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Analytical Blind Channel Identification

Olivier Grellier, Pierre ComopnSenior Member, IEEEBernard Mourrain, and Philippe Trébuchet

~ Abstract—in this paper, a novel analytical blind single-input The studied signals also have nonzero cyclo-stationary sta-
single-output (SISO) identification algorithm is presented, based ftjstics, which allows identification using second-order statistics

on the noncircular second-order statistics of the output. Itis shown ; i ; ;
that statistics of order higher than two are not mandatory to re- only [11], [16]. However, for those signals, itis more interesting

store identifiability. Our approach is valid, for instance, when the to use the cyclo-stationarity as a time diversity, which leads to
channel is excited by phase shift keying (PSK) inputs. It is shown the study of SIMO systems.
that the channel taps need to satisfy a polynomial system of de-  Slockin [25] and Tongt al.in [26] have first taken advantage
gree 2 and that identification amounts to solving the system. We of oversampling of cyclo-stationary sources. With single-input
describe the algorithm that is able to solve this particular system -, iin1e_output (SIMO) systems, second-order statistics only
entirely analytically, thus avoiding local minima. Computer results . '
eventually show the robustness with respect to noise and to channel @1 be used, prOVIded.that the channels do not share a common
length overdetermination. Identifiability issues are also addressed. 0ot [1], [23], [30]. In this sense, the SIMO problem can be con-
Index Terms—Blind channel estimation, minimum shift keying, sidered to b? easier than thg SISQ, In V.Vhlc.h one Co.nvenFlon-
multipath channels, noncircularity, second-order statistics, time- ally resorts either to cyclostationarity (which induces diversity)
varying channels. or to high-order moments, e.g., constant modulus algorithms
(CMAs). SIMO second-order methods can be divided into three
families:
1) subchannel response matching (SRM) approach intro-
LIND identification methods depend on the characteristics duced by Xu [30],
of the input sources. For example, itis known that a system 2) subspace methods [18];
can only be identified up to an allpass filter when its input is 3) linear prediction techniques [2], [25].

Gaussian circular. Consequently, particular attention has beem this paper, the oversampling method (inducing a diversity)
paid to the non-Gaussian inputs during the last two decadesidmot used, i.e., only SISO systems are studied. The novelty of
those situations, the phase information can be accessed ugingcontribution is twofold. First, only second-order moments
high-order statistics of the observations, and in the single-inpae used; they are shown to be sufficient to restore identifia-
single-output (SISO) case, the system is identified up to a scaility without resorting to higher order statistics. Second, an al-
factor only. This has been studied in numerous papers, includiigbraic solution to a class of polynomial systems, constructed
the works of Shalvi-Weinstein [24] or Tugnait [28]. Here, wérom a block of data, is introduced. Our approach is described
focus our attention on the noncircular character of inputs.  mainly in the case of minumum shift keying (MSK) modula-
An interesting class of noncircular signals is the discretgons, effectively approximating the digital modulation used in
which appears in wireless communications. In the SISO casige GSM standard, but it holds valid for differential binary PSK
the discrete character has been used by few authors; Li [18)BPSK) or quadrature PSK (QPSK) modulations. In addition,
and Yellin and Porat [31] proposed deterministic approachgfeck methods are well matched to burst-mode communication
The former is valid for binary inputs and is iterative. To ousystems (TDMA).
knowledge, the latter, which is quite complicated, is the only For instance, at 900 MHz and 190 km/h, the coherence time
work available in the open literature addressing analytical blingl of order 2 ms; in the GSM system, this corresponds to only
identification of SISO channels with discrete inputs; it includegvo bursts, or about 300 symbol periods. This example shows
a clustering stage that is rather sensitive to noise. On the othgit block algorithms become necessary in a blind context and
hand, the discrete character has been broadly used for eqtgdreduced coherence times.
ization [15] but often in an iterative manner [4]; key references The paper is organized as follows. Section Il introduces the
are not cited here since equalization is out of the scope of thésumptions made on the input and the related second-order
present paper. The constant modulus (CM) property, whichggoperties. Section IIl describes the principles of the novel pro-
widely used in blind equalization, can hardly be used in blingedure used to solve polynomial systems; this procedure is de-
identification. tailed in Appendix C, whereas the standard technique of resul-
tants is recalled in Appendix A but is not used in the paper. The
Manuscript received June 30, 2000; revised January 17, 2002. The assocsletleec.tl.on.c.)f the best solution |s.descr|ped in Section IV. Some
editor coordinating the review of this paper and approving it for publication Wégem'f'ab"'ty results are proved in Section V, and computer ex-
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with (a priori complex) tapg.(m), 0 < m < M —1. Denote as that the initial valuez(0) is uniformly distributed, exhibiting
y(n) the corresponding output sequence of lemygttsatisfying cyclostationarity in the noncircular moment of MSK inputs.
Based on these properties, it is possible to derive a set of poly-

M—1 . . .
y(n) = gz:o h(m)e(n — m) + w(n) 2 z(n; M)Th + w(n) Cv%rr:)lsiaeiﬂuatlons that the channel must satisfy. In the MSK case,

M-1
vaherew(n) stands for.q noise with unknown distributiop, _andE n)y(n — £)|z(0)] = z(0)? Z (=)™ h(m)h(m +£) (4)
(1) denotes transposition. In a standard manner, multidimen-
sional variables are stored in column vectors and denoted brYd in the BPSK
boldface letters; for instance(n; M) = [z(n), ...z(n— M+ andinthe case
1)]* by construction. )
The input sequence(m) is i.i.d. and assumed to follow adis- ~ E(m)y(n = H)|z(0)] = z(0) > hm)h(m+1).  (5)
crete distribution, stemming from BPSK, MSK, or QPSK digital m=0
modulations [5], [22], and the channklis supposed time-in- In the QPSK case, we consider the equivalent problem (up to
variant during the observation record, which can be very shoatrotation ofr/4) of a QAM4 distributed source, wherg(n)
The noise is introduced to take into account modeling errois, the sum of purely real and purely imaginary binary white
and computer experiments are run in Section VI for vario@d processes. It is necessary to consider real and imaginary
noise levels. However, noise is ignored in the theoretical devgRrts separately at the receiver becau&®? is not determin-
opments so that it is considered only to be a nuisance for igic, whereas the real and imaginary parts:@f) have a deter-
distribution is assumed to be unknown. ministic square. This yields four families of equations. For sim-
Complex Gaussian random variables are nothing but a pairicity, setting Ré¢z(0)]? = Im[z(0)]*> = 1 without restricting
real random variables. What allows simpler expressions of ke generality, one gets
distribution, moments, and related statistical objects is its circu-,. .., . .
larity, which induces a correlation between real and imaginar;E[y (n)y"(n = £)|z(0)] = Z a(g)ag +£) = b(g)blg +£)
parts [12], [29]. For a scalar random variatdethe circularity ‘ N
property at order 2 is characterized by the equaig#?} = 0. E[y"(n)y'(n — O)|z(0)] = > alq + O)b(q) — alg)b(g + £)
A random variable is referred to asncircularat order 2 if the q
latter moment is nonzero. | _E )y (n - Ola(0)] = Y a(@)blg +£) — alg + Ob(e)
For non-Gaussian random variables, strict-sense circularity 4
means invariance of the distribution by multiplication of a unit i i _
modulus complex number (that is, a rotation in the compIeXE[y (n)y'(n = O)l=(0)] = Z Ha)bla +£) +alg)ala +£)
plane), hence, the terminology. The concept has beenintroduced ! ©)
independently in [6] and [21]. Various properties are investi-
gated in depth in [21]. Some statistical aspects have been atherea(m) andb(m) denote the real and imaginary parts of
dressed in [3]. Random variables whose distribution is not cit{m), andy"(n) andy’(n) those ofy(n), respectively.
cularly invariant are referred to a®ncircular. Another obvious possibly would be to use fourth-order mo-
The key statistical property used in this paper is that discreteents, which would yield the family of equations
signals are noncircular at given orders (at orddéor a PSK#%
random variable [3], [14]). However, only second-order statid [y (n)y(n — gl)y(j\; _f?)y(” = £3)|2(0)]
tics are used, so that onhoncircularity at order 2will be ex- -
ploited. More precisely, for DBPSK modulated signals, noncir- =a(0)* D h(m)h(m + £)h(m + £2)h(m + £s).
cular and circular second-order correlations are given by m=0

m=0

M-1

In this paper, only polynomial systems of degree 2 will be con-
E{z(n)z(n — £)|x(0)} =2(0)5(¢) sidered; therefore, the latter property will not be utilized.
E{z(n)a(n — £)*} = §(¢) 0
[ll. SOLVING THE POLYNOMIAL SYSTEM

respectively. Next, we have, for MSK signals o ) o
In order to concentrate on principles, we will explain in de-

E{z(n)z(n — £)|z(0)} = (=1)"z(0)%5(¢) (2) tail the algorithm in the case of an MSK input, which seems to
E{z(n)z(n — £)*|2(0)} = 8(¢) 3) be a good compromise between simplicity of developments and
generality. The algorithm described in Section IlI-D is, never-
and last, for DQPSK modulated signals theless, valid for other cases. Without restricting the generality,
) assume a channel of lengiti = 3. Then, from (4), the polyno-
E{Refz(n)|Refz(n — £)]|2(0)} =Re[x(0)]" 6(¢) mial system given above based on noncircular statistics can be
E{Im[z(n)]Im[z(n — £)]|z(0)} =Im[z(0)]*6(¢) explicitly written as
E{a(n)x(n — )"} =6(¢) Fi(h) = R(0)2 — h(1)2 + h(2)? — o =

wheres(¢) % 1if £ = 0 andé(¢) = 0 elsewhere. Note the con- fa(h) = MO)A(1) = h(1)A(2) = =0 ™
ditional expectation, which is necessary under the assumption fa(h) = h(0)A(
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whereh = {h(0), h(1), h(2)} denotes the taps vector. The goal The dual spacel of A is the subspace 6% of linear forms
of this paper is to solve this polynomial system for t&s:). vanishing on the idedl. In particular, the evaluatiob, is in A
In a polynomial system having generally several solutions inifaand only if ¢ is a root of all polynomials belonging tb. This
finite number, equations provided by standard circular statistiissthe fundamental property on which our approach is based.
(covariance matching) are used to pick up the best solution in aiven a polynomiat € A, define the multiplication operator

final stage. by a as the mapping\1,, that associates with ga
A. Example in the Case of a Real Channel My A—A
As a simple particular case, consider a real channel, but out- qr—qa. (8)

side this section, the_ channel eidways_ a;sum_e_d t_‘? be COM-rhe transposed operatért ! is by definition the mapping from
plex with no real rootsin accordance with identifiability resultsA onto itself such that MTA)(q) = A(Maq), ¥ A € A

proved in Section V. Then, circular statistics yield V ¢ € Aor, equivalently(MTA)(g) = Alga).
1(h) = h(0)2 + h(1)2 + h(2)2 — B =0

g1(h) = h(0)?
g2(h) = h(0)h(1) + A(1)A(2) — p1 =0 Lot be the subset of pol " fbofd
B o e e the subset of polynomialgy, ..., fa} of degree
gs(h) = h(0)A(2) — a2 =0 D and belonging t&R. Bézout's theorem [13, p. 227] states that
wherea; = E{y(n)y(n — 9)|z(0)} andB; = E{y(n)y(n — such a system
1)*|«(0)} are given (they depend on statistics of observations

C. Lemmas

y). Grouping of those equations results in P:{fm(§) =0,1<m < M} )
n(0)2 4+ h(2)? = (o + B0)/2 where¢ < [£(0), £(1), ... &(M —1)], has either an infinity of
hOY(1) = (ay + f1)/2 solutions or a number of solutions smaller than or equatté.

This extends more well-known results for a single polynomial

h(0)h(2) = az. (M = 1) or for linear systemsi{ = 1). In what remains, we

Using the first and third equations, one obtains considergeneric systemisaving exactlyD* solutions.
_ 2 2 2 When the system has a finite humber of solutions, the quo-
(1(0) = 31(2))" =h(0)" + h(2)" — 2/h(0)A(2) tient A is of finite dimension (in fact, the variety of solutions is
= (@0 + f0)/2 = Zyexa. zero-dimensional, which implies that is of finite dimension
This equation eventually allows the calculation /efo) and Pecause Hilbert's polynomial [8] is of degree zero). Therefore,
h(2), up to a sign, and theh(1). one conventional way to compute the solutions is to reduce the

This particular example shows that it is possible to identifjroblem to an eigenvector computation, as shown by the fol-
a real channel by using thencircular second-ordestatistics lowing lemma.
together withcircular second-ordepnes, using a simple elim- Lemmallll.3: Leta be any given polynomial ik. Then, the
ination procedure. Of course, this was valid only for real chagigenvalues of the multiplication mapt, in A are the values
nels. For general complex FIR channels, which is the casedhe at the roots of the polynomial systefh
which we are actually interested, the elimination procedure is Proof: Consider the polynomiad(§) = [[,-p(a(§) —

more complicated and is described in Section I1I-D. a(z)). It vanishes at all the roots € P. Thus, by Hilbert's
zero theorem (Nullstellensatz) [8], there exists a positive integer

B. Preliminaries N, such thab™ € 7 or, equivalently, such thgf[, ., (a(£) —
Consider the ringR = C[¢] of polynomials in variables a(z))N = 0in A. In terms of operators, this means that
def H T~ H
= [€(0), £(1), ...&(M — 1)] with coefficients in the com- _ Ny =o

plex field C; the dual space ok is the set of linear forms from H Mo —alz)D)" =

‘R to C, which is denoted a&.. The evaluation of a polynomial . . .

patapoint¢ € CM, which is denoted as: p — p(¢), is the wherel denotes the identity operator df Thus, for any eigen-

linear form that most interests us. pair (A, v) of Mo, we have[ [, p(Ma — a(2)])™ v = 0and
Let{f1, ..., far} be polynomials of degreP belonging to thus

ZeP

R

. N
Definition 11l.1: The ideal Z spanned by polynomials H (A —a(z)” v =0
{f1, ---, fam} is the set of polynomials € R of the form ZeP
M Aswv # 0, A must be one the valuegz), z € P, which com-
p=>_figi,  Wwithg eR. pletes the proof. »
P The reverse inclusion will be proved by Lemma 111.4, among
others.

The quotient ringd = R /7 is then defined as follows.

Definition ll.2: For any idealZ included inR, the quotient
algebra4 = R/T is the set of polynomial classes € R
modulo idealZ, viz

Besides, ifa = £(0), the eigenvalues of matrid, of op-
eratorM,, give the values of coordinatg0) of the D* solu-
tions. If we repeat this operation for each fp:), we have the
D™ solutions. However, a somewhat simpler solution is intro-
p=q it p—qgel. duced by the following lemma and avoids the computation of
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all eigenvalues of every multiplication operatdfte ... In fact, The next steps consist of expressing second-, third-, and

all eigenvectors of aingleoperatorA, are actually required. fourth-degree monomials in the basis. We give, in Appendix C,
Lemma lIl.4: Linear formsl,: p — p(z), wherez is any the general procedure, but for more clarity, these steps are

solution of P, are the eigenvectors of all matricéM ), explained in detail for the particular case of system (7), which

associated with the eigenvalue&), a € A. consists of three equations of degree 2 in three variables.
Proof: Using the definition of matrid® and applyingit ~ Second Step—Choosing a Basisbasis that can generically
to the linear forml ., we get solve our kind of polynomial systems is composed of the neutral
element 1, thé/ unknownsz(m ), and all the cross monomials
M;(1.)(q) = 1.(aq) = a(2)1.(q). Vqe€A of degree less than or equalié, where each unknown appears

with a power equal to 1 or 0. In fact, it has been proved by
In other words, we havaf ' (1,) = a(z)1,. Therefore1, and Macaulay that such a basis is sufficient when there are no zeros

a(z) are, respectively, the eigenvectors and eigenvalues of nginfinity (generic case) [27]. Here are two examples:= 2
trix M- This proves the lemma. m andM =3.

If eigenvalues are not distinct, some eigenvectors are note Channel length\/ = 2:
uniquely determined, which makes the previous lemma less
useful. Yet, it caTn be proved that the common eigenvectors of By = {1, 2(0), 2(1), 2(0)z(1)}
all operatorsAM, are exactly the evaluation forms, [19].
Therefore, a solution consists of taking several forms, &&y,
andb(¢), instead of a single one(¢). M, and M, commute
and have the same eigenspaces. The indeterminacy can be
handled in this way, but it is not reported here in detail. Bs = {1, 2(0), 2(1), 2(2), 2(0)2(1), 2(0)2(2)

Hence, the computation of the multiplication matrix 2(1)z(2), z(0)z(1)2(2)}.
M, appears as a key step in the proposed algorithm since
the eigenvectors ofM ! allow the finding of all the so-
lutions of P. Indeed, if we take for a basis off the set
B = {1,£(0), &1), ..., £(0)€(1), ...} of monomials of
global degree at modb, the entries of the eigenvectar are
equal to{1, z(0), 2(1), ..., 2(0)2(1), ...} in the dual basis
of B, wherez stands for any possible solution @f. More
precisely, entries 2 td/ + 1 of any eigenvector oM, whose
first entry is normalized to 1, yield a solutiolk to 7. This
property is used in the numerical algorithm of Section IlI-D b
merely choosing: = £(0). Any other polynomial could have
made it.

e Channel length\/ = 3:

In the following, the column vector containing the elements of
the basis3; will be denoted a$;(z). In this examplebs(z) is

of size 8. System (10) can then be rewrittenddg(z) = 0 for
some matrixA depending or? and7’ only.

This basis can always be used in our problem [27] because the
system is a complete intersection (there are a finite number of
solutions), and we first applied a generic change in the variables

there are no longer zeros at infinity). The reason is that in (7),
ome equations linked monomidl&)X(;j) and 1, which would
have not been linearly independentdn

Third Step—Expression of the Second-Degree Mono-
) _ ) mials: Suppose we want to find i3 the matrix associated
D. ComputingM, Directly From the Polynomial System  jith multiplication by z(0). The monomials to be expressed

As already mentioned, we prefer a more direct approach thafi¢ as follows: IfAf = 3
that (more standard) described in Appendix A for computational

reasons. In order to simplify the discussion, we will use the fol- Monomials of the basis Monomials to be expressed
lowing example: Suppose that a channel of lengith= 3 is 1 #(0)

excited by a MSK input. SysterR is then equal to that in (7). z(0) 2(0)?

In that case, the computation of the multiplication matrix can be 2(1) 2(0)2(1)

split into five steps.

First Step—Change in VariablesSuppose we use the fol- #(2) 2(0)2(2)
lowing change in variableg: = 7' h. The system irx is im- 2(0)z(1) xF 2(0)22(1)
plicitly defined by the syster® in h 2(0)#(2) 2(0)22(2)

PH=0 (10) 2(1)2(2) #(0)%(1)(2)
2(0)z(1)z(2) 2(0)%22(1)2(2)
where K = [1, h(0), h(1), h(2), L(0)R(1), h(0)N(2),

R(1)A(2), R(0)%, h(1)2, h(2)?]. The matrixT is chosen so Some of these monomials are already in the basis, suefdas
that a simple basis can always be found fo(that basis will z(0)z(1), 2(0)z(2), and z(0)2(1)z(2). The other monomials
contain monomials of degree at most 1 in every variable). Amy0)?2, 2(0)22(1), (0)?2(2), andz(0)22(1)z(2) have to be ex-
choice of T’ (by drawing it randomly) would lead to a systenmpressed using the polynomial system.

that can be solved bg; with probability one. Moreover, itf” According to (10), monomialg(0)?, (1)2, andz(2)? can be
is not well chosen, the algorithm detects it because one of tpressed directly as a function of10), 2(1), 2(2), 2(0)z(1),
matrices involved in the subsequent steps is rank deficient. z(0)z(2), and z(1)z(2), provided thatT" is chosen correctly.
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In other words, monomials(0)?, z(1)?, andz(2)? can be ex- TABLE |
pressed directly as a function of the basis using (10) STEPS OF THEELIMINATION PROCEDURE
r 17 1. Make a change of variables z = T~ ' h
2(0) 2. Choose the basis By containing all 2 monomials of
) ) global degree at most M, and partial degree at most 1,
#(0) (1) in variables zy, 2;,..., 25,
2(1)?| =B 2(2) (11) 3. For d = 2 to M, express monomials of degree d, that
2(2)2 2(0)2(1) are at Hamming distance 1 of basis By, as a function of
i A monomials of Bys
2(0)z(2) = -
L2(1)=(2) |

exactly the same for larger values &f (with a larger number
of unknowns), such a&/ = 5, as in some subsequent computer
simulations. As explicited in [27], the general algorithm goes
E!ong the lines described in Table I.

for some matrix B depending onA only. Therefore, the
monomial z(0)? is now expressed in the basi; in fact,
2(0)z(1)z(2) has here a null coefficient.

Fourth Step—Expression of the Third-Degree Monomial
Monomialsz(0)2~(1) andz(0)?~(2) are now of interest. These
monomials can be written using the expression of the monomial V. ESTIMATION OF THE CHANNEL
#(0)? in the first row of (11). If we multiply this equation _ ) )
by z(1), monomial z(0)2z(1) appears in the left-hand side, _Selchon of a Solutionin a final step, one chooses the so-
and monomialsz(1), 2(0)z(1), z(1)2, 2(2)z(1), 2(0)z(1)2, Iution h among{h™, 1 < m < 2} that best matches the
2(0)2(1)2(2), and z(1)22(2) appear on the right-hand sideactual channel by a moment matching method, as we explain
Among these monomials, one can distinguish those that &@&V: ) ) ) .
in the basis, likez(1), 2(0)z(1), 2(2)z(1), andz(0)z(1)(2), A polynomial system rarely admltsaunlqu_e_solutlor_l, regard-
those that have already been expressed in the basis;(like, less of the _number_ of unknoyvns. The_refore, it is very likely that
and those that are unknown, likd1)2z(2) and z(0)z(1)2. We obtain in practic™ distinct solutions that we can denote
However, these unknown monomials are of the same typgh"™ = [R(™(0), ... h0™W(M —1)], 1 < m < 2. How-
as monomialsz(0)2z(1) and z(0)22(2), and one can show €Ver, circular statistics (3) have yet to be utilized. With this goal,
that expressing monomials(0)2z(1), (0)2z(2), z(1)2z(0), denote
2(1)%2(2), 2(2)22(0), and 2(2)22(1) all together using (11)

leads to Ry(£) = E{y(n)y(n — £)"|2(0)}. (13)
[ 1 1 Then, because of (3), we have the well-known phase-blind
[ 2(0)22(1) ] 2(0) relation
2(0)22’(2) Z(l) M—1
0| _ | @ w2 Ry(£) =" h(Dh(i — )" + Ry(£), 0<L<M-1
2(1)%2(2) 2(0)2(1) = (14)
2(2)22(0) 2(0)2(2) The procedure proposed in this paper consists of choosing the
| 2(2)22(1) | A1)#(2 solutionk minimizing the distance:
| 2(0)2(1)2(2) ] M—1 M-1 2
h = Arg Min R,(4) — R (YR (4 — g)*
for some matrixC depending orBB only. gh<m> ; v(6) ; @ (=9
Fifth Step—Expression of the Fourth-Degree Mono- (15)

mials: Using the same method as before, one can exprémmnce, the name ehoment matchingnethod. The whole algo-
monomials such as(0)2z(1)z(2) using (12). See Appendix C rithm is summarized in Table II.
for more details. Computational Complexityitis worth noting that the largest
Having expressed all the monomials in the chosen basis, et of the computational load consists of building the multipli-
multiplication matrix can be constructed. Once the multiplicaeation matrixM ,, which depends on the modulation (discrete
tion matrix M, is found for the arbitrarily chosem = 2(0), alphabet and trellis). Yet, it can be shown [9] that this matrix
one computes the* eigenvectors oM >, v, Next, all the M, is itself a polynomial function of the data moments when
possible solution&‘™ to the polynomial system are obtainedhe polynomial syster® has no infinite solution. Thus, in an op-
asz(™ = »(™(2: M + 1)/v")(1). Then, the solutions in erational context, for a given modulation, one can only store the
the original coordinate system are givenfd§) = T'z(™. See polynomial coefficients oM, in a ROM; as a consequence, the
Appendix C for details. computation oM , becomes negligible, and the overall data-de-
For the sake of clarity, we have described the elimination glendent computations are dominated by the calculation of the
gorithm for a channel length g¥/ = 3, but the principles hold eigenvectors oM.
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TABLE I
SUMMARY OF THE ALGORITHM

¢ Choose a presumed channel length, M=L
o Compute the sample correlation

N
1 *
Ry(e):m E y(nyin=£0)", 0< €< L-1
n={+1

o Compute the non-circular sample correlation

-nt
o) = T S )yt — 0, 0< €< L1
n={+1

¢ Choose a transform matrix, T

From «(¥¢), calculate the multiplication matrix, M Z(o)
according to the procedure described in sections III-D
and VIII-C, as well as table 1.

« Compute all its 2~ eigenvectors, v(™)

o Compute the 2 possible solutions, z™, by
normalizing the first entry of v(™ to 1, and retaining
entries 2to L + 1

o Transform back every candidate into the original
coordinate system: h(™ = Tz(m

e For each of these candidates,
corresponding theoretical correlation (14)
o Select the solution h minimizing (15)

o Equalize the channel and compute the BER of the
estimated input.

compute the

V. |IDENTIFIABILITY

It is well known that blind

out only up to a complex multiplicative factor. Therefore
there are infinitely many solutions. However, if we arbitraril
fix the source variance to 1 and the scalar phase inheren
indeterminacy, which contains a fixed phase and a deftgy

2201

SinceH (») must be FIR and sincg(z) is not FIR,H (2)®(z) is
FIR only if each pole of( ) is associated with one of the — 1
roots of H(z). As a consequence, there is a finite number of
allpass filters such thd (2)®(z) is FIR. Therefore, if the phase
indeterminacy is fixed, there are at m@&¥¥—! possible FIR
filters that correspond t6’'(2). If the roots of H(=) are not all
distinct or of unit modulus, there are indeed fewer possibilities
than2™—1, This proves Lemma V.1, which has been known for
many years. ]
Theorem V.2:Suppose we look for an FIR chann#&l of
lengthM from given second-order circular and noncircular sta-
tistics of the output when the input is stationary white. Then, up
to complex phase and time delay indeterminacies, we have the
following:

¢ a unique solution if4 has no real root,
+ 29 solutions ifH has( distinct real roots.
Proof: Suppose now that we also use the noncircular co-
variance(¢) = E{y(n)y(n—¥£)|z(0)}. Its z-transform is equal
to C(z) = x(0)2H(2)H(1/%). Yet, one can easily show that
rational filters satisfyingl/(2)¥(1/z) = 1 are of the following
form, up to a delay:
1-— bjzfl
V(z) = ' —bj —

J
Now, using statements made in the proof of Lemma V.1, allpass
rational filters®( ») that also satisf$(»)®(1/2) = 1 must have
real poles (and zeros). As a consequencé (£) has no real
roots,®(z) cannot have real poles sinégz)®(z) is FIR, and
the allpass filte2(z) must be equal te1. In this case, there is
an essentiallyunique solution forH (), up to a sign. The fact
thatx(0) is known or not is of no importance since it is of unit

identifiability can be carried modulus and can be pulled into the inherent indeterminacies. If

H(z) has() real roots, one must use the result of Lemma V.1.

he number of solutions is thesssentiallyequal to2?. [ |
When the input source is MSK, it is white but not stationary.
However, identifiability still holds.

then identifiability results can be stated. Thus, we may assume-crollary V.3: When the input source is white MSK, the

from now on that the channel is causal of degid¢e- 1, and

joint use of second-order circular and noncircular statistics of

we want to prove that the joint use of circular and noncirculdP€ OUtPut yield a unique solution féf (z), up to a sign.

second-order output correlation functions yieldseasentially

The proofis given in Appendix B. These identifiability results

unique solution (i.e., up to a unit modulus multiplicative facto'Stify the algorithm we have proposed and are summarized in

and up to a time delay).
Lemma V.1: Suppose we look for a causal FIR chanHebf

length A/ from given second-order circular statistics; then, the

number of solutions isssentiallyfinite and bounded bg? —*.
Proof: Thez-transform of the circular covarianeén) of

the outputy(n) is equal toC(z) = H(2)H"(1/z") since the

input is white and of unit variance. This shows thaHif z) is

causal, it can be determined frafi{z) up to two kinds of inde-

Section V.

VI. COMPUTERRESULTS

Tests are run on a random FIR chann® (= 5). At each
run, the channel is a realization of a Clarke filter in the typical
urban (TU) mode. Every channel generated is specular and con-
tains six paths, whose delays and attenuations are given in the
following table, according to the ETSI norm (GSM 05.05, De-

terminacies. Firstd (=) can only be determined up to a multi-cember 1995, six taps TU setting):

plicative constant phase factor. Second{if>) is transformed

into H(2)®(z), where®(z) verifies®(z)®*(1/2*) = 1, C(2)

remains the same. It is well known th&tx) is then an allpass

filter, i.e., of the following form, up to a delay
Q -1

o(2) :Hﬂ

—1 N
a; — 2
i=1 ¢

0 02 05 16 23 5.0

7 (§1S)
E{a}} (dB)

-3 0 -2 -6 -8 -10

In other words, each coefficient is a random complex cir-
cular Gaussian variable whose standard deviation is given in the
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Average Bit Error Rate
=
3
PV
Ve
Average Mean Square Estimation Error

\ . . . . .

- L > 3 L > 6 8 10 12 14 16 18 20
6 8 10 12 14 16 18 20 SNR (dB)

SNR (dB)

Iig. 2. Average mean square estimation error of the channel as a function of

Fig. 1. Average BER at the output of a Viterbi algorithm using our chann e SNR for BER at the output of the SNR for various block lengths.

estimate as a function of the SNR for various block lengths.

table. Note that the first path is not the strongest. The symt
rate is 271 ksymbol/s, which corresponds to a symbol period
3.68 1S, whereas the delays above are also givensiithese
cases are those of GSM). The transmit filter is a raised cosi
with rolloff 5 = 0.1, and four samples have been generated p 10?
symbol period. The channel is excited by a MSK input. The pe
formance is presented as a function of the SNR and of the Ienq%

N of the observation block and averaged over 500 independ&
channel trials.

Fig. 1 shows the average bit error rate (BER) obtained at t&
output of a Viterbi equalizer that uses our channel estimate. T%
solid, dashed, and dash-dotted lines correspond to block lenc2
N = 200, N = 500, and N = 1000, respectively. These per-
formances are compared with the average BER obtained w
the actual channel (dotted line).

For high SNRs an@v = 200 or N = 500, the results show
the effects of moment estimation errors. These effects disapp
for N = 1000, where the performances exhibit a loss of 2 di 10™
compared with the actual channel results. ,

Fig. 2 shows the average mean squares distance betweer 4 6 8 10 12 14 16
actual and the estimated channel. The solid, dashed, and dasii- SNR (@8)
dotted lines correspond again to block lengtis= 200, N = Fig. 3. Average BER at the output of a Viterbi algorithm using our channel
500, andN = 1000, respectively. estimate as a function of the SNR and in presence of overdetermination.

It appeared relevant to test the robustness of the algorithm

with respect to channel overestimation. Keepldg= 5 inthe  Experiments for QPSK modulated inputs have not been run,
algorithm, tests have been run on a random FIR channel of g one can either treat real and imaginary parts separately, as
tual lengthM = 3. Fig. 3 shows the average BER obtained &lyp|ained in Section II, or use fourth-order moments. Of course,
the output of a Viterbi equalizer that uses our channel estima{®, former is preferred (e.g., for 1S95 standard), but the latter

whenM = 3 (solid line) andV/ = 5 (dashed line). Fig. 4 shows geems ynavoidable in the casert-QPSK modulations, which
the average mean square estimation error of the channel a3 @found. for example, in the 1S54 standard.

function of the SNR and in the presence of overdetermination.
These two performances are compared with the one obtained
when the actual channel is used (dash-dotted line). Hence, this
test illustrates the loss in performance encountered in the presthe blind identification method described in the paper is

ence of channel order overdetermination. based only on second-order statistics of the observation. We

Errol

10”

VII. CONCLUDING REMARKS



GRELLIER et al: ANALYTICAL BLIND CHANNEL IDENTIFICATION

Average Mean Square Estimation Error

1 L ! 1 I

4 6 8 10 12 14
SNR (dB)

Fig. 4. Average mean square estimation error of the channel as a functio

the SNR and in presence of overdetermination.

proved that it is not necessary to resort to higherorderstatisti&an be generalized
explicitly or implicitly (like in CMA), to identify a SISO foo frreoo fur
channel; next, we gave an analytical solution that was free’ =~
of local extrema problems. In addition, identifiability result§no’t
were derived when an FIR channel is searched for, from boﬁ’
circular and noncircular moments. Finally, computer resul]:gs
showed that the behavior of our algorithm depends on t%
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seem natural. However, another simpler (but less standard) ap-
proach is discussed in Section Ill D and Appendix C and has
been used throughout the paper. We now present Sylvester and
Macaulay matrices and their properties.

1) Sylvester Matrices:Sylvester matrices are matrices
that represent maps of the form

S:Vox Vi =V
(g0, 1) —aofo+afr

whereVy, Vi, andV are the spaces generated by monomials
{1, .., 28— {1, .. o=t and{l, ..., gdtdi—1] re-
spectively. MatrixS, of sizedy + d; x dy + dy, thus has the
following structure:

fo 5
Jo i
where the entries of; are the coefficients of the polynomials

fisothatfo =[1, ..., a%]fyandf; = [1, ..., z%]f;. The
determinant ofS is also called the resultant of polynomigls

s9id f1. Of course, the construction procedure also applies for

more than two polynomials.

2) Macaulay Matrices:The approach described above
to multivariate polynomials. Let
€ R be M + 1 polynomials of degree
..., dp in variablesg = {£(1), ---, £&(M)} (Note that
he algorithm of Section IlI-D, all degreeg are equal to
exceptdy = 1.) Macaulay matrices [17] used to build the
ultant of these polynomials are matrices associated with
ps of the form

estimation quality of the moments and on the accuracy of the

determination of the channel length.

The extension to SIMO channels is rather straightforward and
consists essentially of code writing and computer experiments.
In fact, there is no fundamental change in the algorithm. How-

S:%X"'XVA4—>V

M
(g0, - qu) = > aif;
i=0

and not in the SISO case. For this reason, we believe our alg@snomials in variable$¢(1), ..., &(M)}, which are denoted

rithm is more attractive in the SISO case.

APPENDIX

A. Computation of Matrix\, by Resultants

asV,, = ("), where¢™ = {¢° 3 ¢ E,} and¢’ =

Jr.. ¢ n this notation E,,, is the set of respective powers
of the variables of the monomials that span the subspage
E, = A{Bn1, ..., Bm, N, }, €achg,, , containingl inte-
gers. In a similar manner, defiré such that’ = (£7).

Many methods can be used to compute the multiplication ma-The matrixS associated with this multivariate m&his such
trix. Among them, the Grobner bases are the most well knowthat its columns are the image, in the canonical basis, of the
They can be used to build a base of the quotient algebaad monomials¢® ¢ in the polynomialsf,,. If d,, denote the de-
then to compute the multiplication matrix with normal formgree of polynomialf,,,, it can be shown tha$ is of dimension

+M

computation. However, this method must be run in exact arittly; " ), wherev = 3. d; — M. In other words, its size is that
metic and thus implies the use of big numbers. Another useaffthe basiss.

the Grobner bases consists of the eliminationf 1 variables

Matrix S can be split inM 4+ 1 blocks: § =

and leads to the computation of the roots of a mono-variate polyy, Si, ..., Sm], where block S, is the canonical rep-
nomial of degreeD™ . Since these methods are too expensivesentation of the image subspace of the monoréfatsby the

in terms of computation load, we prefer to use a modification gblynomial f,,,. Let us now explain the construction procedure
the old method by Macaulay [17], which has been used to buikth an example.

resultants.

Example: Suppose thald = 2, D = 2, fo(zx, y) = aoz,

This approach, which is discussed in this section for the sakgx, ) = ay2? + byy, andfa(x, ) = agy + ba.
of completeness, can be considered to be an extension of th&he critical degreeis = 1+ 2+ 1— 2 = 2 in this example,
Sylvester theorem to multivariate polynomials and, thus, coutehd we arbitrarily choose the bagfs = {1, =, y, #2, zy, ¥°}.
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At each stepM — m + 1 of the procedureVl > m > 1, [7]. However, if we take into account the relationships between
one looks for monomials left ig”" that can be divided bg®~; the monomials introduced in the polynomial syst@mthere
in order to construct a basis of spatg, one divides these exists a much simpler procedure to complMe, as explained
monomials by¢d=. In Step 1 monomials of¢¥ divisible by in Section 11I-D and Appendix C.
&2 = yare{y, zy, y*}. Ones setd» = {1, z, y} removes

{y, ry, y*} from £F, and go to the next step. Btep 2 mono- B. Proof of Corollary V.3

mials of{1, z, «?} divisible by¢{" - «? reduce tofz?}. Thus, Proof: When the input source is MSK, let us first show
one setd’, = {1} and removeq-} from what remained in that the noncircular covariance(t; n) < E{y(n)y(n —

¢F. It eventually remains thafl, =} in ¢*, which consists of y)|;:(0)} has az-transform given by
the basis ofi.

Every row of S is associated with a monomial of C(z;n) = (=1)"x(0)?H(—2)H(1/2). (16)
¢F, in a preassigned order; here, we choose arbitrarily B
¢F = {1, z, y, 2%, zy, y2}. The first two columns span the !N fact, e(6n) = 32,5 h(p)M(@E{z(n — p)z(n — ¢ —
spacef,(Vy), the third one spang.(V1), and the last three £)|(0)}, which, from (2), yields

columns sparfz(V2) ot m) = (~1)"2(02 Y] Y (~1PR(ph(g)s(p — £ — )
0 0101 0 O r g
ao 0 0 0 bg 0

0 0|blax 0 b ore(fin) = (1)"2(0)* 30, (1)Ph(p)h(p — £)). Now, take

S=1, aplar |0 0 o0 the z-transform over time index!, and getC(z;n) =
0 0/0[0 a © (=D)"2(0)* 32, 32, (=DPh(p)h(p — )z(—£). Making the
0 01010 0 a change of variables = p — ¢ eventually gives (16).

_ ) o ) Now, suppose we have one solutiéh (z) satisfying (16).
The submatrices comprised within vertical bars can be denote@m the result above. we see that the whole set of rational

as Sy, S1, andSy, respectively. _ _ filters satisfying (16) is then generated I, (2)Y(z), where
The sets of exponent&,, associated withV;, are the Y(—2)Y(1/z) = 1, and where poles of () coincide with
following: Eo = {[0,0], [1, 0}, E1v = {[0, 01}, B2 = zeros ofH,(»).

{[0, 0], [1, 0], [0, 1]}, and the sef” associated with the whole vt it can be easily shown that such filters take the following
spaceV is I = {[0, 0], [1, 0], [0, 1], 2, O], [1, 1], [0, 2]} form, up to an even delay:
and actually describes.

3) Properties of Macaulay’s MatricesThe proof of the fol- T(z) = HJ 1+ bzt
lowing theorems are not given but can be found in [10], [17], - b — 271
and [20].

Theorem  VIII.1: Consider the generic polynomialNow, it can be seen that the only allpass filter satisfying
system fi, ..., far, choose a polynomialfy, and build ®(2)®*(1/z*) that also satisfiest(—z)®(1/z) = 1 is
the Macaulay matrix5 associated with these polynomials®(#) = =+1. Therefore, the whole set of solution reduces to
The set of monomialg§™ is a basis of the quotient algebrat=H,(2), up to a delay. u
A = R/(f1,..., fm) and whereFE, is defined in Ap- ) )
pendix A2. C. Computational Details

Hence, the construction of the Macaulay matrix yields a basisin this section, we detail the steps described in Section Ill-D
of the quotient algebra. The following theorem gives a meairsthe particular case of system (7), which contains three equa-
to compute the matrix associated with the multiplicationfpy tions of degree 2 in three variables. Computer codes can be
thanks to the Macaulay matrices. downloaded from the web page of the second author. From the

Theorem VII1.2: SupposeF is a subset of”, which is the Bézout lemma quoted in Section IlI-C, we already know that
set of exponents indexing the rows 8f this is the case iffy this system will have general? = 8 solutions.

includes a constant term. Then, matfixewrites 1) First Step: The identity matrix is not suitable fdF be-
A B cause some steps in the procedure will involve singular matrices.
S = <C D) This comes from the fact that pure squares all appear in the first

equation only. Thus, the following choice is made:
where the rows and the columns.dfare indexed by the mono-

mials £, and the columns oB and D are indexed by the 2 10

monomials{gEm}, wherem is different from zero. Then, for h =Tz, T= [1 0 1] . 17

all polynomial systemg, ..., fas, the matrix of the multipli- 0 -1 1

cation by fo in the quotient algebrad = R/(f1, .-, fm) 1S 2) Second StepOne chooses the basiis, which contains
the Schur complement of the blogkin the matrix.5 the eight monomials in the following, that we can arrange in a

0 .

Thus, matrix M, can be directly computed from thebs = [1, 2(0), 2(1), 2(2), 2(0)z(1)
Macaulay matrix associated with polynomidlg;, ..., fa} 2(0)2(2), 2(1)2(2), 2(0)z(1)z(2)]".
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The system (7) can now be expressed in terms of the newere
variablesz(¢) as

SR Ay =
T 0 Ci(1,5) Ci(1,7) 0 0 ]
021 (1, 5) Ci(1,7)
052 . 0 -1 0 0 Ci(1,6) Ci(L,7)
z z
. C1(2,5) Cu(2, 6) —1 0 0 0
Al 2| = | (18) 2, 5) Gi(2, 6)
0 0 0 0 ~1 Ci(2,6) Ci(2,7)
#(0)2
0y C1(3,5) C1(3,6) 0 0 -1 0
z
| 2(2)7 ] L O 0 Ci(3,5) Ci(3,7) 0 -1 ]
B; =
where 0 0 Ci(1,1) 0 0 0 0 C1,6)]
ao —4 ) 2 _3 —_2 0 0 0 Cl(l, 1)0 0 0 Cl(l, 5)
A=|a; -2 -1 -2 -2 0 1]. 0 Ci(2,1) 0 0 00 0 Cu2,7)
@ 2 -2 -1 0 10 0 0 0 Ci(2,1)0 0 0 Ci(25)
The goal is now to express the mattM .o, of operator 0 Gi(3.1) 0 0 00 0 (37
M_ (o) in the basisBs. For doing this, we need to have the ex- | 0 0 C1(3,1) 0 0 0 0 Ci(3,6) ]

pression of all monomials of(0)bs, in particular, monomials
such asz(0)?2, 2(0)22(1), or 2(0)22(1)z(2), as a function of
monomials ofb; itself.

3) Third Step: The pure squares(i)? are not in3s, but
we can obtain them from (18) by isolating the squares in tlr:er

Consequently, we have indeed expressed monom(@jsz(1)
andz(0)%z(2) in the basisBs.

5) Fifth Step: Last, let us turn to monomial(0)%2(1)z(2).
om (20), it can be seen that

left-hand side
2(0)? #(0)
2| _ a-1 dof
0 I IR RO o
where matricesi; andB; are functions ofA: 2(0)(1)(2)
AL =[A(G, D) A(G,6) A(:, 7)) Multiplying this relation by z(2) shows thatz(0)%2z(1)z(2)
B =—[A(1) 0 0 0 A(;2) A(3) A(,4) 0] can be expressed as a function of monomigty?, (0)z(1),

2(0)2(2), and z(0)z(1)2(2)?; the first monomial is expressed
in B3 thanks to (19), the second and the third thanks to (20),

and whereA(:, ¢) denotes théth column ofA (as in the Matlab X 5
notation). and the fourth is of the same naturez&8)-z(1)z(2). In order

4) Fourth Step: Let us turn now to monomials of the formt© obtain its expression, we will proceed along the same lines
2(i)22(5), i # j. Take the first row of (19), and multiply it by as in thg previous paragraph. We will express jointly all three
#(1). A careful inspection then shows thai0)?=(1) depends monomials of the same type. This leads eventually to the linear
only on {z(1), 2(0)2(1)2, 2(0)z(1)2(2), 2(1)22(2)} because SYStEM
of the presence of zeros in mati . Similarly, z(0)?2(2) de-
pends only o 2(2), 2(0)z(1)2(2), 2(0)2(2)?, 2(1)2(2)?}. In 2(0)22(1)2(2)
order_to solve _this problem, it suffices to write jointly _the_other 2(1)22(0)2(2) | = A7 By Basbs(2) 2 Cabs(z)  (21)
equations, which are obtained on one hand by multiplying the )
second row of (19) by(0) andz(2) and on the other hand by #(2)°2(0)=(1)
multiplying the third row of (19) byz(0) andz(1). This even-
tually yields the following system, after some manipulations: where

2(0)22(1) i 1 0 —Cs(1,8)
2(0)%2(2) Az = 0 1 —Cs(3,8)
2120 dor | —Cs(4,8) 1 0
d(a(z) | T A P = bl (20) ;0

2(2)%2(0) Bj; = C,

| 2(2)%%(1) | L 0 1
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0 0 0 Co1,1) 0 1,2 12]
Bsi= |0 0 0 Cu3,1) 0 Cx3,2) -
0 Cx(4,1) 0 0 (4,3 (4, 4) 141
14
C2(1,3) 0 0 Co(l,4) Ca(l,5)
Ca(3, 3) 0 0 Cx(3,4) C2(3,5) [15]
0 C(4,2) 0 0 Oy, 7)
[16]
6) Solutions to the Polynomial Systefthe matrix of the
operatori?, can now be obtained as [17]
[18]
T _
Moy =
-0 00 0 1T 19l
1 0 0 0
0 0 0 0 [20]
0 01(17 )T 0 0 02(17 :)T 02(27 :)T 0 03(17 )T 21
0 10 0 [21]
0 0 1 0 [22]
0 0 0 0
Lo 0 0 1 1 [23]
. . . [24]
It admits generally eight eigenvectot§™, 1 < m < 8.
Each of these eigenvectors gives a solutief™® = -
25

(™) (2

4)/v(™)(1) because the first four entries &

are [1, 2(0), 2(1), 2(2)]. The corresponding solutions™
are obtained by transforming back to the original coordinatég26]
systemh(™) = Tz(m),

(1]

(2]

(3]
(4]

(5]
(6]
(7]

8]

El

[10]

(11]

(27]
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