Tensor problems in Engineering

## Pierre Comon

July 18, 2008

Context Over. Orthog. Invertible Und
Contents II

- Alternate Least Squares
- Diagonally dominant
- Joint Schur

5 Underdetermined mixtures

- Binary

Ranks

- Biome
- Foobi

CAF

- Iterative algorithms
- Ending


## Context Over. Orthog. Invertible Under.

## Contents I

## 1 Context

- Statistical framework
- Characteristic functions
- Identifiability \& Uniqueness
- Cumulants

2 Overdetermined mixtures

- General
- Independence

Standardization
3 Algorithms for orthogonal decomposition

- Criteria
- Pair sweeping
- Other

4 Algorithms for invertible decomposition

- Probabilistic approach

Pierre Comon Tensor problems in EE

## Lecture 1/3

Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulants
Linear statistical model

$$
\begin{equation*}
\mathbf{y}=\mathbf{A} \mathbf{s}+\mathbf{b} \tag{1}
\end{equation*}
$$

with

$$
\begin{array}{ll}
\mathbf{y}: & K \times 1 \text { random } \\
\mathbf{s :} & P \times 1 \text { random with stat. independent entries } \\
\mathbf{A}: & K \times P \text { deterministic } \\
\mathbf{b}: & \text { errors (may be removed for } P \text { large enough) }
\end{array}
$$

 Goals

## Taxinomy

- $K \geq P:$ "over-determined"
can be reduced to a square $P \times P$ regular mixture
- A orthogonal or unitary
- A square invertibl
- $K<P$ : "under-determined"
- A rectangular with pairwise lin. independent columns


## Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulants

Application areas for symmetric tensors

1 Telecommunications (Cellular, Satellite, Military),
2 Radar, Sonar,
3 Biomedical (EchoGraphy, ElectroEncephaloGraphy, ElectroCardioGraphy).

4 Speech,
5 Machine Learning
6 Control..

Example: Antenna Array Processing (1)


Pierre Comon Tensor problems in EE

Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulant
Example: Antenna Array Processing (3)

New variable $p$ can represent:

- Oversampling (sample index),
- Spreading code (chip index),
- Frequency (multicarrier),
- Geometrical invariance (subarray index),
- Polarization.

Warning: tensor should not have proportional matrix slices (degeneration)

Example: Antenna Array Processing (2)

Modeling the signals received on an array of antennas generally leads to a matrix decomposition:

$$
T_{i j p}=\sum_{q} \sum_{\ell} a_{i q \ell} \sum_{k} h_{q \ell k p} s_{k q j}
$$

| $i:$ space | $k:$ symbol $\#$ | $\mathbf{a}:$ receiver geometry |  |
| :--- | :--- | :--- | :--- |
| $j:$ time | $q:$ user $\#$ | $\mathbf{h}:$ global channel impulse response |  |
|  |  | $\ell:$ path $\#$ | $\mathbf{s}:$ Transmitted signal |

But in the presence of additional diversity, a tensor can be constructed, thanks to new variable $p$

Pierre Comon Tensor problems in EE


Link with tensors

In the stochastic framework:

- use of the characteristic function
- use of cumulants

The obtained tensor enjoys symmetry properties
$\rightarrow$ another motivation to study symmetric tensors

Characteristic functions

First c.f.

- Real Scalar: $\Phi_{x}(t) \stackrel{\text { def }}{=} \mathrm{E}\left\{e^{\jmath t \times}\right\}=\int_{u} e^{\jmath t u} d F_{x}(u)$
- Real Multivariate: $\Phi_{\mathbf{x}}(\mathbf{t}) \stackrel{\text { def }}{=} \mathrm{E}\left\{e^{\jmath \mathbf{t}^{\top} \mathbf{x}}\right\}=\int_{\mathbf{u}} e^{\jmath \mathbf{t}^{\top} \mathbf{u}} d F_{\mathbf{x}}(\mathbf{u})$

Second c.f.

- $\Psi(\mathbf{t}) \stackrel{\text { def }}{=} \log \Phi(\mathbf{t})$
- Properties:
- Always exists in the neighborhood of 0
- Uniquely defined as long as $\Phi(\mathbf{t}) \neq 0$

Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulants
Problem posed in terms of Characteristic Functions

- If $s_{p}$ independent and $\mathbf{x}=\mathbf{A} \mathbf{s}$, we have the core equation:

$$
\begin{equation*}
\Psi_{x}(\mathbf{u})=\sum_{p} \Psi_{s_{p}}\left(\sum_{q} u_{q} A_{q p}\right) \tag{3}
\end{equation*}
$$

Proof.

- Plug $\mathbf{x}=\mathbf{A s}$, in definition of $\Psi_{x}$ and get
$\Phi_{x}(\mathbf{u}) \stackrel{\text { def }}{=} \mathrm{E}\left\{\exp \left(\mathbf{u}^{\top} \mathbf{A} \mathbf{s}\right)\right\}=\mathrm{E}\left\{\exp \left(\sum_{p, q} u_{q} A_{q p} \boldsymbol{s}_{p}\right)\right\}$
- Since $s_{p}$ independent, $\Phi_{x}(\mathbf{u})=\prod_{p} \mathrm{E}\left\{\exp \left(\sum_{q} u_{q} A_{q p} s_{p}\right)\right\}$
- Taking the log concludes.

Problem: Decompose a mutlivariate function into a sum of univariate ones

Characteristic functions (cont'd)

- Properties of the 2nd Characteristic function (cont'd):
- if a c.f. $\Psi_{x}(t)$ is a polynomial, then its degree is at most 2 and $x$ is Gaussian (Marcinkiewicz'1938) [Luka70]
- if $(x, y)$ statistically independent, then

$$
\begin{equation*}
\Psi_{x, y}(u, v)=\Psi_{x}(u)+\Psi_{y}(v) \tag{2}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\Psi_{x, y}(u, v) & =\log [\mathrm{E}\{\exp (u x+v y)\}] \\
& =\log [\mathrm{E}\{\exp (u x)\} \mathrm{E}\{\exp (v y)\}] .
\end{aligned}
$$

Pierre Comon Tensor problems in EE

Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulants
Darmois-Skitovich theorem (1953)

Theorem
Let $s_{i}$ be statistically independent random variables, and two linear statistics:

$$
y_{1}=\sum_{i} a_{i} s_{i} \text { and } y_{2}=\sum_{i} b_{i} s_{i}
$$

If $y_{1}$ and $y_{2}$ are statistically independent, then random variables $s_{k}$ for which $a_{k} b_{k} \neq 0$ are Gaussian.

NB: holds in both $\mathbb{R}$ or $\mathbb{C}$

## Sketch of proof

Let charatecteristic functions

$$
\begin{aligned}
\Psi_{1,2}(u, v) & =\log \mathrm{E}\left\{\exp \left(\jmath y_{1} u+\jmath y_{2} v\right)\right\} \\
\Psi_{k}(w) & =\log \mathrm{E}\left\{\exp \left(\jmath y_{k} w\right)\right\} \\
\varphi_{p}(w) & =\log \mathrm{E}\left\{\exp \left(\jmath s_{p} w\right)\right\}
\end{aligned}
$$

1 Independence between $s_{p}$ 's implies:

$$
\begin{aligned}
\Psi_{1,2}(u, v) & =\sum_{k=1}^{P} \varphi_{k}\left(u a_{k}+v b_{k}\right) \\
\Psi_{1}(u) & =\sum_{k=1}^{P} \varphi_{k}\left(u a_{k}\right) \\
\Psi_{2}(v) & =\sum_{k=1}^{P} \varphi_{k}\left(v b_{k}\right)
\end{aligned}
$$

2 Independence between $y_{1}$ and $y_{2}$ implies

$$
\Psi_{1,2}(u, v)=\Psi_{1}(u)+\Psi_{2}(v)
$$

Pierre Comon Tensor problems in EE

б Repeat the procedure $(P-1)$ times and get:

$$
\prod_{j=2}^{P}\left(\frac{a_{1}}{a_{j}}-\frac{b_{1}}{b_{j}}\right) \varphi_{1}^{(P-1)}\left(u a_{1}+v b_{1}\right)=f^{(P-1)}(u)+g^{(P-1)}(v)
$$

7 Hence $\varphi_{1}^{(P-1)}\left(u a_{1}+v b_{1}\right)$ is linear, as a sum of two univariate functions ( $\varphi_{1}^{(P)}$ is a constant because $a_{1} b_{1} \neq 0$ ).
8 Eventually $\varphi_{1}$ is a polynomial.
9 Lastly invoke Marcinkiewicz theorem to conclude that $s_{1}$ is Gaussian.
10 Same is true for any $\varphi_{p}$ such that $a_{p} b_{p} \neq 0: s_{p}$ is Gaussian.
NB: also holds if $\varphi_{p}$ not differentiable

## Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulants

## Equivalent representations

Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulants
Does not restrict generality to assume that [ $a_{k}, b_{k}$ ] not collinear. To simplify, assume also $\varphi_{p}$ differentiable.
3 Hence $\sum_{k=1}^{P} \varphi_{p}\left(u a_{k}+v b_{k}\right)=\sum_{k=1}^{P} \varphi_{k}\left(u a_{k}\right)+\varphi_{k}\left(v b_{k}\right)$
Trivial for terms for which $a_{k} b_{k}=0$.
From now on, restrict the sum to terms $a_{k} b_{k} \neq 0$
4 Write this at $u+\alpha / a_{p}$ and $v-\alpha / b_{P}$ :

$$
\sum_{k=1}^{P} \varphi_{k}\left(u a_{k}+v b_{k}+\alpha\left(\frac{a_{k}}{a_{P}}-\frac{b_{k}}{b_{P}}\right)\right)=f(u)+g(v)
$$

5 Subtract to cancel $P$ th term, divide by $\alpha$, and let $\alpha \rightarrow 0$ :

$$
\sum_{k=1}^{P-1}\left(\frac{a_{k}}{a_{P}}-\frac{b_{k}}{b_{P}}\right) \varphi_{k}^{(1)}\left(u a_{k}+v b_{k}\right)=f^{(1)}(u)+g^{(1)}(v)
$$

for some univariate functions $f^{(1)}(u)$ and $g^{(1)}(u)$.
Conclusion: We have one term less

Let $\mathbf{y}$ admit two representations

$$
\mathbf{y}=\mathbf{A} \mathbf{s} \text { and } \mathbf{y}=\mathbf{B} \mathbf{z}
$$

where s (resp. z) have independent components, and $\mathbf{A}$ (resp. B) have pairwise noncollinear columns.

- These representations are equivalent if every column of $\mathbf{A}$ is proportional to some column of $\mathbf{B}$, and vice versa.
- If all representations of $\mathbf{y}$ are equivalent, they are said to be essentially unique (permutation \& scale ambiguities only).

Identifiability \& uniqueness theorems

Let $\mathbf{y}$ be a random vector of the form $\mathbf{y}=\mathbf{A} \mathbf{s}$, where $s_{p}$ are independent, and $\mathbf{A}$ has non pairwise collinear columns.

- Identifiability theorem $\mathbf{y}$ can be represented as $\mathbf{y}=\mathbf{A}_{1} \mathbf{s}_{1}+\mathbf{A}_{2} \mathbf{s}_{2}$, where $\mathbf{s}_{1}$ is non Gaussian, $\mathbf{s}_{2}$ is Gaussian independent of $\mathbf{s}_{1}$, and $\mathbf{A}_{1}$ is essentially unique.

■ Uniqueness theorem If in addition the columns of $\mathbf{A}_{1}$ are linearly independent, then the distribution of $\mathbf{s}_{1}$ is unique up to scale and location indeterminacies.
Remark 1: if $\mathbf{s}_{2}$ is 1-dimensional, then $\mathbf{A}_{2}$ is also essentially unique Remark 2: the proofs are not constructive [KagaLR73]

Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulant

## Example of non uniqueness

Let $s_{i}$ be independent with no Gaussian component, and $b_{i}$ be independent Gaussian. Then the linear model below is identifiable, but the distribution of $\mathbf{s}$ is not unique because a $2 \times 4$ matrix cannot be full column rank:

$$
\binom{s_{1}+s_{3}+s_{4}+2 b_{1}}{s_{2}+s_{3}-s_{4}+2 b_{2}}=\mathbf{A}\left(\begin{array}{c}
s_{1} \\
s_{2} \\
s_{3}+b_{1}+b_{2} \\
s_{4}+b_{1}-b_{2}
\end{array}\right)=\mathbf{A}\left(\begin{array}{c}
s_{1}+2 b_{1} \\
s_{2}+2 b_{2} \\
s_{3} \\
s_{4}
\end{array}\right)
$$

with

$$
\mathbf{A}=\left(\begin{array}{cccc}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1
\end{array}\right)
$$

Let $s_{i}$ be independent with no Gaussian component, and $b_{i}$ be independent Gaussian. Then the linear model below is identifiable, but $\mathbf{A}_{2}$ is not essentially unique whereas $\mathbf{A}_{1}$ is:
$\binom{s_{1}+s_{2}+2 b_{1}}{s_{1}+2 b_{2}}=\mathbf{A}_{1} \mathbf{s}+\mathbf{A}_{2}\binom{b_{1}}{b_{2}}=\mathbf{A}_{1} \mathbf{s}+\mathbf{A}_{3}\binom{b_{1}+b_{2}}{b_{1}-b_{2}}$
with

$$
\mathbf{A}_{1}=\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right), \quad \mathbf{A}_{2}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right) \quad \text { and } \quad \mathbf{A}_{3}=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

Hence the distribution of $\mathbf{s}$ is essentially unique.
But $\left(\mathbf{A}_{1}, \mathbf{A}_{2}\right)$ not equivalent to $\left(\mathbf{A}_{1}, \mathbf{A}_{3}\right)$.

## Context Over. Orthos Invertible Under Stat. cf. Uniqueness Cumulants

## Definition of Cumulants

- Moments

$$
\mu_{r} \stackrel{\text { def }}{=} \mathrm{E}\left\{x^{r}\right\}=\left.(-\jmath)^{r} \frac{\partial^{r} \Phi(t)}{\partial t^{r}}\right|_{t=0}
$$

- Cumulants:

$$
\mathcal{C}_{x(r)} \stackrel{\text { def }}{=} \operatorname{Cum}\{\underbrace{x, \ldots, x}_{r \text { times }}\}=\left.(-\jmath)^{r} \frac{\partial^{r} \Psi(t)}{\partial t^{r}}\right|_{t=0}
$$

- Relationship between Moments and Cumulants obtained by expanding both sides in Taylor series:

$$
\log \Phi_{x}(t)=\Psi_{x}(t)
$$

- Needs existence. Counter example: Cauchy

$$
p_{x}(u)=\frac{1}{\pi\left(1+u^{2}\right)}
$$

Examples of cumulants (1)

## Example: Zero-mean Gaussian

- Moments

$$
\mu_{(2 r)}=\mu_{(2)}^{r} \frac{(2 r)!}{r!2^{r}}
$$

In particular:

$$
\mu_{(4)}=3 \mu_{(2)}^{2}, \quad \mu_{(6)}=15 \mu_{(2)}^{3}
$$

- $\mathcal{C}_{(4)}=0, \quad \mathcal{K}_{(4)}=0$.
- All Cumulants of order $r>2$ are null

Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulants

## Examples of Cumulants (3)

Example: Zero-mean standardized binary
■ $x$ takes two values $x_{1}=-a$ and $x_{2}=1 / a$ with probabilities $P_{1}=\frac{1}{1+a^{2}}, P_{2}=\frac{a^{2}}{1+a^{2}}$
■ Skewness is $\mathcal{K}_{(3)}=\frac{1}{a}-a$
■ Kurtosis is $\mathcal{K}_{(4)}=\frac{1}{a^{2}}+a^{2}$

- Extreme values (bound)

Minimum Kurtosis
for $a=1$ (symmetric):

$\mathcal{K}_{(4)}=-2$

## Multivariate Cumulants

- Notation: $\mathcal{C}_{i j . . \ell} \stackrel{\text { def }}{=} \operatorname{Cum}\left\{X_{i}, X_{j}, \ldots X_{\ell}\right\}$
- First cumulants:

$$
\begin{aligned}
\mu_{i}^{\prime} & =\mathcal{C}_{i} \\
\mu_{i j}^{\prime} & =\mathcal{C}_{i j}+\mathcal{C}_{i} \mathcal{C}_{j} \\
\mu_{i j k}^{\prime} & =\mathcal{C}_{i j k}+[3] \mathcal{C}_{i} \mathcal{C}_{j k}+\mathcal{C}_{i} \mathcal{C}_{j} \mathcal{C}_{k}
\end{aligned}
$$

with [n]: Mccullagh's bracket notation.

- Next, for zero-mean variables:

$$
\begin{aligned}
\mu_{i j k \ell} & =\mathcal{C}_{i j k \ell}+[3] \mathcal{C}_{i j} \mathcal{C}_{k \ell} \\
\mu_{i j k \ell m} & =\mathcal{C}_{i j k \ell m}+[10] \mathcal{C}_{i j} \mathcal{C}_{k \ell m}
\end{aligned}
$$

- Again, general formula of Leonov-Shiryayev obtained by

Taylor expansion of both sides of $\Psi(\mathbf{t})=\log \Phi(\mathbf{t}) \ldots$
Pierre Comon Tensor problems in EE
artor Invertible Under

## Problem posed in terms of Cumulants

Input-output relations If $\mathbf{y}=\mathbf{A} \mathbf{s}$, where $s_{p}$ are independent, then multi-linearity of cumulants yields:

$$
\begin{equation*}
C_{\mathbf{y}, i j k . . \ell}=\sum_{p=1}^{P} A_{i p} A_{j p} A_{k p . .} A_{\ell p} C_{\mathrm{s}, p p p . . p} \tag{5}
\end{equation*}
$$

Can one identify $\mathbf{A}$ form tensor $\mathbf{C}_{\mathbf{y}}$ ?
Remark

- Tensor $C_{y}$ does not contain all the information whereas the c.f (3) did.
- Possibility to choose cumulant order(s)

Context Over. Orthog. Invertible Under. Stat. c.f. Uniqueness Cumulants

## Properties of Cumulants

- Multi-linearity (also enjoyed by moments):
$\operatorname{Cum}\{\alpha X, Y, . ., Z\}=\alpha \operatorname{Cum}\{X, Y, . ., Z\}$
$\operatorname{Cum}\left\{X_{1}+X_{2}, Y, . ., Z\right\}=\operatorname{Cum}\left\{X_{1}, Y, . ., Z\right\}+\operatorname{Cum}\left\{X_{2}, Y, . ., Z\right\}$
- Cancellation: If $\left\{X_{i}\right\}$ can be partitioned into 2 groups of independent r.v., then

$$
\operatorname{Cum}\left\{X_{1}, X_{2}, . ., X_{r}\right\}=0
$$

■ Additivity: If $\mathbf{X}$ and $\mathbf{Y}$ are independent, then
$\operatorname{Cum}\left\{X_{1}+Y_{1}, X_{2}+Y_{2}, . ., X_{r}+Y_{r}\right\}=\operatorname{Cum}\left\{X_{1}, X_{2}, . ., X_{r}\right\}$

$$
+\operatorname{Cum}\left\{Y_{1}, Y_{2}, . ., Y_{r}\right\}
$$

■ Inequalities, e.g.

$$
\mathcal{K}_{(3)}^{2} \leq \mathcal{K}_{(4)}+2
$$

Pierre Comon Tensor problems in EE

Context Over. Orthog. Invertible Under. General Independence Stand.

## Over-determined mixtures

In that framework, the statistical model involves at most as many sources as the dimension of the observation space:

$$
\mathbf{y}=\mathbf{A} \mathbf{s}, \text { with } K \stackrel{\text { def }}{=} \operatorname{dim}\{\mathbf{y}\} \geq \operatorname{dim}\{\mathbf{s}\} \stackrel{\text { def }}{=} P
$$

That is, $\mathbf{A}$ admits a left inverse.

## Warning:

- In practice, $C_{\mathbf{y}}$ or $\Psi_{\mathbf{y}}(\mathbf{u})$ are estimated from noisy measurements, so that (5) or (3) are never exactly satisfied if $K \geq P$ : they become approximations
- Over-determined mixtures are equivalent iff they are related by scale-permutation: $\mathbf{A}=\mathbf{B} \boldsymbol{\wedge} \mathbf{P}$
- Hence in the absence of noise, the source random variables can be recovered up to scale and permutation as:

$$
\mathrm{z}=\boldsymbol{\Lambda} \mathrm{Ps}
$$

This is an inherent indeterminacy of the problem.

Context Over. Orthog. Invertible Under. General Independence Stand.

## Divide to conquer

Difficulty: many unknowns, in real or complex field
1 1st idea: address a sequence of problems of smaller dimension instead of a single one in larger dimension.
2 2nd idea: decompose $\mathbf{A}$ into two factors, $\mathbf{A}=\mathbf{L} \mathbf{Q}$, and compute $\mathbf{L}$ so as to exactly standardize the data. Look for the best $\mathbf{Q}$ in a second stage.

Bt Both are sub-optimal, but of practical value.

Context Over. Orthog. Invertible Under. General Independence Stand.

## Direct vs Inverse

Two formulations in terms of cumulants:
1 Direct: look for $\mathbf{A}$ so as to fit eq. (5):

$$
\min _{\mathbf{A}}\left\|C_{\mathbf{y}, i j k . . \ell}-\sum_{p=1}^{P} A_{i p} A_{j p} A_{k p . .} A_{\ell p} C_{\mathrm{s}, p p p . . p}\right\|^{2}
$$

i.e. decompose $C_{\mathrm{y}}$ into a sum of $P$ rank-one terms

2 Inverse: look for B:

$$
\min _{\mathrm{B}} \sum_{m n p . . q \neq p p p . . p}\left|\sum_{i j k . . \ell} C_{\mathrm{y}, i j k . . \ell} B_{i m} B_{j n} B_{k p . .} B_{\ell q}\right|^{2}
$$

i.e. try to diagonalize $C_{\mathbf{y}}$ by linear transform, $\mathbf{z}=\mathbf{B y}$

Pierre Comon Tensor problems in EE
34

Context Over. Orthog. Invertible Under. General Independence Stand.
Pairwise vs. Mutual independence (1)

- Components $s_{k}$ of $\mathbf{s}$ are pairwise independent $\Leftrightarrow$ Any pair of components ( $s_{k}, s_{\ell}$ ) are mutually independent.
■ In general, pairwise and mutual independence are not equivalent
- But..

Pairwise vs. Mutual independence (2)

Example: Pairwise but not Mutual independence

- 3 mutually independent binary sources, $x_{i} \in\{-1,1\}$,
$1 \leq i \leq 3$
- Define $x_{4}=x_{1} x_{2} x_{3}$. Then $x_{4}$ is also binary, dependent on $x_{i}$
- $x_{k}$ are pairwise independent: $p\left(x_{1}=a, x_{4}=b\right)=p\left(x_{4}=b \mid x_{1}=a\right) . p\left(x_{1}=a\right)=$ $p\left(x_{2} x_{3}=b / a\right) \cdot p\left(x_{1}=a\right)$ But $x_{1}$ and $x_{2} x_{3}$ are binary $\Rightarrow$ $p\left(x_{2} x_{3}=b / a\right) \cdot p\left(x_{1}=a\right)=\frac{1}{2} \cdot \frac{1}{2}$
■ NB: in particular, $\operatorname{Cum}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=1 \neq 0$

Context Over. Orthog. Invertible Under. General Independence Stand.

## Standardization with covariance

- Let $\mathbf{x}$ be a zero-mean r.v. with covariance matrix:

$$
\boldsymbol{\Gamma}_{x} \stackrel{\text { def }}{=} \mathrm{E}\left\{\mathbf{x} \mathbf{x}^{\mathrm{H}}\right\}
$$

and let $\mathbf{L}$ be any square root of $\boldsymbol{\Gamma}$ :

$$
\mathbf{L L}^{H}=\boldsymbol{\Gamma}_{x}
$$

Then $\tilde{\mathbf{x}} \stackrel{\text { def }}{=} \mathbf{L}^{-1} \mathbf{x}$ is a standardized random variable, i.e. it has unit covariance.

- In practice, use SVD to face ill-conditioning or singularity: $\tilde{\mathbf{x}}$ may have then a smaller dimension.

Pairwise vs. Mutual independence (3)

Corollary of Darmois's theorem for over-determined mixtures:
Let $\mathbf{z}=\mathbf{C s}$, where $s_{i}$ are independent r.v., and assume either

- all $s_{i}$ are non Gaussian and $\mathbf{C}$ is invertible, or
- at most one $s_{i}$ is Gaussian and $\mathbf{C}$ is orthogonal/unitary

Then the following properties are equivalent:
1 Components $z_{i}$ are pairwise independent
2 Components $z_{i}$ are mutually independent
$3 \mathbf{C}=\boldsymbol{\Lambda} \mathbf{P}$, with $\boldsymbol{\Lambda}$ diagonal invertible and $\mathbf{P}$ permutation
Proof... $1 \rightarrow 3$ by contradiction

## 

## Pre-processing with SVD

- Observed random variable $\mathbf{x}$ of dimension $K$. Then $\exists(\mathbf{U}, \tilde{\mathbf{x}})$ :

$$
\mathbf{x}=\mathbf{U} \tilde{\mathbf{x}}, \mathbf{U} \text { unitary }
$$

where "Principal Components" $\tilde{x}_{i}$ are uncorrelated. $i$ th column $\mathbf{u}_{i}$ of $\mathbf{U}$ is called " $i$ th PC loading vector"

- Two -among many- possible calculations from a $K \times N$ realization matrix $\mathbf{X}$ :
- EVD of sample covariance $\mathbf{R}_{x}: \mathbf{R}_{x}=\mathbf{U} \boldsymbol{\Sigma}^{2} \mathbf{U}^{H}, \quad \tilde{\mathbf{x}}=\mathbf{U}^{\mathrm{H}} \mathbf{x}$
- Sample estimate by SVD: $\mathbf{X}=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}^{H}, \quad \tilde{\mathbf{X}}=\boldsymbol{\Sigma} \mathbf{V}^{H}$

The latter is more accurate, and avoids the calculation of the covariance.

Orthogonal decomposition

## Lecture 2/3

## Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other

Estimation of the orthogonal matrix

Assume we have realizations of the standardized r.v. $\tilde{\mathbf{x}}=\mathbf{L}^{-1} \mathbf{x}$ We have to:

1 Choose an optimization criterion to maximize, e.g. based on the cumulant tensor of $\mathbf{z}$.

2 Devise a numerical algorithm, e.g. proceeding pairwise

## Examples of contrasts

## 1 Optimization criteria

Let $\mathbf{s}$ have stat. independent components, and $\mathbf{z}=\mathbf{Q} \mathbf{s}$. A good "contrast" criterion $\Upsilon(\mathbf{Q})$ should:

- be maximal if and only if the components of $\mathbf{z}$ are independent, ie. iff $\mathbf{Q}$ is trivial (scale-permutation): $\mathbf{Q}=\boldsymbol{\Lambda} \mathbf{P}$,
- decrease if $\mathbf{Q}$ is not trivial.

This can be summarized by:

$$
\begin{equation*}
\Upsilon(\mathbf{Q}) \leq \Upsilon(\mathbf{I}) \text {, with equality iff } \mathbf{Q}=\boldsymbol{\Lambda} \mathbf{P} \tag{6}
\end{equation*}
$$

## Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other

## Examples of contrasts (cont'd)

Proof. We need to prove (6), that is, $\Upsilon(\mathbf{Q}) \leq \Upsilon(\mathbf{I})$. Denote $\mathbf{D}$ the (diagonal) cumulant tensor of $\mathbf{s}$. First use multi-linearity (5) of cumulant tensors: $C_{i j k \ell}=\sum_{p} Q_{i p} Q_{j p} Q_{k p} Q_{\ell p} D_{p}$. Then:

$$
\begin{aligned}
\Upsilon_{J A D} & \stackrel{\text { def }}{=} \sum_{i j k} C_{i i j k}^{2}=\sum_{i j k}\left|\sum_{p} Q_{i p}^{2} Q_{j p} Q_{k p} D_{p}\right|^{2} \\
& =\sum_{i} \sum_{p q} Q_{i p}^{2} Q_{i q}^{2} \sum_{j} Q_{j p} Q_{j q} \sum_{k} Q_{k p} Q_{k q} D_{p} D_{q}
\end{aligned}
$$

and because $\mathbf{Q}$ is orthogonal

$$
\Upsilon_{J A D}=\sum_{i} \sum_{p} Q_{i p}^{4} D_{p}^{2}
$$

Now $Q_{i j} \leq 1$ yields $\Upsilon_{J A D} \leq \sum_{i} \sum_{p} Q_{i p}^{2} D_{p}^{2}=\sum_{i} D_{i}^{2} \stackrel{\text { def }}{=} \Upsilon_{J A D}(\mathbf{I})$
This proves inequality (6) for $\Upsilon_{J A D}$.

## Interpretation

- $\Upsilon_{\text {COM }} \leq \Upsilon_{\text {STO }} \leq \Upsilon_{\text {JAD }}$ shows that $\Upsilon_{\text {CoM }}$ is more sensitive
- $\Upsilon_{\text {STO }}$ and $\Upsilon_{\text {JAD }}$ are less discriminant since they also maximize non diagonal terms
Example for $4 \times 4 \times 4$ tensors


Matrix slices diagonalization $\neq$ Tensor diagonalization

Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other
Algorithms: Jacobi pair Sweeping (2)
Cyclic sweeping with fixed ordering: Example in dimension $P=3$


Algorithms: Jacobi pair Sweeping (1)

2 Pairwise processing
Split the orthogonal matrix into a product of plane Givens rotations:

$$
\mathbf{G}[i, j] \stackrel{\text { def }}{=} \frac{1}{\sqrt{1+\theta^{2}}}\left(\begin{array}{cc}
1 & \theta \\
-\theta & 1
\end{array}\right)
$$

acting in the subspace defined by $\left(z_{i}, z_{j}\right)$.
at the dimension has been reduced to 2 , and we have a single unknown, $\theta$, that can be imposed to lie in $(-1,1]$.

Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other
Algorithms: Jacobi pair Sweeping (3)

Sweeping a $3 \times 3 \times 3$ symmetric tensor

$$
\begin{aligned}
& \left(\begin{array}{lll}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right) \\
& \left(\begin{array}{lll}
x & x & x \\
x & X & x \\
x & x & x
\end{array}\right) \rightarrow \\
& \left(\begin{array}{lll}
x & x & x \\
x & x & x \\
x & x & \cdot
\end{array}\right)
\end{aligned}\left(\begin{array}{lll}
x & x & x \\
x & x & x \\
x & x & x
\end{array}\right),\left(\begin{array}{lll}
. & x & x \\
x & x & x \\
x & x & x
\end{array}\right)
$$


$\left.\begin{array}{cc}X: & \text { maximized } \\ x: & \text { minimized } \\ \cdot: & \text { unchanged }\end{array}\right\}$ by last Givens rotation

Algorithms: Jacobi pair Sweeping (4)

- Criteria $\Upsilon_{\text {COM }}, \Upsilon_{\text {STO }}$ and $\Upsilon_{J A D}$, are rational functions of $\theta$, and their absolute maxima can be computed algebraically.
- To prove this, consider the elementary $2 \times 2$ problem

$$
\mathbf{z}=\mathbf{G} \tilde{\mathbf{x}},
$$

denote $C_{i j k \ell}$ the cumulants of $\mathbf{z}$, and

$$
\mathbf{G} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right) \stackrel{\text { def }}{=} \frac{1}{\sqrt{1+\theta^{2}}}\left(\begin{array}{cc}
1 & \theta \\
-\theta & 1
\end{array}\right)
$$

Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other
Solution for $\Upsilon_{J A D}$

- Goal: maximize squares of diagonal terms of $\mathbf{G}^{\mathrm{H}} \mathbf{N}(r) \mathbf{G}$, where matrix slices are denoted $\mathbf{N}(r)=\left(\begin{array}{ll}a_{r} & b_{r} \\ c_{r} & d_{r}\end{array}\right)$ and are cumulants of $\tilde{\mathbf{x}}$
- Let $\mathbf{v} \stackrel{\text { def }}{=}[\cos 2 \beta, \sin 2 \beta]^{\top}$. Then this amounts to maximizing the quadratic form $\mathbf{v}^{\top} \mathbf{M v}$ where

$$
\mathbf{M} \stackrel{\text { def }}{=} \sum_{r}\left[\begin{array}{l}
a_{r}-d_{r} \\
b_{r}+c_{r}
\end{array}\right]\left[a_{r}-d_{r}, b_{r}+c_{r}\right]
$$

- Thus, $2 \beta$ is given by the dominant eigenvector of $\mathbf{M}$
- and $\mathbf{G}$ is obtained by rooting a 2nd degree trinomial


## Solution for $\Upsilon_{\text {CoM }}$

- We have $\Upsilon_{\text {CoM }} \stackrel{\text { def }}{=}\left(C_{1111}\right)^{2}+\left(C_{2222}\right)^{2}$
- Denote $\xi=\theta-1 / \theta$. Then it is a rational function in $\xi$ :

$$
\psi_{4}(\xi)=\left(\xi^{2}+4\right)^{-2} \sum_{i=0}^{4} b_{i} \xi^{i}
$$

- Its stationary points are roots of a polynomial of degree 4:

$$
\omega_{4}(\xi)=\sum_{i=0}^{4} c_{i} \xi^{i}
$$

obtainable algebraically via Ferrari's technique. Coefficients $b_{i}$ and $c_{i}$ are given functions of cumulants of $\tilde{\mathbf{x}}$

- $\theta$ is obtained from $\xi$ by rooting a 2 nd degree trinomial.

Pierre Comon Tensor problems in EE
54

Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other
Solution for $\Upsilon_{\text {STO }}$

- Goal: maximize squares of diagonal terms of 3 rd order tensors $\mathbf{T}[\ell]_{p q r} \stackrel{\text { def }}{=} \sum_{i j k} G_{p i} G_{q j} G_{r k} C_{i j k \ell}$
- If $\mathbf{G}=\left(\begin{array}{cc}\cos \beta & \sin \beta \\ -\sin \beta & \cos \beta\end{array}\right)$ then denote $\mathbf{v} \stackrel{\text { def }}{=}[\cos 2 \beta, \sin 2 \beta]^{\top}$.
- Angle $2 \beta$ is given by vector $\mathbf{v}$ maximizing a quadratic form $\mathbf{v}^{\top} \mathbf{B v}$, where $\mathbf{B}$ is $2 \times 2$ symmetric and contains sums of products of cumulants of $\tilde{\mathbf{x}}$
- $\theta$ is obtained from $\xi$ by rooting a 2nd degree trinomial.

First conclusions

- Pair sweeping can be executed thanks to the equivalence between pairwise and mutual independence
- The cumulant tensor can be diagonalized iteratively via a Jacobi-like algorithm
- For each pair, there is a closed-form solution for the optimal Givens rotation (absolute maximimum of the contrast criterion).

Questions:
■ But what about global convergence?

- Pairwise processing holds valid if model is exact


## Intext Over Orthog Invertible Under-Criteria Pair sweep. Other

## Stationary points: symmetric tensor case

- Similarly, one can look at relations characterizing local maxima of criterion $\Upsilon$

$$
\begin{aligned}
& T_{q q q q} T_{q q q r}-T_{r r r r} T_{q r r r}=0, \\
& 4 T_{\text {qqqr }}^{2}+4 T_{q r r r}^{2}-\left(T_{q q q q}-\frac{3}{2} T_{q q r r}\right)^{2} \\
&-\left(T_{r r r r}-\frac{3}{2} T_{q q r r}\right)^{2}<0 .
\end{aligned}
$$

for any pair of indices $(p, q), p \neq q$.

- As a conclusion, contrary to $\Upsilon_{2}$ in the matrix case, $\Upsilon$ might have theoretically spurious local maxima in the tensor case (order > 2).

Stationary points: symmetric matrix case

- Given a matrix $\mathbf{m}$ with components $m_{i j}$, it is sought for an orthogonal matrix $\mathbf{Q}$ such that $\Upsilon_{2}$ is maximized:

$$
\Upsilon_{2}(\mathbf{Q})=\sum_{i} M_{i i}^{2} ; \quad M_{i j}=\sum_{p, q} Q_{i p} Q_{j q} m_{p q} .
$$

- Stationary points of $\Upsilon_{2}$ satisfy for any pair of indices
$(q, r), q \neq r:$

$$
M_{q q} M_{q r}=M_{r r} M_{q r}
$$

- Next, $d^{2} \Upsilon_{2}<0 \Leftrightarrow M_{q r}^{2}<\left(M_{q q}-M_{r r}\right)^{2}$, which proves that
- $M_{q r}=0, \forall q \neq r$ yields a maximum
- $M_{q q}=G_{r r}, \forall q, r$ yields a minimum
- Other stationary points are saddle points


## Context Orer Orthog Invertible Priter Pair sweep Oiner

## Problem P2

1 At each step, a plane rotation is computed and yields the global maximum of the objective $\Upsilon$ restricted to one variable

2 There is no proof that the sequence of successive plane rotations yields the global maximum, in the general case (tensors that are not necessarily diagonalizable)
3 Yet, no counter-example has been found since 1991


Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other
Other algorithms for orthogonal diagonalization

The 3 previous criteria summarize most ways to address tensor approximate diagonalization.
But the orthogonal matrix can be treated differently, e.g. via other parameterizations

■ express an orthogonal matrix as the exponential of a skew-symmetric matrix: $\mathbf{Q}=\exp \mathbf{S}$
■ or use the Cayley parameterization: $\mathbf{Q}=(\mathbf{I}-\mathbf{S})(\mathbf{I}+\mathbf{S})^{-1}$,

- ...

Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other
Bibliographical comments

- Orthogonal diagonalization of symmetric tensors:
- JAD in 2 modes: [DeLe78] ( $\mathbb{R}$ ), [CardS93] ( $\mathbb{C}$ ), with matrix exponential [TanaF07]
- JAD 2 modes with positive definite matrices: [Flur86]
- JAD in 3 modes: [DelaDV01]
- direct diago without slicing (pairs): [Como92] [Como94]

■ Orthogonal diagonalization of non symmetric tensors:

- ALS type [Kroo83] [Kier92]
- ALS on pairs: [MartV08] [SoreC08]
- JAD in 2 modes ( $\mathbb{R}$ ): [Pesq01]
- Matrix exponential [SoreICD08]

The idea is to consider the symmetric tensor of dimension $K$ and order $d$ as a collection of $K^{d-2}$ symmetric $K \times K$ matrices

This is the Joint Approximate Diagonalization (JAD) problem

■ Joint Approximate Diagonalization (JAD) of a collection of:

- symmetric matrices
- symmetric diagonally dominant matrices
- symmetric positive definite matrices
- for a collection of matrices, not necessarily symmetric (2 invertible transforms)
■ ...
- Direct approaches without slicing the tensor into a collection of matrices: algorithms devised for underdetermined mixtures apply (cf. subsequent lecture)

Survey of 4 algorithms

1 Iterative algorithm based on a probabilistic criterion
2 An algorithm of ALS type: ACDC
3 An algorithm with a multiplicative update, valid if $\mathbf{A}$ is diagonally dominant
4 An algorithm based on Joint triangularization

## Context Over. Orthog. Invertible Under. Proba. ALS Diag. dom. Joint Schur

Probabilistic approach (2) $\checkmark$

4 Variation of $\Upsilon$ during one update:
$\sum_{q} \alpha_{q}\left[2 \log \operatorname{det} \mathbf{U}-\log \operatorname{det} \operatorname{Diag}\left\{\mathbf{U M}(q) \mathbf{U}^{\top}\right\}+\log \operatorname{det} \operatorname{Diag} \mathbf{M}(q)\right]$
5 Update two rows at a time, i.e. $\mathbf{U}$ is equal to Identity except
for entries $(i, i),(i, j),(j, i),(j, j)$.
By concavity of log, get a lower bound on variation:

$$
\sum_{q} \alpha_{q}\left[2 \log \operatorname{det} \mathbf{U}-\log \left(\mathbf{U P} \mathbf{U}^{\boldsymbol{\top}}\right)_{11}-\log \left(\mathbf{U Q} \mathbf{U}^{\boldsymbol{\top}}\right)_{22}\right]
$$

where $\mathbf{P}$ and $\mathbf{Q}$ are the $2 \times 2$ matrices:
$\mathbf{P}=\sum_{q} \frac{p_{q}}{M(q) i i} \mathbf{M}(q)[i, j]$ and $\mathbf{Q}=\sum_{q} \frac{p_{q}}{M(q)_{j j}} \mathbf{M}(q)[i, j]$
6 Maximize this bound instead. This leads to rooting a $2 n d$ degree trinomial. Sweep all the pairs in turns

## Alternate Least Squares

1 Two writings of the criterion:

$$
\begin{aligned}
& \Upsilon=\sum_{q}\left\|\mathbf{T}(q)-\mathbf{B} \boldsymbol{\Lambda}(q) \mathbf{B}^{\boldsymbol{H}}\right\|^{2} \\
& \Upsilon=\sum_{q}\|\mathbf{t}(q)-\mathcal{B} \boldsymbol{\lambda}(q)\|^{2}
\end{aligned}
$$

2 Stationary values for $\operatorname{Diag} \boldsymbol{\Lambda}(q): \boldsymbol{\lambda}(q)=\left\{\mathcal{B}^{H} \mathcal{B}\right\}^{-1} \mathcal{B}^{H} \mathbf{t}(q)$
3 Stationary value for each column $\mathbf{b}[\ell]$ of matrix $\mathbf{B}$ is the dominant eigenvector of the Hermitean matrix

$$
\mathbf{P}[\ell]=\frac{1}{2} \sum_{q} \lambda_{\ell}(q)\left\{\tilde{\mathbf{T}}[q ; \ell]^{H}+\tilde{\mathbf{T}}[q ; \ell]\right\}
$$

where $\tilde{\mathbf{T}}[q ; \ell] \stackrel{\text { def }}{=} \mathbf{T}(q)-\sum_{n \neq \ell} \lambda_{n}(q) \mathbf{b}[n] \mathbf{b}[n]^{\mathrm{H}}$.
4 ALS: calculate $\boldsymbol{\Lambda}(q)$ and $\mathbf{B}$ alternately Use LS solution when matrices are singular

## 

## Diagonally dominant matrices (2)

Computational details:

- We have: $\mathbf{T}^{(\ell+1)}(q) \leftarrow(\mathbf{I}+\mathbf{W}) \mathbf{T}^{(\ell)}(q)(\mathbf{I}+\mathbf{W})^{\top}$
- $\mathbf{T}^{(\ell)}(q) \stackrel{\text { def }}{=}(\mathbf{D}-\mathbf{E})$, where $\mathbf{D}$ is diagonal, and $\mathbf{E}$ zero-diagonal
- If $\mathbf{W}$ and $\mathbf{E}$ are small:

$$
\mathbf{T}^{(\ell+1)}(q) \approx \mathbf{D}(q)+\mathbf{W} \mathbf{D}(q)+\mathbf{D}(q) \mathbf{W}^{\top}-\mathbf{E}(q)
$$

■ Hence minimize, wrt W:

$$
\sum_{q} \sum_{i \neq j}\left|W_{i j} D_{j j}(q)+W_{j i} D_{i i}(q)-E_{i j}(q)\right|^{2}
$$

- This is of the form $\min _{\mathbf{w}}\|\mathbf{J} \mathbf{w}-\mathbf{e}\|^{2}$, where $\mathbf{J}$ is sparse: $\mathbf{J}^{\mathbf{T}} \mathbf{J}$ is block diagonal

Thus one gets at each iteration a collection of decoupled $2 \times 2$ linear systems

Diagonally dominant matrices (1)

One wishes to minimize iteratively $\sum_{q}\left\|\mathbf{T}(q)-\mathbf{A} \boldsymbol{\Lambda}_{q} \mathbf{A}^{\top}\right\|^{2}$
Assume $\mathbf{A}$ is strictly diagonally dominant: $\left|A_{i i}\right|>\sum_{j \neq i}\left|A_{i j}\right|$ (cf. Levy-Desplanques theorem)
1 Initialize $\mathbf{A}=\mathbf{I}$
2 Update $\mathbf{A}$ multiplicatively as $\mathbf{A} \leftarrow(\mathbf{I}+\mathbf{W}) \mathbf{A}$, where $\mathbf{W}$ is zero-diagonal
3 Compute the best $\mathbf{W}$ assuming that it is small and that $\mathbf{T}(q)$ are almost diagonal (first order approximation)

## Context Over. Orthog. Invertible Under. Proba. ALS Diag. dom. Joint Schur

## Joint triangularization of matrix slices

1 From $\mathbf{T}$, determine a collection of matrices (e.g. matrix slices), $\mathbf{T}(q)$, satisfying $\mathbf{T}(q)=\mathbf{A} \mathbf{D}(q) \mathbf{B}^{\top}$, $\mathbf{D}(q) \stackrel{\text { def }}{=} \operatorname{diag}\left\{C_{q,:}\right\}$.
2 Compute the Generalized Schur decomposition
$\mathbf{Q} \mathbf{T}(q) \mathbf{Z}=\mathbf{R}(q)$, where $\mathbf{R}(q)$ are upper-triangular
3 Since $\mathbf{Q}^{\top} \mathbf{R}(q) \mathbf{Z}^{\top}=\mathbf{A} \mathbf{D}(q) \mathbf{B}^{\top}$, matrices $\mathbf{R}^{\prime} \stackrel{\text { def }}{=} \mathbf{Q} \mathbf{A}$ and $\mathbf{R}^{\prime \prime} \stackrel{\text { def }}{=} \mathbf{B}^{\top} \mathbf{Z}$ are upper triangular, and can be assumed to have a unit diagonal. Hence $\mathbf{R}^{\prime}$ and $\mathbf{R}^{\prime \prime}$ can be computed by solving from the bottom to the top the triangular system, two entries $R_{i j}^{\prime}$ and $R_{i j}^{\prime \prime}$ at a time:

$$
\mathbf{R}(q)=\mathbf{R}^{\prime} \mathbf{D}(q) \mathbf{R}^{\prime \prime}
$$

4 Compute $\mathbf{A}=\mathbf{R}^{\prime} \mathbf{Q}^{\top}$ and $\mathbf{B}^{\top}=\mathbf{R}^{\prime \prime} \mathbf{Z}^{\top}$
5 Compute matrix $\mathbf{C}$ from $\mathbf{T}, \mathbf{A}$ and $\mathbf{B}$ by solving the over-determined linear system $\mathbf{C} \cdot\left\{(\mathbf{B} \odot \mathbf{A})^{\mathrm{T}}\right\}=\mathbf{T}_{K \times J /}$

For collection of symmetric matrices:

- maximizes iteratively a lower bound to the decrease on a probabilistic objective [Pham01]
- alternately minimize $\sum_{q}\left\|\mathbf{T}(q)-\mathbf{A} \boldsymbol{\Lambda}(q) \mathbf{A}^{\mathbf{T}}\right\|^{2}$ wrt $\mathbf{A}$ and $\boldsymbol{\Lambda}(q)$ [Yere02]. See also: [Li07] [VollO06]
- minimizes iteratively $\sum_{q}\left\|\mathbf{T}(q)-\mathbf{A} \boldsymbol{\Lambda}(q) \mathbf{A}^{\top}\right\|^{2}$ under the assumption that $\mathbf{A}$ is diagonally dominant [Zieh04]
For collection of non symmetric matrices:
- factor $\mathbf{A}$ into orthogonal and triangular parts, and perform a joint Schur decomposition [DelaDV04].
- others: algorithms applicable to underdetermined case work here [AlbeFCC05]

Context Over. Orthog. Invertible Under Proba. ALS Diag. dom. Joint Schur
What we have seen so far

For over-determined mixtures:

- Solving the invertible problem is sufficient
- Orthogonal framework:
- Fully use 2nd order statistics, and then decompose approximately the tensor under orthogonal constraint. Easier to handle singularity, but arbitrary.
- Several (contrast) criteria and algorithms for orthogonal decomposition
- Invertible framework:
- Decompose the higher order cumulant tensor directly under invertible constraint
- III-posed
- Several algorithms, mainly working with matrix slices

Principles \& algorithms dedicated to under-determined mixtures may apply

```
Conest Over Ontand
Bary Rank Bione Fobr Car Heative End
```

Binary case


James Joseph Sylvester (1814-1897)

Sylvester's theorem in $\mathbb{R}$ (1886)

- A binary quantic $t\left(x_{1}, x_{2}\right)=\sum_{i=0}^{d} c(i) \gamma_{i} x_{1}^{i} x_{2}^{d-i}$ can be written in $\mathbb{R}\left[x_{1}, x_{2}\right]$ as a sum of $d$ th powers of $r$ distinct linear forms:

$$
t\left(x_{1}, x_{2}\right)=\sum_{j=1}^{r} \lambda_{j}\left(\alpha_{j} x_{1}+\beta_{j} x_{2}\right)^{d} \text { if and only if: }
$$

1 there exists a vector $\mathbf{g}$ of dimension $r+1$ such that

$$
\left[\begin{array}{cccc}
\gamma_{0} & \gamma_{1} & \cdots & \gamma_{r}  \tag{7}\\
\gamma_{1} & \gamma_{2} & \cdots & \gamma_{r+1} \\
\vdots & & & \vdots \\
\gamma_{d-r} & & \cdots & \gamma_{d}
\end{array}\right]\left[\begin{array}{c}
g_{0} \\
g_{1} \\
\vdots \\
g_{r}
\end{array}\right]=0 .
$$

$2 q\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} \sum_{\ell=0}^{r} g_{\ell} x_{1}^{\ell} x_{2}^{r-\ell}$ has $r$ distinct real roots

- Then $q\left(x_{1}, x_{2}\right) \stackrel{\text { def }}{=} \prod_{j=1}^{r}\left(\beta_{j} x_{1}-\alpha_{j} x_{2}\right)$ yields the $r$ forms

■ Valid even in non generic cases.
Pierre Comon Tensor problems in EE

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Proof of Sylvester's theorem (2)

1 Assume the $r$ distinct linear forms $L_{j}=\alpha_{j} x_{1}+\beta_{j} x_{2}$ are given.
Let $q(\mathbf{x}) \stackrel{\text { def }}{=} \prod_{j=1}^{r}\left(\beta_{j} x_{1}-\alpha_{j} x_{2}\right)$. Then $q\left(\alpha_{j}, \beta_{j}\right)=0, \forall j$.
2 Hence from lemma, $\forall m(\mathbf{x})$ of degree $d-r$, $\left\langle m q, L_{j}^{d}\right\rangle=m q\left(\mathbf{a}_{j}\right)=0$, and $\langle m q, t\rangle=0$.
3 Take for instance polynomials $m_{\mu}(\mathbf{x})=x_{1}^{\mu} x_{2}^{d-r-\mu}$, $1 \leq \mu \leq d-r$, and denote $g_{\ell}$ coefficients of $q$ :

$$
\left\langle m_{\mu} q, t\right\rangle=0 \Rightarrow \sum_{\ell=0}^{r} g_{\ell} \gamma_{\ell+\mu}=0
$$

This is exactly (7) expressed in canonical basis
4 Roots of $q\left(x_{1}, x_{2}\right)$ are distinct real since forms $L_{j}$ are.
5 Reasoning goes also backwards

## Lemma

- For homogeneous polynomials of degree $d$ parameterized as $p(\mathbf{x}) \stackrel{\text { def }}{=} \sum_{|\mathbf{i}|=d} c(\mathbf{i}) \gamma(\mathbf{i} ; p) \mathbf{x}^{\mathbf{i}}$, define the apolar scalar product:

$$
\langle p, q\rangle=\sum_{|\mathbf{i}|=d} c(\mathbf{i}) \gamma(\mathbf{i} ; p) \gamma(\mathbf{i} ; q)
$$

- Then $L(\mathbf{x}) \stackrel{\text { def }}{=} \mathbf{a}^{\top} \mathbf{x} \Rightarrow\left\langle p, L^{d}\right\rangle=\sum_{|\mathbf{i}|=d} c(\mathbf{i}) \gamma(\mathbf{i} ; p) \mathbf{a}^{\mathbf{i}}=p(\mathbf{a})$

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Algorithm for $r$ th order symmetric tensors of dimension 2
Start with $r=1(d \times 2$ matrix $)$ and increase $r$ until it looses its column rank

| 1 | 2 |
| :--- | :--- |
| 2 | 3 |
| 3 | 4 |
| 4 | 5 |
| 5 | 6 |
| 6 | 7 |
| 7 | 8 |$\rightarrow$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 2 | 3 | 4 |
| 3 | 4 | 5 |
| 4 | 5 | 6 |
| 5 | 6 | 7 |
| 6 | 7 | 8 |$\longrightarrow$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 2 | 3 | 4 | 5 |
| 3 | 4 | 5 | 6 |
| 4 | 5 | 6 | 7 |
| 5 | 6 | 7 | 8 |



Decomposition of maximal rank: $x_{1} x_{2}^{d-1}$

1 Maximal rank $r=d$ when (7) reduces to a 1 -row matrix:
$[0,0, \ldots 0,1,0] \mathbf{g}=0$
2 Find $\left(\alpha_{i}, \beta_{i}\right)$ such that $q\left(x_{1}, x_{1}\right)=\prod_{j=1}^{d}\left(\beta_{j} x_{1}-\alpha_{j} x_{2}\right)$
$\stackrel{\text { def }}{=} \sum_{\ell=0}^{d} g_{\ell} x_{1}^{\ell} x_{2}^{r-\ell}$ has $d$ distinct roots
3 Take $\alpha_{j}=1$. Then $g_{d-1}=0$ just means $\sum \beta_{j}=0$
Choose arbitrarily such distinct $\beta_{j}$ 's
4 Compute $\lambda_{j}$ 's by solving the Van der Monde linear system:
$\left[\begin{array}{ccc}1 & \ldots & 1 \\ \beta_{1} & \ldots & \beta_{d} \\ \beta_{1}^{2} & \ldots & \beta_{d}^{2} \\ : & : & \vdots \\ \beta_{1}^{d} & \ldots & \beta_{d}^{d}\end{array}\right] \boldsymbol{\lambda}=\left[\begin{array}{c}0 \\ \vdots \\ 0 \\ 1 \\ 0\end{array}\right]$

Pierre Comon Tensor problems in EE

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End

## Alexander-Hirschowitz theorem

Theorem (1995) For $d>2$, the generic rank of a $d$ th order symmetric tensor of dimension $K$ is always equal to the lower bound

$$
\begin{equation*}
\bar{R}_{s}=\left\lceil\frac{\binom{K+d-1}{d}}{K}\right\rceil \tag{8}
\end{equation*}
$$

except for the following cases:
$(d, K) \in\{(3,5),(4,3),(4,4),(4,5)\}$, for which it should be increased by 1 (i.e. only a finite number of exceptions, also called defective cases)

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Values of the Generic Rank (1)

Symmetric tensors of order $d$ and dimension $K$

| $d^{K}$ | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | 4 | 5 | 8 | 10 | 12 | 15 |
| 4 | 3 | 6 | 10 | 15 | 21 | 30 | 42 |

$$
\bar{R}_{s} \geq \frac{1}{K}\binom{K+d-1}{d}
$$

Bold: exceptions to the ceil rule: $\bar{R}_{s}=\left\lceil\frac{1}{K}\binom{K+d-1}{d}\right\rceil$, sometimes called defective cases.
Green: lower bound $\frac{1}{K}\binom{K+d-1}{d}$ is integer and nondefective, hence finite number of solutions with proba 1

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Numerical computation of the Generic Rank

Mapping (for unsymmetric tensors)
$\{\mathbf{u}(\ell), \mathbf{v}(\ell), \ldots, \mathbf{w}(\ell), 1 \leq \ell \leq r\} \quad \stackrel{\varphi}{\longrightarrow} \sum_{\ell=1}^{r} \mathbf{u}(\ell) \otimes \mathbf{v}(\ell) \otimes \ldots \otimes \mathbf{w}(\ell)$

$$
\left\{\mathbb{C}^{n_{1}} \otimes \ldots \otimes \mathbb{C}^{n_{d}}\right\}^{r} \xrightarrow{\varphi} \mathcal{A}
$$

Et The smallest $r$ for wich $\operatorname{rank}(\operatorname{Jacobian}(\varphi))=\prod_{i} n_{i}$ is the generic rank, $\bar{R}$.

- Example of use of Terracini's lemma

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Values of the Generic Rank (2)

Warning: for unsymmetric tensors of order $d$ and dimension $K$, the generic rank is different

| $d^{K}$ | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | 2 | 5 | 7 | 10 | 14 | 19 |
| 4 | 4 | 9 | 20 | 37 | 62 | 97 |

$$
\bar{R} \geq \frac{K^{d}}{K d-d+1}
$$

Bold: exceptions to the ceil rule: $\bar{R}=\left\lceil\frac{K^{d}}{K d-d+1}\right\rceil$.
Green: lower bound $\frac{K^{d}}{K d-d+1}$ is integer and nondefective

## Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End

## Example of computation of Generic Rank

$$
\{\mathbf{a}(\ell), \mathbf{b}(\ell), \mathbf{c}(\ell)\} \xrightarrow{\varphi} \mathbf{T}=\sum_{\ell=1}^{r} \mathbf{a}(\ell) \otimes \mathbf{b}(\ell) \otimes \mathbf{c}(\ell)
$$

T has coordinate vector: $\sum_{\ell=1}^{r} \mathbf{a}(\ell) \otimes \mathbf{b}(\ell) \otimes \mathbf{c}(\ell)$. Hence the Jacobian of $\varphi$ is the $r\left(n_{1}+n_{2}+n_{3}\right) \times n_{1} n_{2} n_{3}$ matrix:

$$
\mathbf{J}=\left[\begin{array}{ccccc}
\mathbf{I}_{n_{1}} & \otimes & \mathbf{b}^{\top}(1) & \otimes & \mathbf{c}^{\top}(1) \\
\vdots & \otimes & \vdots & \otimes & \vdots \\
\mathbf{I}_{n_{1}} & \otimes & \mathbf{b}^{\top}(r) & \otimes & \mathbf{c}^{\top}(r) \\
\mathbf{a}(1)^{\top} & \otimes & \mathbf{I}_{n_{2}} & \otimes & \mathbf{c}^{\top}(1) \\
\vdots & \otimes & \vdots & \otimes & \vdots \\
\mathbf{a}(r)^{\top} & \otimes & \mathbf{I}_{n_{2}} & \otimes & \mathbf{c}^{\top}(r) \\
\mathbf{a}(1)^{\top} & \otimes & \mathbf{b}(1)^{\top} & \otimes & \mathbf{I}_{n_{3}} \\
\vdots & \otimes & \vdots & \otimes & \vdots \\
\mathbf{a}(r)^{\top} & \otimes & \mathbf{b}(r)^{\top} & \otimes & \mathbf{I}_{n_{3}}
\end{array}\right] \text { and }\left\{\begin{array}{l}
\operatorname{rank}\{\mathbf{J}\}=\operatorname{dim}(\operatorname{Im}(\varphi)) \\
\bar{R}=\operatorname{Min}\{r: \operatorname{Im}\{\varphi\}=\mathcal{A}\}
\end{array}\right.
$$

## Problem P5

- Similar theorem as AH for unsymmetric tensors?
- that is, decomposition of homogeneous polynomials of degree $d$ but partial degree 1 into sum of products of linear forms


## Lectures of Giorgio Ottaviani today...

Define $\mathcal{Z}_{r}=\{$ tensors of rank $r\}$
■ A rank $r$ is typical if $\mathcal{Z}_{r}$ is Zariski-dense
■ In the complex field, there is only one typical rank, called the generic rank.

■ In the real field, there can be several typical ranks (smallest equals generic rank in $\mathbb{C}$ )

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End Low rank approximation

## We need

1 to know the exact rank
and
2 the rank to be sub-generic

Hence we make suboptimal rank reduction

- by a 2 -stage rank reduction
or
- by HOSVD truncation

Two-stage suboptimal rank reduction (1)
Two-stage suboptimal rank reduction (2)

1 Associate one linear operator with tensor T, defined by a matrix M

Example: If $\mathbf{T}$ is $K \times K \times K \times K$ symmetric
2 Compute the best rank $r$ approximate of $\mathbf{M}$, e.g. via truncated SVD (not always possible)
3 Unfold each of the $r$ singular vectors into a matrix, and compute its rank-1 approximate
4 From this starting point, run a few iterations of a descent on

$$
\left\|\mathbf{T}-\sum_{p=1}^{r} \mathbf{u}_{p} \otimes \mathbf{v}_{p} \otimes \ldots \otimes \mathbf{w}_{p}\right\|^{2}
$$

Context Over. Orthog. Invertible Under Binary Ranks Biome Foobi CAF Iterative End
HOSVD

For a tensor of order $d$, compute first a rank- $\left(R_{1}, R_{2}, \ldots, R_{d}\right)$ approximate:
1 Associate $d$ linear operators with tensor $\mathbf{T}$, defined by unfolding matrices $\mathbf{M}_{i}, 1 \leq i \leq d$
2 Compute the rank- $R_{i}$ approximation of each matrix $\mathbf{M}_{i}$ (reduction of the multilinear mode-i ranks)
3 Use truncated left singular marices $\mathbf{U}^{(i)}$ to compute the $R_{1} \times R_{2} \times \ldots R_{d}$ core tensor $\mathbf{T}_{0}$
4 Run an iterative descent on $\left\|\mathbf{T}_{0}-\sum_{p=1}^{r} \mathbf{u}_{p} \otimes \mathbf{v}_{p} \otimes \ldots \otimes \mathbf{w}_{p}\right\|^{2}$

1 build the symmetric matrix $\mathbf{M}$ of size $K^{2} \times K^{2}$.
2 Compute the $r$ dominant eigenvectors $\mathbf{e}_{p}$ of $\mathbf{M}$.
3 We wish each e to be of the form $\mathbf{u} \otimes \mathbf{u}$.
Hence minimize $\|$ Unvec $_{K}\left(\mathbf{e}_{p}\right)-\mathbf{u}_{p} \mathbf{u}_{p}^{\top} \|^{2}$ via rank-1
approximates
Eventually:

$$
\mathbf{T} \approx \sum_{p=1}^{r} \mathbf{u}_{p} \otimes \mathbf{u}_{p} \otimes \mathbf{u}_{p} \otimes \mathbf{u}_{p}
$$

Pierre Comon Tensor problems in EE

## 

## Problem P4

Approximation of a tensor by another of lower rank
1 ill-posed in general for free real/complex entries
2 other problem statement (e.g. border rank)?
3 case of positive entries
4 case of semi-definite positive quantic
5 other cases?


## BIOME algorithms

Now survey some numerical algorithms to compute the decomposition:

- when rank is strictly smaller than generic

■ when dimension is larger than 2
■ suboptimality (symmetry not fully imposed - link with P15)

- These algorithms work with a cumulant tensor of even order $2 r>4$

■ Related to symmetric flattening introduced in previous lectures

- We take the case $2 r=6$ for the presentation, and denote

$$
\begin{equation*}
\mathcal{C}_{i j k}^{\ell m n} \stackrel{\text { def }}{=} \operatorname{Cum}\left\{x_{i}, x_{j}, x_{k}, x_{l}^{*}, x_{m}^{*}, x_{n}^{*}\right\} \tag{9}
\end{equation*}
$$

■ In that case, we have

$$
\mathcal{C}_{x, i j k}^{\ell m n}=\sum_{p=1}^{P} H_{i p} H_{j p} H_{k p} H_{\ell p}^{*} H_{m p}^{*} H_{n p}^{*} \Delta_{p}
$$

where $\Delta_{p} \stackrel{\text { def }}{=} \operatorname{Cum}\left\{s_{p}, s_{p}, s_{p}, s_{p}^{*}, s_{p}^{*}, s_{p}^{*}\right\}$ denote the diagonal entries of a $P \times P$ diagonal matrix, $\Delta^{(6)}$

Pierre Comon Tensor problems in EE

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End

## Using the invariance to estimate $\mathbf{V}$

1 Cut the $K^{3} \times P$ matrix $\left(\mathbf{C}_{x}^{(6)}\right)^{1 / 2}$ into $K$ blocks of size $K^{2} \times P$. Each of these blocks, $\boldsymbol{\Gamma}[n]$, satisfies:

$$
\boldsymbol{\Gamma}[n]=\left(\mathbf{H} \odot \mathbf{H}^{\mathrm{H}}\right) \mathbf{D}[n]\left(\boldsymbol{\Delta}^{(6)}\right)^{1 / 2} \mathbf{V}
$$

where $\mathbf{D}[n]$ is the $P \times P$ diagonal matrix containing the $n$th row of $\mathbf{H}, 1 \leq n \leq K$.
Hence matrices $\boldsymbol{\Gamma}[n]$ share the same common right singular space
2 Compute the joint EVD of the $K(K-1)$ matrices

$$
\boldsymbol{\Theta}[m, n] \stackrel{\text { def }}{=} \boldsymbol{\Gamma}[m]^{-} \boldsymbol{\Gamma}[n]
$$

as: $\boldsymbol{\Theta}[m, n]=\mathbf{V} \boldsymbol{\Lambda}[m, n] \mathbf{V}^{\mathrm{H}}$.

Matrices $\boldsymbol{\Lambda}[m, n]$ cannot be used directly because $\left(\boldsymbol{\Delta}^{(6)}\right)^{1 / 2}$ is unknown. But we use $\mathbf{V}$ to obtain the estimate of $\mathbf{H}^{\odot 3}$ up to a scale factor:

$$
\begin{equation*}
\widehat{\mathbf{H}^{®^{3}}}=\left(\mathbf{C}_{x}^{(6)}\right)^{1 / 2} \mathbf{V} \tag{12}
\end{equation*}
$$

One possibility to get $\mathbf{H}$ from $\mathbf{H}^{\odot 3}$ is as follows:
3 Build $K^{2}$ matrices $\equiv[m]$ of size $K \times P$ form rows of $\widehat{\mathbf{H}^{\circ 3}}$
4 From $\equiv[m]$ find $\widehat{\mathbf{H}}$ and diagonal matrices $\mathbf{D}[m]$, in the LS sense:

$$
\equiv[m] \mathbf{D}[m] \approx \widehat{\mathbf{H}}, \quad 1 \leq m \leq K^{2}
$$

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Conditions of identifiability of $\operatorname{BIOME}(2 r) ~ s$

- Source cumulants of order $2 r>4$ are nonzero and have the same sign
- Columns vectors of mixing matrix $\mathbf{H}$ are not collinear
- Matrix $\mathbf{H}^{\odot}(r-1)$ is full column rank.
- This last condition implies that tensor rank must be at most $K^{r-1}$ (e.g. $P \leq K^{2}$ for order $2 r=6$ ).

Estimation of H (details)

Stationary values of criterion $\sum_{m=1}^{M}\left\|\mathbf{\Xi}_{m} \mathbf{D}_{m}-\mathbf{H}\right\|_{F}^{2}, M \stackrel{\text { def }}{=} K^{2}$, yield the solution below

■ Obtain vectors $\mathbf{d}_{p} \stackrel{\text { def }}{=}\left[\mathbf{D}_{1}(p, p), \mathbf{D}_{2}(p, p), \cdots \mathbf{D}_{M}(p, p)\right]^{\top}$, by solving the linear systems:

$$
\mathbf{F}_{p} \mathbf{d}_{p}=0
$$

where matrices $\mathbf{F}_{p}$ are defined as

$$
\mathbf{F}_{p}\left(m_{1}, m_{2}\right)=\left\{\begin{array}{l}
(M-1)\left\{\bar{\Xi}_{m_{1}}^{+} \Xi_{m_{1}}\right\}(p, p) \text { if } m_{1}=m_{2} \\
-\left\{\bar{\Xi}_{m_{1}}^{+} \boldsymbol{\Xi}_{m_{2}}\right\}(p, p) \text { otherwise }
\end{array}\right.
$$

- Deduce the estimate $\widehat{\mathbf{H}}=\frac{1}{M} \sum_{m=1}^{M} \equiv_{m} \mathbf{D}_{m}$

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End

## FOOBI algorithms

Again same problem: Given a $K^{2} \times P$ matrix $\mathbf{H}^{\odot}$, find a real orthogonal matrix $\mathbf{Q}$ such that the $P$ columns of $\mathbf{H}^{\odot 2} \mathbf{Q}$ are of the form $\mathbf{h}[p] \otimes \mathbf{h}[p]^{*}$

- FOOBI: use the $K^{4}$ determinantal equations characterizing rank-1 matrices $\mathbf{h}[p] \mathbf{h}[p]^{H}$ of the form:
$\phi(\mathbf{X}, \mathbf{Y})_{i j k \ell}=x_{i j} y_{\ell k}-x_{i k} y_{\ell j}+y_{i j} x_{\ell k}-y_{i k} x_{\ell j}$
- FOOBI2: use the $K^{2}$ equations of the form:
$\boldsymbol{\Phi}(\mathbf{X}, \mathbf{Y})=\mathbf{X} \mathbf{Y}+\mathbf{Y} \mathbf{X}+\operatorname{trace}\{\mathbf{X}\} \mathbf{Y}+\operatorname{trace}\{\mathbf{Y}\} \mathbf{X}$
where matrices $\mathbf{X}$ and $\mathbf{Y}$ are $K \times K$ Hermitean.


## FOOBI2

1 Normalize the columns of the $K^{2} \times P$ matrix $\mathbf{H}^{\odot 2}$ such that matrices $\mathbf{H}[r] \stackrel{\text { def }}{=}$ Unvec $_{K}\left(\mathbf{h}^{\odot 2}[r]\right)$ are Hermitean
2 Compute the $K^{2}(K-1)^{2} \times P(P-1) / 2$ matrix $\mathbf{P}$ defined by $\phi(\mathbf{H}[r], \mathbf{H}[s]), 1 \leq r \leq s \leq P$.
3 Compute the $P$ weakest right singular vectors of $\mathbf{P}$, Unvec them and store them in $P$ matrices $\mathbf{W}[r]$
4 Jointly diagonalize $\mathbf{W}[r]$ by a real orthogonal matrix $\mathbf{Q}$
5 Then compute $\mathbf{F} \stackrel{\text { def }}{=}\left(\mathbf{C}_{x}^{(4)}\right)^{1 / 2} \boldsymbol{\Delta} \mathbf{Q}$ and deduce $\hat{\mathbf{h}}[r]$ as the dominant left singular vectors of Unvec (f[r]).

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Algorithms based on characteristic functions

Fit with a model of exact rank
1 Back to the core equation (3):

$$
\Psi_{x}(\mathbf{u})=\sum_{p} \Psi_{s_{p}}\left(\sum_{q} u_{q} A_{q p}\right)
$$

2 Goal: Find a matrix $\mathbf{H}$ such that the $K$-variate function $\Psi_{x}(\mathbf{u})$ decomposes into a sum of $P$ univariate functions $\psi_{p} \stackrel{\text { def }}{=} \Psi_{s_{p}}$.
3 Idea: Fit both sides on a grid of values $\mathbf{u}[\ell] \in \mathcal{G}$

1 Normalize the columns of the $K^{2} \times P$ matrix $\mathbf{H}^{\odot 2}$ such that matrices $\mathbf{H}[r] \stackrel{\text { def }}{=}$ Unvec $_{K}\left(\mathbf{h}^{\odot}[r]\right)$ are Hermitean
2 Compute the $K(K+1) / 2$ Hermitean matrix $\mathbf{B}[r, s]$ of size $P \times P$ defined by:

$$
\left.\left.\Phi(\mathbf{H}[r], \mathbf{H}[s])\right|_{i j} \stackrel{\text { def }}{=} \mathbf{B}[i, j]\right|_{r s}
$$

3 Jointly cancel diagonal entries of matrices $\mathbf{B}[i, j]$ by a real congruent orthogonal transform $\mathbf{Q}$
4 Then compute $\mathbf{F} \stackrel{\text { def }}{=}\left(\mathbf{C}_{x}^{(4)}\right)^{1 / 2} \boldsymbol{\Delta} \mathbf{Q}$ and deduce $\hat{\mathbf{h}}[r]$ as the dominant left singular vectors of Unvec ( $\mathbf{f}[r]$ )
NB: Better bound than FOOBI and $\operatorname{BIOME}(4)$, but iterative algorithm sensitive to initialization

## Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End

## Equations derived from the CAF

- Assumption: functions $\psi_{p}, 1 \leq p \leq P$ admit finite derivatives up to order $r$ in a neighborhood of the origin, containing $\mathcal{G}$.
- Then, Taking $r=3$ as a working example:

$$
\frac{\partial^{3} \Psi_{x}}{\partial u_{i} \partial u_{j} \partial u_{k}}(\mathbf{u})=\sum_{p=1}^{P} H_{i p} H_{j p} H_{k p} \psi_{p}^{(3)}\left(\sum_{q=1}^{K} u_{q} H_{q p}\right)
$$

- If $L>1$ point in grid $\mathcal{G}$, then yields another mode in tensor

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Putting the problem in tensor form

- A decomposition into a sum of rank-1 terms:

$$
T_{i j k \ell}=\sum_{p} H_{i p} H_{j p} H_{k p} B_{\ell p}
$$

or equivalently

$$
\mathbf{T}=\sum_{p} \mathbf{h}(p) \otimes \mathbf{h}(p) \otimes \mathbf{h}(p) \otimes \mathbf{b}(p)
$$

- Tensor $\mathbf{T}$ is $K \times K \times K \times L$,
symmetric in all modes except the last.

Pierre Comon Tensor problems in EE

## Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End

## Problem P13

■ Results for tensors enjoying partial symmetries

- e.g., symmetric in the 3 first modes and not not in others
- e.g. tensors with symmetries in some modes and Hermitean symmetries in others
- Generic/typical ranks?
- Existence/well-poseness?
- Uniqueness?



## Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End

Joint use of different derivative orders

## Example

- Derivatives of order 3:

$$
T_{i j k \ell}^{(3)}=\sum_{p} H_{i p} H_{j p} H_{k p} B_{\ell p}
$$

- Derivatives of order 4:

$$
T_{i j k m \ell}^{(4)}=\sum_{p} H_{i p} H_{j p} H_{k p} H_{m p} C_{\ell p}
$$

- Derivatives of orders 3 and 4:

$$
T_{i j k \ell}[m]=\sum_{p} H_{i p} H_{j p} H_{k p} D_{\ell p}[m]
$$

$$
\text { with } D_{\ell p}[m]=H_{m p} C_{\ell p} \text { and } D_{\ell p}[0]=B_{\ell p} .
$$

Pierre Comon Tensor problems in EE

## 

## Problem P18

What is best to do when several symmetric tensors, possibly of different orders, are supposed to be decomposed with same matrix H?

Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End
Iterative algorithms

Many practitioners execute more or less brute force minimizations
of $\left\|\mathbf{T}-\sum_{p=1}^{r} \mathbf{u}_{p}{ }^{\otimes} \mathbf{v}_{p} \otimes \ldots{ }^{\otimes} \mathbf{w}_{p}\right\|^{2}$

- Gradient with fixed or variable (ad-hoc) stepsize
- Alternate Least Squares (ALS)
- Levenberg-Marquardt
- Newton
- Conjugate gradient
- ...

Remarks

- Hessian is generally huge, but sparse
- Problem of local minima: ELS variants for all of the above

