section �� After some computational considerations in section �� we close with
some comments on a current work in progress in section ��

�� Probabilistic framework

The classi�cation problem consists of building a mapping � from a set of pat�
terns �observations�� E � to a set of classes� F � It is assumed throughout this
paper that patterns are real valued and of dimension d� In other words� E � IR

d�
Thus� any pattern x in E is wished to be associated with a class �j�x� � F by
this mapping�

In the context of supervised classi�cation� a set of examples A�N � �
f�x�n�� �j�n��� � � n � Ng is given� so that mapping � is apparently known at
a �nite number of points� This set of input�output pairs is the learning set� In
the Bayesian approach� the mapping built may not assign all the patterns from
the learning set to their true class� This freedom allows for instance to handle
learning sets where some equal �or very close� patterns appear with di�erent
class labels�

If patterns fx�n�� � � n � Ng in the learning set are known to belong to
classes �j � � � j � K� it is natural to choose as output space FA � f�j� � �
j � Kg� However� as will be recalled shortly� there are reasons to add two
other classes� one for ambiguities� and one for rejections� As a consequence�
mapping � is actually de�ned from E onto F � FA � f�K��� �K��g�

In a probabilistic framework� it is assumed that all patterns belonging to
the same class are independently drawn from the same underlying distribution�
In this paper� it is assumed that this distribution admits a density� denoted
p�xj�j��

Assuming uniform losses� the Bayesian approach allows to build the map�
ping that minimizes the total number of misclassi�cations� provided the condi�
tional densities p�xj�j� and the priors Pj � P ��j� are known� More precisely�
since the output space is discrete� the mapping � de�nes K disjoint domains
Dj � �����j� in the input space E � so that in each Dj any pattern is assigned
class �j� Then a well�known way of writing the Bayesian risk function is �still
assuming uniform losses��

R �
KX

i�j��
i ��j

Cij���� Cij���
def
� Pi

Z
u�Dj

p�uj�i� du� ���

���
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The integral corresponds to the probability that � assigns the class �j to a
pattern x whereas its true class is �i� The probabilities of error Cij��� can be
arranged in a K �K matrix� often called the confusion matrix�

Then it has been shown ���� ��
� ��� ��� that minimizingR has the following
solution� the class �j�x� is assigned to observation x � E if and only if�

j�x� � Arg Max
��i�K

fPi p�xj�i�g � Arg Max
��i�K

fp�x� �i�g� ���

The decision is unambiguous at a point x of E if all p�x� �i��s are di�erent�
But if the largest value is reached by several classes� there is an ambiguity� One
can distinguish between two kinds of ambiguity�

� All values of p�x� �i� are very small� in which case one cannot reasonably
assign to x one of the classes present in the learning set� In that case�
x is assigned the reject class� �K��� This occurs on a domain denoted
DK�� in the input space E �

� Otherwise� there are at least two large and equal values of p�x� �i� for
some i�s� Then� there is an ambiguity of decision between those classes�
and class �K�� is �provisionally� assigned to pattern x� This occurs in a
domain DK�� of E � that is the union of all other domains boundaries�

It is sometimes convenient to add two columns to the confusion matrix�
one for ambiguities� and the other for rejections� Then we end up with a
K �K � � matrix whose rows sum up to one� because now �K��

j�� Dj � E � andR
E
p�uj�i� du � �� �i�

Now� it is clear that knowing a mapping on a �nite set will never provide the
complete de�nition of the mapping on E without further information� That�s
why supervised classi�cation is usually carried out by assuming �sometimes
implicitly� a parametric model� either on the classifying rules �as in neural
networks�� or on the conditional densities �as in Bayesian approaches�� When
the number of parameters is very large� the model is �somewhat abusively�
referred to as non parametric� We shall see in section �� one of these non
parametric models�

�� Classi�cation errors

���� Apparent confusion matrix

By de�nition� the best confusion matrix is attained by the exact Bayesian
classi�er� But in practice� domains Dj are only estimated by domains �Dj � and

we are talking about performances of an estimated classi�er ��� The confusion
matrix corresponding to exact performances of the estimated classi�er is given
by�

Cij���� �

Z
�Dj

p�uj�i� du� �	�

��	
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Similarly� exact performances cannot in general be calculated� because den�
sities p�uj�i� must be replaced by estimates� that are denoted here �p�uj�i��
Here estimates are denoted di�erently on purpose� because there is no oblig�
ation to use the same density estimates to determine the classi�er� and to
compute its performances� Thus the estimated confusion takes the expression�

�Cij���� �

Z
�Dj

�p�uj�i� du� �
�

Since estimates �p�uj�i� are intended to be integrated on an arbitrary do�
main� it is necessary to choose them in such a way that this computation is
easy to carry out� bearing in mind that only the integrated value is important
�a local accuracy is super�ous�� In fact� for computational tractability� it is
quasi always assumed that the density �p�uj�i� has the simple form�

�p�uj�i� � �i
X

x�m���i

��u� x�m��� ���

where ��u� denotes the Dirac distribution� and �i is a coe�cient chosen so that
the estimated density sum up to one� It may be checked that this calculation
of the confusion reduces to a mere counting of the misclassi�ed patterns�

If estimates �� and �p�uj�i� are using the same data� then the resulting con�
fusion matrix is called apparent� because it is too optimistic� Some authors
refer to this computation as the Resubstitution method ����� It is well known
that these two estimates should be independent for the confusion to be unbi�
ased� In particular� this is achieved if the classi�er and the performances are
computed by using two disjoint sets of data� It is talked about cross�validation
procedures�

���� Computation by cross�validation

Even if this family of procedures is quite well known� it may be useful to say
a word on this topic� The simplest procedure is the Holdout� The available
data are partitioned into two sets� one dedicated to learning� and the other
to performance evaluation� The drawback is that part of the data is not used
at all for learning� To face this objection� one can run several Holdouts� and
average the performances obtained� but this becomes very costly�

There is however a case where the Averaged Holdout is not that costly�
namely when the performance set is reduced to a single pattern� In that case�
the learning is made on N�� patterns� so that one can hope to have almost the
best possible classi�er� Since the partition is now fN ��gf�g� there are only N
possible distinct runs to perform and to average� If the N partitions are tested�
the procedure is referred to as the totally Averaged Leave One Out �ALOO��
This seems to be the best way to fully use the information contained in the
data� without biasing the performance estimation� Moreover� as pointed out
by Fukunaga� there is often the possibility to derive the ALOO performances
from those obtained by the Resubstitution ��
� with little extra work�

��
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There are close links between the ALOO and the general theory of the
Jackknife� Efron has also pointed out that the Bootstrap may also be viewed
as an extension of the Jackknife �����

���� Con�dence intervals

Denote Ai�N � the subset of the learning set A�N � that contains patterns be�
longing to class �i� and Ni its cardinality�

P
Ni � N � In addition� denote Mij

the number of patterns from Ai�N � that have been misclassi�ed in class �j�
The entry Cij of the confusion matrix can be estimated by the ratio�

�Cij �
Mij

Ni
� ���

In order to acces to con�dence intervals for matrix �C� one can remark that each
Mij follows a binomial distribution�

prob�Mij � m� �

�
Ni

m

�
Cm
ij ��� Cij�

Ni�m� ��

There exists sophisticated ways of approximating the quantiles of �Cij� based
on this distribution ���� and standard tables can be used� Note that� if Ni is
large� one can reasonably assimilate �Cij to a Gaussian variable with mean Cij
and variance C�

ij� even if this approximation is very crude� In fact� an error
of �� or even ��� on the con�dence interval is of little importance for our
use� Nevertheless� if Cij is close to � or �� this approximation becomes too
pessimistic� Strictly speaking� �� is valid for a single holdout� Other more
complete approaches include signi�cance testing� but are not addressed in this
paper�

As an example� if Ni � ��� and �Cij � ���� then true value of the confusion
entry satis�es approximately ��� � Cij � ��	 with a probability of ����� whereas
for Ni � ����� it satis�es ���� � Cij � �����

�� Fitting errors

Assume each class �i is represented in F by an element zi of an Hilbert space�
so that we can admit that F � IR

m for some m� Assume also that the mapping
���� is coded by a set of parameters W so that ���� � ����W �� where � is �xed�
One approach of the problem is to search for a W so that ����W � �ts the input�
output relations given by the learning set A�N � the best way� in the sense of
the norm on F �

W � ArgMin
W

�

N

NX
n��

jjzi�n� � ��x�n��W �jj�� ���

We shall refer to this criterion as the output Minimum Quadratic Error �MQE��
For instance� learning algorithms dedicated to the MultiLayer Perceptron an�
swer that problem�

���
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The �rst key remark to make is that the coding of outputs has a strong
in�uence on the result obtained� and that it is completely arbitrary� Take an
example if the number of classes is K � 	� Here are some possible choices�

i � f�� �� 	g� ii � f

�
�
�
�

�
�

�
�
�
�

�
�

�
�
�
�

�
g� iii � f

�
�

��
��

�
�

�
��
�

��

�
�

�
��
��
�

�
g ���

and many others can be thought of� A natural question is to know whether the
minimization of ��� would lead to the Bayesian solution� and with what output
coding�

A partial answer has been given in ����� but a more complete one �but less
well known� has been devised in ���� The basic result is summarized by the
following theorem proved in ����� and extended in ��� to general losses�

Theorem � Denote Ni the number of patterns belonging to class �i in the
learning set A�N �	 Assume that the absolute minimum in 
�� is reached	 Then
����W � tends to the best approximation of the Bayesian solution as every Ni

tends to innity provided coding 
��ii is chosen	

This theorem shows that the power of the output error criterion ��� is rather
limited� and also tends to say that the other output codings are inappropriate�
In fact� other codings just yield other Bayesian solutions with di�erent loss
matrices� as proved in ����

When the learning set is limited� it may be rather uninteresting to have
such asymptotic results at hand� A usual practice is to extend the database by
duplicating R times the original one and adding independent and identically
distributed noises in each duplication� The following result gives then more
insights in what happens in the �nite sample case�

Theorem � Under the same hypotheses as in theorem �� and if every Ni � �
remains xed� then as R tends to innity ����W � tends to the best approxima�
tion of the estimated Bayesian solution� obtained by replacing densities by their
kernel estimates	

The proof given in appendix also gives conditions on the noise density for
the estimate to be consistent� In particular� there is a close link between the
noise density and the kernel function used �see section ���� It seems thus more
direct to build constructively the asymptotic limit� towards which the MQE
solution will tend in the best case �i	e	 if the absolute minimum is reached��
And this leads us to kernel estimators of density�

�� Kernel estimators

One of the most interesting estimator of densities is known as the kernel esti�
mator� sometimes abusively called Parzen estimator� as we shall see� It has not
only nice consistency properties� but also can provide continuous estimates re�
gardless of the number of patterns available in the learning set� which is of great

���
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practical interest� as opposed to histograms for instance� General statements
about kernel estimators can be found in ��	� ���� ��� ���� �����

With the notation introduced in section 	�� the kernel estimate of p�xj�j�
takes the form�

�p�uj�i� �
�

Ni

X
x�n��Ai

�

h�n� i�d
K

�
u� x�n�

h�n� i�

�
� ����

where h�n� i� is strictly positive and K��� is the kernel function� The choice of
the kernel gives the estimator its basic �nite sample properties� for instance� if
K��� is positive and twice di�erentiable� then so is �p�

If h�n� i� depends only on Ni and not on n� then the estimator is said to
have a �xed width� or to be a �xed kernel estimator� in short� This estimator
was originally proposed by Parzen ��
�� and Cacoullos �
� extended it to the
multichannel case� The suggestion of a variable width has been proposed inde�
pendently by Wagner ���� and Breiman �	�� Thus the variable kernel estimator
should not be called a Parzen estimator� for the sake of clarity�

Throughout this section� the reasoning is carried out for a �xed class �i� so
that for conciseness index i may be dropped� being understood that statements
exposed for A� h�n�� N� �p�u� will be applied to Ai� h�n� i�� Ni� �p�uj�i�� and so
forth�

Moreover� it is convenient to decompose the width factor h�n� into a global
factor h and a local weighting factor 	�n�� so that estimator ���� rewrites for
any �xed class label i�

�p�u� �
�

N

�

hd

NX
n��

	�n�dK

�
	�n�

u � x�n�

h

�
� ����

Of course since this decomposition is not unique� one can arbitrarily impose in
addition that

QN
n�� 	�n� � ��

���� Fixed kernel estimator

It is assumed here that 	�n� � �� �n� In the �nite sample case� it has been
proved by Rosenblatt ���� that kernel estimators of density are always biased�
except for particular distributions�

On the other hand� they can be proved to be consistent� In fact� under the
following conditions� it has been proved that the estimator �p�u� is asymptoti�
cally unbiased�

K�u� � �� K�u� �	� and

Z
K�u� du � �� ����

jjujjdK�u� 
 � as jjujj 
 	� ��	�

h
 � as N 
	� ��
�

N hd 
	 as N 
	� ����

��
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Conditions ���� to ��
� ensure that �p�u� converges to p�u� at every continuity
point of p�u�� but the convergence is in mean� With the additional condition
���� on the convergence speed of h� then the convergence is in quadratic mean�
Actually similar results hold under slighlty less restrictive assumptions �e	g	
the kernel may not be requested to be positive� �
� ���� �����

The proof is easy to carry out when the kernel is twice di�erentiable and
symmetric about the origin� Moreover in that case� it is possible to argue for a
choice of an optimal width� In fact� after the change of variable y � �u�x�
h�
bias and variance of estimator ���� can be expressed as�

B�u� �

Z
K�y� p�u � hy�dy � p�u�� ����

V �u� �
�

N hd

Z
K��y� p�u � hy�dy �

�

N

�Z
K�y� p�u � hy�dy

��
� ���

Now expand p�u� hy� about u as�

p�u� hy� � p�u� � h  p�u�Ty �
h�

�
yT !p�u� y � O�h��� ����

where  p is the gradient of p and !p the matrix of its second derivatives� Next
using the fact that K��� is symmetric about the origin� we obtain the asymptotic
approximations�

B�u� �
h�

�
Tracef!p�u�VKg� O�h	�� ����

V �u� �
�

N hd
�Kp�u� �O

�
�

N hd��

�
� ����

where �K
def
�
R
K��u� du and VK

def
�
R
K�u�uuT du� The case where the kernel

is isotropic is interesting� i	e	 � when K��� is a function only of the norm of
its argument� Then VK � Id� and the bias reduces to the simple expression
B�u� � h� "p
�� "p denoting the Laplacian of p�

Clearly� as h decreases� the bias decreases but the variance increases� The
trade�o� is to minimize the integrated mean square error�

e�h� �

Z
e�u�h� du� e�u�h� � B�u�� � V �u�� ����

Then it is easy to see that this error reaches a unique minimum for a value ho
satisfying�

N hd�	
o

Z
"�p�u� du � d �K � ����

Three conclusions can be drawn from here� First� we have an �asymptotically�
optimal value for the width factor� provided "p is given� In practice� the
calculation of

R
"�p requires the use of a rough estimator� based on �	�� for

instance� We shall go back to that in the next section�

���
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Second� the minimum error obtained is

e�ho� �

�
d



� �

�
�

N hd
�K �

This minimal error is of order O�N��h�d�� In other words� since ho �
O�N����d�	��� e�ho� � O�N�	��d�	��� and B�u� and V �u� are of same order�

Third� e�ho� is proportional to �K � It is thus convenient to utilize kernel
functions that have a small �K �

Actually� one can even �nd what is the best kernel function to be used with
this respect� Epanechnikov had early noticed this fact in the scalar case ��	��
resorting to standard tools from calculus of variations� But this extends to the
multivariate case� if K��� is isotropic� the positive kernel that minimizes �K
under the constraint of unit covariance is given by

K�u� � a� b uTu� for uTu � a
b� and K�u� � � elsewhere� ��	�

Coe�cients a and b are choosen so as to satisfy
R
K�u� du � � andR

K�u�uTu du � d�

K�u� �
d� �

� �d

�
d� 


d

�� d
�
�
��

d

d� 

uTu

�
� ��
�

and �d is the volume of the the unit bowl in dimension d�

�d
def
�

d��

#�d
� � ��
� ����

The point is that the kernel obtained is of compact support� which is of
practical interest� in order to compute the density at a point u� only patterns
located in the neighborhood of u are necessary �in a bowl of radius h

p
� � 

d��

Though suboptimal from this point of view� the family of so�called gener�
alized Gaussian kernels are of interest in certain cases �����

Kg�u� � Bg e
�
Agu

tu�g � ����

where coe�cients Ag and Bg are to be determined in order to have a unit sum
of the density� and a unit variance� The exact expressions of these coe�cients
are�

Bg � g
a bd��

c��d�� �d�d��
� Ag �

b

cd
� ���

with a � #�
d

�
�� b � #�

d� �

�g
�� c � #�

d

�g
�� ����

If g � �� the distribution is clearly Gaussian� One of the advantages in using
such kernels� is that they have large tails� which allows making a non ambiguous
decision in a larger domain in the input space�

���
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���� Variable kernel estimators

For �nite sample sizes� the �xed kernel estimate is not very satisfactory� In
fact� one one hand isolated patterns are supposed to account for tails of the
density� and should have a large width factor� whereas concentrated patterns
that are supposed to produce a sharp peak should have a small width factor�
Keeping the same width factor everywhere obviously impedes meeting those
uncompatible requirements�

It is clear that the bias will be much better if the width factor is allowed
to vary with location� especially for samples of reduced size� This has been
noticed in �	� and proved in ���� for k�NN kernel estimators�

Denote Dk�u� the distance between point u and its nearest kth neighboring
pattern� If VD�u� is the volume of the hypersphere of radius Dk�u� centered at
u� we must have as N tends to in�nity�

k

N
� p�u� VD�u�� ����

by de�nition of a density� This yields the classical result that the density may
be roughly approximated by�

�p�u� �
k

N

�

VD�u�
� �	��

where VD�u� � �d Dk�u�d� with �d as de�ned in �����
This classical approach cannot be used directly since the estimate obtained

is not continuous� and integrates to in�nity� A simple way to �x this problem
is to use Dk�u� to choose the local weighting factor 	�n� in �����

	�n� �
h

Dk�n�
� �	��

h � N

vuut NY
n��

Dk�x�n��� �	��

Note that if we use a uniform kernel �constant value in the unit bowl and zero
elsewhere�� then we get the k�NN estimator �	���

Mack and Rosenblatt have analyzed the asymptotic local bias and variance
of such an estimator� They have found that the optimal value for integer k
should increase with N as N b� b � 

�d� 
� ����� In practice� one should also
pay attention to the fact that k should be large enough to avoid a null value
of Dk�x�n�� for some n� Another way to avoid null values of Dk�x�n�� is to
clip them below� In any case� if we assume a law of the form k � aN b� the
constant factor a remains very di�cult to �nd� This is the same problem as
for h in the �xed kernel estimator�

Even if the latter estimator is apparently of better use� it may still not
integrate to one� and is not di�erentiable ����� For this reason� it has been

���
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adopted in Packlib ��� a more sophisticated approach� The local weighting
factor 	�n� is estimated by minimizing the local mean square error e�u�h�
de�ned in ����� this idea is �comparatively� quite recent� for it has been �rst
advanced twelve years ago in ���� Here� this error of course also depends on
	�n�� and our goal is now to compute its bias and variance components�

Start as in the �xed kernel case� and write the mean of estimator �����

E�p�u� �

Z
	�x�d

hd
K

�
	�x�

u� x

h

�
p�x� dx �		�

The expectation is eventually the limit of the �nite sum as N tends to in�nity�
For convenience� the �somewhat abusive� notation 	�x� has been assumed�
being understood that 	�x�n�� � 	�n�� Now perform the change of variable as
before� y � �u� x�
h� and obtain�

E�p�u� �

Z
	�u � hy�dK�y 	�u � hy�� p�u � hy� dy� �	
�

The di�erence is that now 	 terms must be expanded in Taylor series� compared
to a single one in the �xed kernel case� The expansions are written in a similar
manner as in ����� After a number of rather heavy manipulations� and taking
into account the symmetry of the kernel function� we obtain�

B�u� �
h�

	��u�
Trace

�
VK

�
!p�u�

�
� �

 	�u�  p�u�T

	�u�
�

!	�u� p�u�

	�u�

�	
 	�u�  	�u�T

	��u�
p�u�

��
�O�h	�� �	��

In the scalar case �d � ��� this formula reduces to that obtained in ���� As
Abramson pointed out� if 	�u� � p�u����� this bias reduces to O�h	�� On the
other hand� the expansion of the variance is very simple� since it is su�cient
�as in the �xed kernel case� to go up to order zero�

V �u� �
�

N hd
�K 	�u� p�u� � O

�
�

N hd��

�
� �	��

The most surprising fact is that with an appropriate choice of 	�u�� the bias
is cancelled� leaving total freedom to choose h in order to reduce arbitrarily the
variance �i	e	 h large��

There are some practical comments to make� that limit those conclusions�
If 	�u� � p�u���� is chosen� then it may happen that 	�u� be null� which
is forbidden by our assumptions� If necessary� 	�u� may have to be clipped
below� Next� since h needs to be small for the expansion of the bias to be
valid� an arbitrarily large value of h would not be acceptable�

The complete practical algorithm is described in section �� and overcomes
these di�culties� Other criteria than the mean square error can be used� and
in particular� the �nal classi�cation error ����

���
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�� Suboptimality by clustering

There are two reasons for building suboptimal solutions based on clustering�
Imagine our classi�er is intended to be implemented in a cheap product� and
that there are strong hardware limitations� Then estimator ���� cannot be
used directly because all patterns x�n� need to be stored� So it is relevant in
that case to design a classi�er that would use the available resources in the
very best way� regardless of the learning complexity ���� The other reason is
that if it is wished to still use estimator ����� then a rough �pilot� estimator of
the density is necessary to determine h� The estimator presently proposed can
be used for this purpose�

In this section� we consider that data in each class �i of the learning set
A�N � have been clustered into Qi disjoint groups Gq�i� � � q � Qi� Denote

N �q� i� the number of patterns in group Gq�i� We have
PQi

q��N �q� i� � Ni�
Then from the Bayes rule�

p�uj�i� �
�

Pi

QiX
q��

P �Gq�i� p�ujGq�i�� �	�

This shows �rst that the density may change after vector quantization� because
of the presence of weigths P �Gq�i�� Next� this relation suggests the following
reconstruction formula� if P �Gq�i� is estimated by the ratio N �q� i�
N � and Pi
by �Pi � Ni
N �

$p
I
�uj�i� �

�

Ni

QiX
q��

N �q� i�

��q� i�d
K

�
u� C�q� i�

��q� i�

�
� �	��

where a single width factor ��q� i� has been used within each cluster� This
relation can equivalently be obtained by replacing x�n� by the centroid C�q� i�
of its group in ����� In this approach� all clusters are spherical� This may
be a problem because a large number of spherical clusters may be required to
approximate data containing anisotropic clusters�

To palliate this limitation� another more accurate reconstruction procedure
involves a positive de�nite matrix L�q� i� that accounts for clusters shape�

$p
A

�uj�i� �
�

Ni

QiX
q��

N �q� i�

h�q� i�d
K

�
L�q� i����u� C�q� i��

h�q� i�

�
� �	��

It remains to estimate centroids C�q� i�� shape factors L�q� i�� and width
factors ��q� i� or h�q� i�� We describe below one reasonable solution� Assume
the clusters are su�ciently well separated so that the kernel tails of neighboring
clusters vanish� Then� with the description above� the density estimate within
a cluster reduces to a single mode� Yet� in reconstructions �	�� and �	��� only
moments of order � and � are used� so that the density within a cluster may

���
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be approximated by a Gaussian density� In other words� K��� can be assumed
to be a radial Gaussian kernel for this calculation �but only that one��

K�u� � ����d�� expf�jjujj�
�g�

With this approximation� maximum likelihood estimates can be easily com�
puted� If $p

I
�uj�i� is maximized with respect to C�q� i� and ��q� i�� we obtain�

C�q� i� �
�

N �q� i�

X
x�n��Gq�i

x�n�� �
��

��q� i�� �
�

d

�

N �q� i�

X
x�n��Gq�i

jjx�n��C�q� i�jj�� �
��

Next� if $p
A

�uj�i� is maximized with respect to C�q� i�� h�q� i� and L�q� i�� we
obtain�

L�q� i�L�q� i�T � A�q� i�� with �
��

A�q� i� �
�

N �q� i�

X
x�n��Gq�i

�x�n�� C�q� i���x�n�� C�q� i��T � �
	�

h�q� i�d � detL�q� i�� �

�

Thus� L�q� i� is any positive square root of A�q� i�� for instance its lower trian�
gular Cholesky factor� Of course� this estimate is biased� To remove the bias�
one can replace N �q� i� by N �q� i�� �� as usual�

However� it is clear that these solutions are not the best possible� neither
with respect to criterion e�u�h� de�ned in ����� nor with respect to the mis�
classi�cation rate� Since the �nal goal is actually classi�cation� a criterion
measuring deviations from the true densities� like e�u�h�� is not the most ap�
propriate� especially if memory resources are strongly limited�

Thus� it has been proposed in ��� to �nd the best parameter set� fQi� C�q� i��
��q� i�� h�q� i�� L�q� i�g� in the Bayes sense� The best solution obtained may �or
may not� yield good density estimates� it does not matter� but it will lead to
the best classi�cation rate� Other approaches exist if the number of clusters is
large� and their size small �����

�� Computational aspects

���� Computation of the Laplacian

There are practical obstacles in computing the optimal value of the kernel width
h� One could think of computing it by using ����� where the Laplacian of the
true p�u� is replaced by the one of a rough estimate �pR�x�� yielding�

d" p�u� � " �pR�u� �
�

N �h�

NX
n��

�	�n�d�� "K

�
�	�n�

u� x�n�
�h

�
� �
��

��	
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Estimated widths �h and �	 can be those given by �	�� and �	�� for instance�
But the integration is made di�cult because of the squaring of the sum� that
introduces cross�terms�

A %brute force& approximation is then to replace the integration by a dis�
crete sum over the available patterns x�n��Z

"�p�u� du �
�

N

NX
n��

"� �pR�x�n��� �
��

The obtained value �though acceptable� is likely to be too large �����

Another alternative is to use the estimate provided by clustering in section
�� The rough estimate is of the form�

�pR�uj�i� �

QiX
q��

p�ujGq�i� �
�

�

QiX
q��

�det��A�q� i������� expf�
�

�
�u �C�q� i��TA�q� i����u� C�q� i��g�

Now� since the Gaussian family enjoys a reproductive property� cross prod�
ucts yield again a Gaussian density up to a multiplicative term� and are easy
to integrate� As a consequence� we have access to an analytic expression ofR

"��pR�u� du� Approximating the density p�u� by a Gaussian mixture where
the parameters are estimated suboptimally might be considered very crude�
but it is not� Of course one could optimize these parameters further ���� but it
would be super�ous for the only purpose of computing

R
"�p�u� du�

���� Description of the algorithm

The kernel choosen is isotropic �radial function�� and can be either the Epanech�
nikov kernel ��
�� or a generalized Gaussian kernel ����� The algorithm pro�
posed to compute the estimate ���� is two�pass �Rough�Re�ned Estimator��

�� A rough estimate �pR�x� is obtained at any point x�n� of the learning set

by using the kernel k�NN estimator ���� with �	R�x� and �hR de�ned by
�	��� �	���

�� Next� this variable kernel estimate is re�ned by assuming the new value
of �	�n��

�	�n� � ��pR�xn�����
�

NY
n��

�pR�xn�

�����

� �
��

	� Optionally� a new value of �h may be re�ned in accordance with section
���

Performances are evaluated by using the ALOO procedure brie�y described in
section 	���

��
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	� Suboptimality by dimension partitioning

In order to estimate a density in dimension d with a given accuracy� there is
a minimum number Nmin of samples required� This number is unfortunately
an exponential function of the dimension� Of course� some estimators perform
better than others� but the tendency as d increases is the same for all of them�
As a consequence� one can expect that it will be very di�cult to estimate a
density in large dimension� because samples will be too small�

It is worth knowing what is a small sample size� and what is a large di�
mension� Silverman reported the value of Nmin as a function of d� Based on
extensive simulations� he found the value of N that gave a relative error on a
Gaussian density of ���� when using a kernel estimator with Gaussian kernel
����

An a�ne approximation of logN would gives the following result ����

log��Nmin � ��� �d�
�



�� �
��

Let�s just give an example� If d � ��� this gives Nmin � ��� ���� This
motivates strongly the reduction of the dimension� However� there are cases
where one cannot project the data on a smaller�dimensional subspace without
loosing signi�cant information�

In this section� we propose another approach based on dimension parti�
tioning� Assume that a density p�u� de�ned on the space E � IR

d can be
approximated by a product of densities as�

p�u� � p��u�� p��u��� ����

where u �
�
u�

u�

�
� Then densities p� and p� can be much more easily estimated

since they share the same sample size� but need to be estimated in reduced
dimension� If this is not enough� the procedure can be iterated further�

But the decomposition ���� means that the d�dimensional random variable
x has been splitted into two statistically independent random variables x� and
x�� This problem� that we can refer to as the Independent Subspace Analysis
�ISA�� was addressed in ��� and an algorithm has been proposed there to
construct variables u� and u�� We consider this is a major area of research for
future years� both in data analysis and numerical analysis�
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Appendix

Proof of theorem �

The proof given here is a particular case of another one already published in
French in ���� where general losses were considered�

Proof	 Denote � the MQE criterion� for �nite N and R�

��N�R� �
KX
k��

Nk

N

�

Nk

X
x�n���k

�

R

RX
r��

jjzk�n�� ��x�n� � z�n� r��W �jj�� ����

��
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where the w�n� r��s denote additive noises drawn from a given density pz�u��
Now let�

�Pk �
Nk

N
����

�k�u� � jjzk�n� ���u�W �jj� for x�n� � �k� ��	�

This is possible since the output y�n� depends only on k� Assume every Ni is
non zero and let R tend to in�nity� We get�

��N�	� �
KX
k��

�Pk

Z
pz�u�

�

Nk

X
x�n���k

�k�x�n� � u� du� ��
�

Make the change of variable v � x�n� � u and de�ne

�p�vj�k� �
�

Nk

X
x�n���k

pz�v � x�n��� ����

It can be obtained then�

��N�	� �
KX
k��

�Pk

Z
�p�vj�k� �k�v� dv� ����

De�ne next�

�p�v� �
KX
k��

�Pk �p�vj�k�� ���

�gk�v� �
�Pk �p�vj�k�

�p�v�
� ����

Now the error can be expressed as�

��N�	� �

Z
�p�v� jj��v�W �jj� dv � �

Z KX
k��

�gk�v� �k�W� v� dv � ��� ����

where �� is independent of the �k�s� A short manipulation �nally leads to�

��N�	� �

Z
�p�v� jj��v�W � � �g�v�jj� dv � ��� ����

where �� is independent of vector �� and �g is the vector with components �gk�
This last result shows that the mapping ����W � obtained is the one closest to
�g�v�� Yet� this is an estimate of the Bayesian discriminating functions gk�v� �
Pk p�vj�k�
p�v�� In other words� if the family of functions ����W � is su�ciently
large� the largest �k�W � v� will be reached for the same k as the largest �gk�v��
yielding the same decision�
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