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Analytical Blind Channel Identification
Olivier Grellier, Pierre Comon, Senior Member, IEEE, Bernard Mourrain, and Philippe Trébuchet

Abstract—In this paper, a novel analytical blind single-input
single-output (SISO) identification algorithm is presented, based
on the noncircular second-order statistics of the output. It is shown
that statistics of order higher than two are not mandatory to re-
store identifiability. Our approach is valid, for instance, when the
channel is excited by phase shift keying (PSK) inputs. It is shown
that the channel taps need to satisfy a polynomial system of de-
gree 2 and that identification amounts to solving the system. We
describe the algorithm that is able to solve this particular system
entirely analytically, thus avoiding local minima. Computer results
eventually show the robustness with respect to noise and to channel
length overdetermination. Identifiability issues are also addressed.

Index Terms—Blind channel estimation, minimum shift keying,
multipath channels, noncircularity, second-order statistics, time-
varying channels.

I. INTRODUCTION

B LIND identification methods depend on the characteristics
of the input sources. For example, it is known that a system

can only be identified up to an allpass filter when its input is
Gaussian circular. Consequently, particular attention has been
paid to the non-Gaussian inputs during the last two decades. In
those situations, the phase information can be accessed using
high-order statistics of the observations, and in the single-input
single-output (SISO) case, the system is identified up to a scalar
factor only. This has been studied in numerous papers, including
the works of Shalvi–Weinstein [24] or Tugnait [28]. Here, we
focus our attention on the noncircular character of inputs.

An interesting class of noncircular signals is the discrete,
which appears in wireless communications. In the SISO case,
the discrete character has been used by few authors; Li [15],
and Yellin and Porat [31] proposed deterministic approaches.
The former is valid for binary inputs and is iterative. To our
knowledge, the latter, which is quite complicated, is the only
work available in the open literature addressing analytical blind
identification of SISO channels with discrete inputs; it includes
a clustering stage that is rather sensitive to noise. On the other
hand, the discrete character has been broadly used for equal-
ization [15] but often in an iterative manner [4]; key references
are not cited here since equalization is out of the scope of the
present paper. The constant modulus (CM) property, which is
widely used in blind equalization, can hardly be used in blind
identification.
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The studied signals also have nonzero cyclo-stationary sta-
tistics, which allows identification using second-order statistics
only [11], [16]. However, for those signals, it is more interesting
to use the cyclo-stationarity as a time diversity, which leads to
the study of SIMO systems.

Slock in [25] and Tonget al.in [26] have first taken advantage
of oversampling of cyclo-stationary sources. With single-input
multiple-output (SIMO) systems, second-order statistics only
can be used, provided that the channels do not share a common
root [1], [23], [30]. In this sense, the SIMO problem can be con-
sidered to be easier than the SISO, in which one convention-
ally resorts either to cyclostationarity (which induces diversity)
or to high-order moments, e.g., constant modulus algorithms
(CMAs). SIMO second-order methods can be divided into three
families:

1) subchannel response matching (SRM) approach intro-
duced by Xu [30],

2) subspace methods [18];
3) linear prediction techniques [2], [25].
In this paper, the oversampling method (inducing a diversity)

is not used, i.e., only SISO systems are studied. The novelty of
our contribution is twofold. First, only second-order moments
are used; they are shown to be sufficient to restore identifia-
bility without resorting to higher order statistics. Second, an al-
gebraic solution to a class of polynomial systems, constructed
from a block of data, is introduced. Our approach is described
mainly in the case of minumum shift keying (MSK) modula-
tions, effectively approximating the digital modulation used in
the GSM standard, but it holds valid for differential binary PSK
(DBPSK) or quadrature PSK (QPSK) modulations. In addition,
block methods are well matched to burst-mode communication
systems (TDMA).

For instance, at 900 MHz and 190 km/h, the coherence time
is of order 2 ms; in the GSM system, this corresponds to only
two bursts, or about 300 symbol periods. This example shows
that block algorithms become necessary in a blind context and
for reduced coherence times.

The paper is organized as follows. Section II introduces the
assumptions made on the input and the related second-order
properties. Section III describes the principles of the novel pro-
cedure used to solve polynomial systems; this procedure is de-
tailed in Appendix C, whereas the standard technique of resul-
tants is recalled in Appendix A but is not used in the paper. The
selection of the best solution is described in Section IV. Some
identifiability results are proved in Section V, and computer ex-
periments are eventually presented in Section VI.

II. M ODEL AND BASIC PROPERTIES

Assume that a finite sequence of input samples is fed
into a finite impulse response (FIR) linear system of length,
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with (a priori complex) taps . Denote as
the corresponding output sequence of length, satisfying

where stands for a noise with unknown distribution, and
denotes transposition. In a standard manner, multidimen-

sional variables are stored in column vectors and denoted by
boldface letters; for instance,

by construction.
The input sequence is i.i.d. and assumed to follow a dis-

crete distribution, stemming from BPSK, MSK, or QPSK digital
modulations [5], [22], and the channelis supposed time-in-
variant during the observation record, which can be very short.
The noise is introduced to take into account modeling errors,
and computer experiments are run in Section VI for various
noise levels. However, noise is ignored in the theoretical devel-
opments so that it is considered only to be a nuisance for its
distribution is assumed to be unknown.

Complex Gaussian random variables are nothing but a pair of
real random variables. What allows simpler expressions of its
distribution, moments, and related statistical objects is its circu-
larity, which induces a correlation between real and imaginary
parts [12], [29]. For a scalar random variable, the circularity
property at order 2 is characterized by the equation .
A random variable is referred to asnoncircularat order 2 if the
latter moment is nonzero.

For non-Gaussian random variables, strict-sense circularity
means invariance of the distribution by multiplication of a unit
modulus complex number (that is, a rotation in the complex
plane), hence, the terminology. The concept has been introduced
independently in [6] and [21]. Various properties are investi-
gated in depth in [21]. Some statistical aspects have been ad-
dressed in [3]. Random variables whose distribution is not cir-
cularly invariant are referred to asnoncircular.

The key statistical property used in this paper is that discrete
signals are noncircular at given orders (at orderfor a PSK-
random variable [3], [14]). However, only second-order statis-
tics are used, so that onlynoncircularity at order 2will be ex-
ploited. More precisely, for DBPSK modulated signals, noncir-
cular and circular second-order correlations are given by

(1)

respectively. Next, we have, for MSK signals

(2)

(3)

and last, for DQPSK modulated signals

Re Re Re

Im Im Im

where if and elsewhere. Note the con-
ditional expectation, which is necessary under the assumption

that the initial value is uniformly distributed, exhibiting
cyclostationarity in the noncircular moment of MSK inputs.

Based on these properties, it is possible to derive a set of poly-
nomial equations that the channel must satisfy. In the MSK case,
we obtain

(4)

and in the BPSK case

(5)

In the QPSK case, we consider the equivalent problem (up to
a rotation of ) of a QAM4 distributed source, where
is the sum of purely real and purely imaginary binary white
and processes. It is necessary to consider real and imaginary
parts separately at the receiver because is not determin-
istic, whereas the real and imaginary parts of have a deter-
ministic square. This yields four families of equations. For sim-
plicity, setting Re Im without restricting
the generality, one gets

(6)

where and denote the real and imaginary parts of
, and and those of , respectively.

Another obvious possibly would be to use fourth-order mo-
ments, which would yield the family of equations

In this paper, only polynomial systems of degree 2 will be con-
sidered; therefore, the latter property will not be utilized.

III. SOLVING THE POLYNOMIAL SYSTEM

In order to concentrate on principles, we will explain in de-
tail the algorithm in the case of an MSK input, which seems to
be a good compromise between simplicity of developments and
generality. The algorithm described in Section III-D is, never-
theless, valid for other cases. Without restricting the generality,
assume a channel of length . Then, from (4), the polyno-
mial system given above based on noncircular statistics can be
explicitly written as

(7)
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where denotes the taps vector. The goal
of this paper is to solve this polynomial system for taps .
In a polynomial system having generally several solutions in a
finite number, equations provided by standard circular statistics
(covariance matching) are used to pick up the best solution in a
final stage.

A. Example in the Case of a Real Channel

As a simple particular case, consider a real channel, but out-
side this section, the channel isalways assumed to be com-
plex with no real roots, in accordance with identifiability results
proved in Section V. Then, circular statistics yield

where and
are given (they depend on statistics of observations

). Grouping of those equations results in

Using the first and third equations, one obtains

This equation eventually allows the calculation of and
, up to a sign, and then .

This particular example shows that it is possible to identify
a real channel by using thenoncircular second-orderstatistics
together withcircular second-orderones, using a simple elim-
ination procedure. Of course, this was valid only for real chan-
nels. For general complex FIR channels, which is the case in
which we are actually interested, the elimination procedure is
more complicated and is described in Section III-D.

B. Preliminaries

Consider the ring of polynomials in variables
with coefficients in the com-

plex field ; the dual space of is the set of linear forms from
to , which is denoted as . The evaluation of a polynomial

at a point , which is denoted as , is the
linear form that most interests us.

Let be polynomials of degree belonging to
.
Definition III.1: The ideal spanned by polynomials

is the set of polynomials of the form

with

The quotient ring is then defined as follows.
Definition III.2: For any ideal included in , the quotient

algebra is the set of polynomial classes
modulo ideal , viz

The dual space of is the subspace of of linear forms
vanishing on the ideal. In particular, the evaluation is in
if and only if is a root of all polynomials belonging to. This
is the fundamental property on which our approach is based.

Given a polynomial , define the multiplication operator
by as the mapping that associateswith

(8)

The transposed operator is by definition the mapping from
onto itself such that , ,

or, equivalently, .

C. Lemmas

Let be the subset of polynomials of degree
and belonging to . Bézout’s theorem [13, p. 227] states that

such a system

(9)

where , has either an infinity of
solutions or a number of solutions smaller than or equal to.
This extends more well-known results for a single polynomial
( ) or for linear systems ( ). In what remains, we
considergeneric systemshaving exactly solutions.

When the system has a finite number of solutions, the quo-
tient is of finite dimension (in fact, the variety of solutions is
zero-dimensional, which implies that is of finite dimension
because Hilbert’s polynomial [8] is of degree zero). Therefore,
one conventional way to compute the solutions is to reduce the
problem to an eigenvector computation, as shown by the fol-
lowing lemma.

Lemma III.3: Let be any given polynomial in . Then, the
eigenvalues of the multiplication map in are the values
of at the roots of the polynomial system.

Proof: Consider the polynomial
. It vanishes at all the roots . Thus, by Hilbert’s

zero theorem (Nullstellensatz) [8], there exists a positive integer
, such that or, equivalently, such that

in . In terms of operators, this means that

where denotes the identity operator of. Thus, for any eigen-
pair of , we have and
thus

As , must be one the values , , which com-
pletes the proof.

The reverse inclusion will be proved by Lemma III.4, among
others.

Besides, if , the eigenvalues of matrix of op-
erator give the values of coordinate of the solu-
tions. If we repeat this operation for each tap , we have the

solutions. However, a somewhat simpler solution is intro-
duced by the following lemma and avoids the computation of
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all eigenvalues of every multiplication operator . In fact,
all eigenvectors of asingleoperator are actually required.

Lemma III.4: Linear forms , where is any
solution of , are the eigenvectors of all matrices
associated with the eigenvalues , .

Proof: Using the definition of matrix and applying it
to the linear form , we get

In other words, we have . Therefore, and
are, respectively, the eigenvectors and eigenvalues of ma-

trix . This proves the lemma.
If eigenvalues are not distinct, some eigenvectors are not

uniquely determined, which makes the previous lemma less
useful. Yet, it can be proved that the common eigenvectors of
all operators are exactly the evaluation forms [19].
Therefore, a solution consists of taking several forms, say,
and , instead of a single one . and commute
and have the same eigenspaces. The indeterminacy can be
handled in this way, but it is not reported here in detail.

Hence, the computation of the multiplication matrix
appears as a key step in the proposed algorithm since

the eigenvectors of allow the finding of all the so-
lutions of . Indeed, if we take for a basis of the set

of monomials of
global degree at most , the entries of the eigenvector are
equal to in the dual basis
of , where stands for any possible solution of. More
precisely, entries 2 to of any eigenvector of , whose
first entry is normalized to 1, yield a solution to . This
property is used in the numerical algorithm of Section III-D by
merely choosing . Any other polynomial could have
made it.

D. Computing Directly From the Polynomial System

As already mentioned, we prefer a more direct approach than
that (more standard) described in Appendix A for computational
reasons. In order to simplify the discussion, we will use the fol-
lowing example: Suppose that a channel of length is
excited by a MSK input. System is then equal to that in (7).
In that case, the computation of the multiplication matrix can be
split into five steps.

First Step—Change in Variables:Suppose we use the fol-
lowing change in variables: . The system in is im-
plicitly defined by the system in

(10)

where ,
, . The matrix is chosen so

that a simple basis can always be found for(that basis will
contain monomials of degree at most 1 in every variable). Any
choice of (by drawing it randomly) would lead to a system
that can be solved by with probability one. Moreover, if
is not well chosen, the algorithm detects it because one of the
matrices involved in the subsequent steps is rank deficient.

The next steps consist of expressing second-, third-, and
fourth-degree monomials in the basis. We give, in Appendix C,
the general procedure, but for more clarity, these steps are
explained in detail for the particular case of system (7), which
consists of three equations of degree 2 in three variables.

Second Step—Choosing a Basis:A basis that can generically
solve our kind of polynomial systems is composed of the neutral
element 1, the unknowns , and all the cross monomials
of degree less than or equal to, where each unknown appears
with a power equal to 1 or 0. In fact, it has been proved by
Macaulay that such a basis is sufficient when there are no zeros
at infinity (generic case) [27]. Here are two examples:
and .

• Channel length :

• Channel length :

In the following, the column vector containing the elements of
the basis will be denoted as . In this example, is
of size 8. System (10) can then be rewritten as for
some matrix depending on and only.

This basis can always be used in our problem [27] because the
system is a complete intersection (there are a finite number of
solutions), and we first applied a generic change in the variables
(there are no longer zeros at infinity). The reason is that in (7),
some equations linked monomials and 1, which would
have not been linearly independent in.

Third Step—Expression of the Second-Degree Mono-
mials: Suppose we want to find in the matrix associated
with multiplication by . The monomials to be expressed
are as follows: If

Monomials of the basis Monomials to be expressed

Some of these monomials are already in the basis, such as,
, , and . The other monomials

, , , and have to be ex-
pressed using the polynomial system.

According to (10), monomials , , and can be
expressed directly as a function of 1, , , , ,

, and , provided that is chosen correctly.
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In other words, monomials , , and can be ex-
pressed directly as a function of the basis using (10)

(11)

for some matrix depending on only. Therefore, the
monomial is now expressed in the basis ; in fact,

has here a null coefficient.
Fourth Step—Expression of the Third-Degree Monomials:

Monomials and are now of interest. These
monomials can be written using the expression of the monomial

in the first row of (11). If we multiply this equation
by , monomial appears in the left-hand side,
and monomials , , , , ,

, and appear on the right-hand side.
Among these monomials, one can distinguish those that are
in the basis, like , , , and ,
those that have already been expressed in the basis, like,
and those that are unknown, like and .
However, these unknown monomials are of the same type
as monomials and , and one can show
that expressing monomials , , ,

, , and all together using (11)
leads to

(12)

for some matrix depending on only.
Fifth Step—Expression of the Fourth-Degree Mono-

mials: Using the same method as before, one can express
monomials such as using (12). See Appendix C
for more details.

Having expressed all the monomials in the chosen basis, the
multiplication matrix can be constructed. Once the multiplica-
tion matrix is found for the arbitrarily chosen ,
one computes the eigenvectors of , . Next, all the
possible solutions to the polynomial system are obtained
as . Then, the solutions in
the original coordinate system are given by . See
Appendix C for details.

For the sake of clarity, we have described the elimination al-
gorithm for a channel length of , but the principles hold

TABLE I
STEPS OF THEELIMINATION PROCEDURE

exactly the same for larger values of (with a larger number
of unknowns), such as , as in some subsequent computer
simulations. As explicited in [27], the general algorithm goes
along the lines described in Table I.

IV. ESTIMATION OF THE CHANNEL

Selection of a Solution:In a final step, one chooses the so-
lution among that best matches the
actual channel by a moment matching method, as we explain
now.

A polynomial system rarely admits a unique solution, regard-
less of the number of unknowns. Therefore, it is very likely that
we obtain in practice distinct solutions that we can denote
as , . How-
ever, circular statistics (3) have yet to be utilized. With this goal,
denote

(13)

Then, because of (3), we have the well-known phase-blind
relation

(14)
The procedure proposed in this paper consists of choosing the
solution minimizing the distance:

Arg Min

(15)
hence, the name ofmoment matchingmethod. The whole algo-
rithm is summarized in Table II.

Computational Complexity:It is worth noting that the largest
part of the computational load consists of building the multipli-
cation matrix , which depends on the modulation (discrete
alphabet and trellis). Yet, it can be shown [9] that this matrix

is itself a polynomial function of the data moments when
the polynomial system has no infinite solution. Thus, in an op-
erational context, for a given modulation, one can only store the
polynomial coefficients of in a ROM; as a consequence, the
computation of becomes negligible, and the overall data-de-
pendent computations are dominated by the calculation of the
eigenvectors of .
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TABLE II
SUMMARY OF THE ALGORITHM

V. IDENTIFIABILITY

It is well known that blind identifiability can be carried
out only up to a complex multiplicative factor. Therefore,
there are infinitely many solutions. However, if we arbitrarily
fix the source variance to 1 and the scalar phase inherent
indeterminacy, which contains a fixed phase and a delay,
then identifiability results can be stated. Thus, we may assume
from now on that the channel is causal of degree , and
we want to prove that the joint use of circular and noncircular
second-order output correlation functions yields anessentially
unique solution (i.e., up to a unit modulus multiplicative factor
and up to a time delay).

Lemma V.1:Suppose we look for a causal FIR channelof
length from given second-order circular statistics; then, the
number of solutions isessentiallyfinite and bounded by .

Proof: The -transform of the circular covariance of
the output is equal to since the
input is white and of unit variance. This shows that if is
causal, it can be determined from up to two kinds of inde-
terminacies. First, can only be determined up to a multi-
plicative constant phase factor. Second, if is transformed
into , where verifies ,
remains the same. It is well known that is then an allpass
filter, i.e., of the following form, up to a delay

Since must be FIR and since is not FIR, is
FIR only if each pole of is associated with one of the
roots of . As a consequence, there is a finite number of
allpass filters such that is FIR. Therefore, if the phase
indeterminacy is fixed, there are at most possible FIR
filters that correspond to . If the roots of are not all
distinct or of unit modulus, there are indeed fewer possibilities
than . This proves Lemma V.1, which has been known for
many years.

Theorem V.2:Suppose we look for an FIR channel of
length from given second-order circular and noncircular sta-
tistics of the output when the input is stationary white. Then, up
to complex phase and time delay indeterminacies, we have the
following:

• a unique solution if has no real root,
• solutions if has distinct real roots.

Proof: Suppose now that we also use the noncircular co-
variance . Its -transform is equal
to . Yet, one can easily show that
rational filters satisfying are of the following
form, up to a delay:

Now, using statements made in the proof of Lemma V.1, allpass
rational filters that also satisfy must have
real poles (and zeros). As a consequence, if has no real
roots, cannot have real poles since is FIR, and
the allpass filter must be equal to 1. In this case, there is
anessentiallyunique solution for , up to a sign. The fact
that is known or not is of no importance since it is of unit
modulus and can be pulled into the inherent indeterminacies. If

has real roots, one must use the result of Lemma V.1.
The number of solutions is thenessentiallyequal to .

When the input source is MSK, it is white but not stationary.
However, identifiability still holds.

Corollary V.3: When the input source is white MSK, the
joint use of second-order circular and noncircular statistics of
the output yield a unique solution for , up to a sign.

The proof is given in Appendix B. These identifiability results
justify the algorithm we have proposed and are summarized in
Section IV.

VI. COMPUTERRESULTS

Tests are run on a random FIR channel ( ). At each
run, the channel is a realization of a Clarke filter in the typical
urban (TU) mode. Every channel generated is specular and con-
tains six paths, whose delays and attenuations are given in the
following table, according to the ETSI norm (GSM 05.05, De-
cember 1995, six taps TU setting):

s

(dB)

In other words, each coefficient is a random complex cir-
cular Gaussian variable whose standard deviation is given in the
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Fig. 1. Average BER at the output of a Viterbi algorithm using our channel
estimate as a function of the SNR for various block lengths.

table. Note that the first path is not the strongest. The symbol
rate is 271 ksymbol/s, which corresponds to a symbol period of
3.68 s, whereas the delays above are also given ins (these
cases are those of GSM). The transmit filter is a raised cosine
with rolloff , and four samples have been generated per
symbol period. The channel is excited by a MSK input. The per-
formance is presented as a function of the SNR and of the length

of the observation block and averaged over 500 independent
channel trials.

Fig. 1 shows the average bit error rate (BER) obtained at the
output of a Viterbi equalizer that uses our channel estimate. The
solid, dashed, and dash-dotted lines correspond to block lengths

, , and , respectively. These per-
formances are compared with the average BER obtained with
the actual channel (dotted line).

For high SNRs and or , the results show
the effects of moment estimation errors. These effects disappear
for , where the performances exhibit a loss of 2 dB
compared with the actual channel results.

Fig. 2 shows the average mean squares distance between the
actual and the estimated channel. The solid, dashed, and dash-
dotted lines correspond again to block lengths ,

, and , respectively.
It appeared relevant to test the robustness of the algorithm

with respect to channel overestimation. Keeping in the
algorithm, tests have been run on a random FIR channel of ac-
tual length . Fig. 3 shows the average BER obtained at
the output of a Viterbi equalizer that uses our channel estimate
when (solid line) and (dashed line). Fig. 4 shows
the average mean square estimation error of the channel as a
function of the SNR and in the presence of overdetermination.
These two performances are compared with the one obtained
when the actual channel is used (dash-dotted line). Hence, this
test illustrates the loss in performance encountered in the pres-
ence of channel order overdetermination.

Fig. 2. Average mean square estimation error of the channel as a function of
the SNR for BER at the output of the SNR for various block lengths.

Fig. 3. Average BER at the output of a Viterbi algorithm using our channel
estimate as a function of the SNR and in presence of overdetermination.

Experiments for QPSK modulated inputs have not been run,
but one can either treat real and imaginary parts separately, as
explained in Section II, or use fourth-order moments. Of course,
the former is preferred (e.g., for IS95 standard), but the latter
seems unavoidable in the case of/4-QPSK modulations, which
are found, for example, in the IS54 standard.

VII. CONCLUDING REMARKS

The blind identification method described in the paper is
based only on second-order statistics of the observation. We
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Fig. 4. Average mean square estimation error of the channel as a function of
the SNR and in presence of overdetermination.

proved that it is not necessary to resort to higher order statistics,
explicitly or implicitly (like in CMA), to identify a SISO
channel; next, we gave an analytical solution that was free
of local extrema problems. In addition, identifiability results
were derived when an FIR channel is searched for, from both
circular and noncircular moments. Finally, computer results
showed that the behavior of our algorithm depends on the
estimation quality of the moments and on the accuracy of the
determination of the channel length.

The extension to SIMO channels is rather straightforward and
consists essentially of code writing and computer experiments.
In fact, there is no fundamental change in the algorithm. How-
ever, there exist specific algorithms that work in the SIMO case
and not in the SISO case. For this reason, we believe our algo-
rithm is more attractive in the SISO case.

APPENDIX

A. Computation of Matrix by Resultants

Many methods can be used to compute the multiplication ma-
trix. Among them, the Gröbner bases are the most well known.
They can be used to build a base of the quotient algebraand
then to compute the multiplication matrix with normal forms
computation. However, this method must be run in exact arith-
metic and thus implies the use of big numbers. Another use of
the Gröbner bases consists of the elimination of variables
and leads to the computation of the roots of a mono-variate poly-
nomial of degree . Since these methods are too expensive
in terms of computation load, we prefer to use a modification of
the old method by Macaulay [17], which has been used to build
resultants.

This approach, which is discussed in this section for the sake
of completeness, can be considered to be an extension of the
Sylvester theorem to multivariate polynomials and, thus, could

seem natural. However, another simpler (but less standard) ap-
proach is discussed in Section III D and Appendix C and has
been used throughout the paper. We now present Sylvester and
Macaulay matrices and their properties.

1) Sylvester Matrices:Sylvester matrices are matrices
that represent maps of the form

where , , and are the spaces generated by monomials
, , and , re-

spectively. Matrix , of size , thus has the
following structure:

...
...

where the entries of are the coefficients of the polynomials
so that and . The

determinant of is also called the resultant of polynomials
and . Of course, the construction procedure also applies for
more than two polynomials.

2) Macaulay Matrices:The approach described above
can be generalized to multivariate polynomials. Let

be polynomials of degree
in variables (Note that

in the algorithm of Section III-D, all degrees are equal to
, except .) Macaulay matrices [17] used to build the

resultant of these polynomials are matrices associated with
maps of the form

where the are subspaces spanned by a finite number of
monomials in variables , which are denoted
as , where and

. In this notation, is the set of respective powers
of the variables of the monomials that span the subspace,

, each containing inte-
gers. In a similar manner, definesuch that .

The matrix associated with this multivariate mapis such
that its columns are the image, in the canonical basis, of the
monomials in the polynomials . If denote the de-
gree of polynomial , it can be shown that is of dimension

, where . In other words, its size is that
of the basis .

Matrix can be split in blocks:
, where block is the canonical rep-

resentation of the image subspace of the monomialsby the
polynomial . Let us now explain the construction procedure
on an example.

Example: Suppose that , , ,
, and .

The critical degree is in this example,
and we arbitrarily choose the basis .
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At each step of the procedure ,
one looks for monomials left in that can be divided by ;
in order to construct a basis of space , one divides these
monomials by . In Step 1, monomials of divisible by

are . Ones sets removes
from , and go to the next step. InStep 2, mono-

mials of divisible by reduce to . Thus,
one sets and removes from what remained in

. It eventually remains that in , which consists of
the basis of .

Every row of is associated with a monomial of
, in a preassigned order; here, we choose arbitrarily

. The first two columns span the
space , the third one spans , and the last three
columns span

The submatrices comprised within vertical bars can be denoted
as , , and , respectively.

The sets of exponents associated with are the
following: , ,

, and the set associated with the whole
space is
and actually describes.

3) Properties of Macaulay’s Matrices:The proof of the fol-
lowing theorems are not given but can be found in [10], [17],
and [20].

Theorem VIII.1: Consider the generic polynomial
system , choose a polynomial , and build
the Macaulay matrix associated with these polynomials.
The set of monomials is a basis of the quotient algebra

and where is defined in Ap-
pendix A2.

Hence, the construction of the Macaulay matrix yields a basis
of the quotient algebra. The following theorem gives a means
to compute the matrix associated with the multiplication by
thanks to the Macaulay matrices.

Theorem VIII.2: Suppose is a subset of , which is the
set of exponents indexing the rows of; this is the case if
includes a constant term. Then, matrixrewrites

where the rows and the columns ofare indexed by the mono-
mials , and the columns of and are indexed by the
monomials , where is different from zero. Then, for
all polynomial systems , the matrix of the multipli-
cation by in the quotient algebra is
the Schur complement of the block in the matrix

Thus, matrix can be directly computed from the
Macaulay matrix associated with polynomials

[7]. However, if we take into account the relationships between
the monomials introduced in the polynomial system, there
exists a much simpler procedure to compute, as explained
in Section III-D and Appendix C.

B. Proof of Corollary V.3

Proof: When the input source is MSK, let us first show
that the noncircular covariance

has a -transform given by

(16)

In fact,
, which, from (2), yields

or ). Now, take
the -transform over time index , and get

. Making the
change of variables eventually gives (16).

Now, suppose we have one solution satisfying (16).
From the result above, we see that the whole set of rational
filters satisfying (16) is then generated by , where

, and where poles of coincide with
zeros of .

Yet, it can be easily shown that such filters take the following
form, up to an even delay:

Now, it can be seen that the only allpass filter satisfying
that also satisfies is

. Therefore, the whole set of solution reduces to
, up to a delay.

C. Computational Details

In this section, we detail the steps described in Section III-D
in the particular case of system (7), which contains three equa-
tions of degree 2 in three variables. Computer codes can be
downloaded from the web page of the second author. From the
Bézout lemma quoted in Section III-C, we already know that
this system will have generally solutions.

1) First Step: The identity matrix is not suitable for be-
cause some steps in the procedure will involve singular matrices.
This comes from the fact that pure squares all appear in the first
equation only. Thus, the following choice is made:

(17)

2) Second Step:One chooses the basis , which contains
the eight monomials in the following, that we can arrange in a
vector:
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The system (7) can now be expressed in terms of the new
variables as

... (18)

where

The goal is now to express the matrix of operator
in the basis . For doing this, we need to have the ex-

pression of all monomials of , in particular, monomials
such as , , or , as a function of
monomials of itself.

3) Third Step: The pure squares are not in , but
we can obtain them from (18) by isolating the squares in the
left-hand side

(19)

where matrices and are functions of :

and where denotes theth column of (as in the Matlab
notation).

4) Fourth Step: Let us turn now to monomials of the form
, . Take the first row of (19), and multiply it by

. A careful inspection then shows that depends
only on because
of the presence of zeros in matrix . Similarly, de-
pends only on . In
order to solve this problem, it suffices to write jointly the other
equations, which are obtained on one hand by multiplying the
second row of (19) by and and on the other hand by
multiplying the third row of (19) by and . This even-
tually yields the following system, after some manipulations:

(20)

where

Consequently, we have indeed expressed monomials
and in the basis .

5) Fifth Step: Last, let us turn to monomial .
From (20), it can be seen that

Multiplying this relation by shows that
can be expressed as a function of monomials , ,

, and ; the first monomial is expressed
in thanks to (19), the second and the third thanks to (20),
and the fourth is of the same nature as . In order
to obtain its expression, we will proceed along the same lines
as in the previous paragraph. We will express jointly all three
monomials of the same type. This leads eventually to the linear
system

(21)

where
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6) Solutions to the Polynomial System:The matrix of the
operator can now be obtained as

It admits generally eight eigenvectors , .
Each of these eigenvectors gives a solution

because the first four entries of
are . The corresponding solutions
are obtained by transforming back to the original coordinate
system .
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