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ABSTRACT

In this paper, a new blind source separation algorithm is
described. Its main feature is to be analytical, in other
words it doesn’t suffer from local minima. The proposed
method uses the discrete character of digital sources,
which yields a polynomial system. The estimation of
the sources is shown to be equivalent to the computa-
tion of rank-one tensors that are found by means of the
old method by Macaulay for the computation of resul-
tant. Finally, computer simulations are presented and
the performances are compared to the analytical CM
algorithm by van der Veen.

1 Introduction

Since the number of subscribers has impressively in-
creased, blind source separation has become a crucial
issue in the improvement on wireless communications.
Indeed, blind source separation is one way of taking ad-
vantage of spatial diversity, without the help of learn-
ing sequences. Besides, thanks to blind techniques, the
transmission rates could be increased in GSM or UMTS
mobile systems. Static source separation is a first step
towards the solution, which is indeed valid only in pres-
ence of flat fading.

Many algorithms have been proposed to solve blind
source separation using various criteria. For example,
one could use the independence of the sources [2] [1] or
their constant modulus property [16] [12].

In this paper, we focus on the use of the discrete char-
acter of the sources. This approach has already been
studied in [8] [4] [13], but our work is based on the seek
for an analytical solution. In the BPSK case, Van der
Veen proposed a partial analytical way to estimate the
sources [15] (its solution used an iterative generalized
Schur decomposition). Here, our solution is based on a
new algorithm that analytically finds rank-one tensors.
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2 Problem statement

2.1 Notation

Assume the following baseband reception model :
y=Hx+w, (1)

where x is a random vector of size P, subsequently called
the source vector, even if some components might be
correlated to each other (e.g. multipaths), w is a ran-
dom vector of size K standing for the noise, that will be
assumed Gaussian and independent of x. Lastly, y de-
notes the observation vector, A the mixing matrix, and
K the number of sensors.

Finally, it is assumed throughout the paper that there
are fewer sources than sensors, K > P.

2.2 Optimization criterion
When the source distribution 1s known and the noise 1s
Gaussian, the optimal estimator in the MAP sense is
given by :
(x, H)pap = Arg Min_ ||y — Hx||? (2)
xe€C,H

where C stands for the source constellation.

The computational complexity of this estimator is too

heavy to be used, and we propose to minimize the fol-
lowing polynomial criterion [9],

of) = + > IT If'y(n) — 2P

n=1 zeC

which has been shown to be asymptotically equivalent
to the MMSE [6]. In this criterion, f stands for a spa-
tial filter that extracts one discrete source and N is the
number of observations.

2.3 Rank-one property
If the sources are PSK with D phase states (let’s say

PSK-D), the criterion ® rewrites :
‘2

2(f) = + 3 [ym)” -1



and the spatial filter f must verify the following polyno-
mial system :

D
(fly(m)” = 1
: (3)

(FTy(N)” = 1
Using the symmetric vectorization operator,
vecsp{.}, defined in [6] as a vector containing all

the distinct cross-products of degree D appropriately
weighted, system (3) becomes :

y(1)°P" 1
: foD & yogoD — | (4)

y(N)oP! 1
where y(n)?? = vecsp{y(n) o---oy(n)} and £foP =
vecsp{f o --- o f}, and the operator o stands for the

tensor external product.

Since the spatial filter must verify systems (3) and (4),
f is the mean squares solution of (3) under a structure
constraint, which is such that the solution £ must
correspond to a rank-one tensor F =fo---of.

3 Expression of tensor F

In the noiseless case, matrix Y © is equal to

T T
y(1)eP (Hx(1)) P
Y® d:ef . = .
y(N)oD" (Hx(N)) P!
which rewrites
x(1)2P"
Vo — : H®DT d:ef X®D HGDT
x(N)2DP!

The rank of Y? is then determined by the ranks of
H9P and X@P  assuming that the product introduces
no loss of rank. It has been shown in [5], that this
assumption is verified when D = 2. The proof for D > 2
may not be a problem but the calculus is more painful.
In practice, i.e. during our simulations, this property
has always been verified. Now, let’s look at the rank of
matrices HOP and X@P

HD can be expressed as M (HQHRH®H) N, where
H®H®H®H is full rank if H is full rank, and M and N
are full rank matrices that transform H@ HRQH®H in a
K(K+1)(K+2)(K+3)/24 times P(P+1)(P+2)(P+3)/24
matrix. Thus, if H is a square full rank matrix, then
H9P is also full rank. The investigations in other cases
are more complex and have bot been carried out for the
moment. However, if one wants to be sure that HP is
full rank, it is sufficient to restrict the observation space
to the signal subspace.

Now look at X@P . One of its line, say x(n)QDT,
contains all distinct Dth-degree monomials in z1(n),
z2(n), -+, xp(n). In each line, these monomials are
listed in the same fixed order. Thus, if x, is PSK-D, the
column of X?P corresponding to the monomial z,,(n)”
has its entries equal to 1. If another source is PSK-
D, another column of X@7P is made of ones and X??
becomes singular. Therefore, if P sources are PSK-D,
X@D has a rank deficiency equal to P — 1,

Since the product X7 HP" introduces no loss of
rank, the Y9 kernel dimension is equal to P — 1 if P
PSK-D sources are present. Thus, the solution of (4)
can be written as :

P-1
oD ; >
£OP = £2,, + > Auy (5)
p=1
where fn%n is the pseudo-inverse solution.

Applying the inverse operator of vecsp{.} to this
equation we obtain :

P-1
F=F"" + ) \U (6)

p=1

where F, F™" and UP? are respectively the D!*-order
tensors associated with f, f,,;, and u,.

4 Estimation of the sources

The key point of the proposed method is that f extracts
a PSK-D signal if the D order tensor F is rank-one.
Thus, we must find the coefficients A, in (5) such that
F is rank-one. In [16] van der Veen proposed an iter-
ative algorithm that solves this problem for matrices.
Here, we propose an analytical solution based on the
Macaulay’s method for the computation of resultants
[10] [11], already used by the authors in the identifica-
tion case [3].

4.1 Method for matrices (D = 2)

When D = 2, we are looking for a rank-one matrix F
that is a linear combination of matrices ™" and U?.
In such a matrix, all 2 x 2 determinants vanish, ¢.e. the
entries of F = [fj;] must verify :

fij fre = frjfie with k>iandj<{ (7)

Replacing the expression (6) in the above equation leads
to :

) P-1 ) P-1
(fzym A SpY ) ( T S ) -
p=1 p=1
P-1 P-1
(f LY, ) ( L P )
p=1 p=1



which provides a system of polynomial equations of sec-
ond degree that can be solved using the Macaulay’s
method described in [3].

In our case, Bézout’s theorem [7](p.227) shows that
the polynomial system has at most 2°~! solutions.
Then, the analytical method used in [3] returns 2F~!
possible solutions, among which only P give rank-one
matrices F' as we show now.

If P sources are present, there exist P spatial filters
f, that satisfy equations (5) and (6). Hence, there are

2P-1 golutions.

at least P rank-one solutions among the
Suppose there is one more rank-one solution. Since it
also satisfies equation (6), the corresponding spatial fil-
ter extracts a PSK-D source, that is already extracted
(see the unicity results in [14]). Hence, there may exist

2 spatial filters f; and f5 that extract the same source :

fly =1y o (fi—£)'Y =0
& dim(Ker(Y)) #0

which is impossible if each sensor receives a distinct mix-
ture of the sources.
Therefore, the steps of our algorithm are :

1. Restrict the observation to the signal subspace,

2. Compute the pseudo-inverse of (4) and the kernel
of Y?

3. Compute all the 2 x 2 determinants,
4. Solve the polynomial system

5. Finally, keep the P solutions nearest to a rank-one
matrix.

4.2 Extension to tensors (D > 2)

When D > 2, we must find D"-order tensors that are
rank-one. The matrix slices of these tensors must all be
rank-one. Then, the algorithm described for D = 2 also
works in this case and gives P source estimates. The
algorithm becomes :

1. Restrict the observation to the signal subspace,

2. Compute the pseudo-inverse of (4) and the kernel
of Y©

3. For each matrix slice, compute all the 2 x 2 determi-
nants and solve each polynomial system separatly

4. Finally, keep the P solutions nearest to a rank-one
tensor among all the solutions found.

5 Computer results

The simulations have been carried out using a uniformly
spaced linear array with K = 4 sensors. The element
spacing is A/2, where A is the wavelength of the propa-
gating waveforms. P = 3 uncorrelated sources impinge

on the array, and the directions of arrival are #; = —20°,
f; = 3° and 83 = 15°. The proposed algorithm has been
tested with modulation QPSK and N = 300 observa-
tions.

Figures 1, 2 and 3 show the average Bit Error Rates
obtained over 500 trials and for various SNRs. The
performances of our algorithm are compared to the LS
spatial filter (dashed dot), computed assuming that the
sources are completly known, and compared to the per-
formances of the ACMA, Analytical CM Algorithm,
(dashed), proposed by Van der Veen in [16].

These simulations show that the performances of our
analytical algorithm are close to those of ACMA, com-
pared to the LS performances. However, the use of the
discrete character of the sources allow a decrease in the
BER when the SNR is sufficiently low. Indeed, at 10 d B,
our performances are under the performances of ACMA.
This is due to the fact that our approach is based on an
approximation of the MMSE which does not hold when
the SNR is too low.
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Figure 1: Computer results for the first QPSK source
signal.

6 Conclusion

In this paper, we proposed a new approach to discrete
source separation. We extended the algorithm of van der
Veen in [15] to PSK sources by introducing a symmetric
tensor vectorization operator vecsp{.}. The estimation
of the sources is performed by looking for rank-one ten-
sors that are a linear combination of given tensors. This
is done entirely analytically.

The performances of the new algorithm show that the

use of the discrete character of the sources allow a de-
crease in BER when the SNR is not too low.
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Figure 2: Computer results for the second QPSK source
signal.
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Figure 3: Computer results for the third QPSK source
signal.
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