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Linear statistical model

y = As + b (1)

with


y : K × 1 random
s : P × 1 random with stat. independent entries
A : K × P deterministic
b : errors (may be removed for P large enough)
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Taxinomy

K ≥ P: “over-determined”
can be reduced to a square P × P regular mixture
A orthogonal or unitary
A square invertible

K < P: “under-determined”
A rectangular with pairwise lin. independent columns
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Goals

In the stochastic framework: solely from realizations of
observation vector y,

Estimate matrix A: Blind identification

Estimate realizations of the “source” vector s: Blind
separation/extraction/equalization

In the deterministic framework:

Decompose the data tensor (cf. subsequent course)
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Application areas for symmetric tensors

1 Telecommunications (Cellular, Satellite, Military),

2 Radar, Sonar,

3 Biomedical (EchoGraphy, ElectroEncephaloGraphy,
ElectroCardioGraphy)...

4 Speech,

5 Machine Learning,

6 Control...
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Example: Antenna Array Processing (1)

Transmitter

Receiver array
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Example: Antenna Array Processing (2)

Modeling the signals received on an array of antennas
generally leads to a matrix decomposition:

Tijp =
∑
q

∑
!

aiq!

∑
k

hq!kpskqj

i : space k: symbol # a: receiver geometry
j : time q: user # h: global channel impulse response

!: path # s: Transmitted signal

But in the presence of additional diversity, a tensor can be
constructed, thanks to new variable p
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Example: Antenna Array Processing (3)

New variable p can represent:

Oversampling (sample index),

Spreading code (chip index),

Frequency (multicarrier),

Geometrical invariance (subarray index),

Polarization...

Warning: tensor should not have proportional matrix slices
(degeneration)
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Link with tensors

In the stochastic framework:

use of the characteristic function

use of cumulants

The obtained tensor enjoys symmetry properties
→ another motivation to study symmetric tensors
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Characteristic functions

First c.f.

Real Scalar: Φx(t)
def
= E{e tx} =

∫
u e tu dFx(u)

Real Multivariate: Φx(t)
def
= E{e tTx} =

∫
u e tTu dFx(u)

Second c.f.

Ψ(t)
def
= log Φ(t)

Properties:
Always exists in the neighborhood of 0
Uniquely defined as long as Φ(t) $= 0
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Characteristic functions (cont’d)

Properties of the 2nd Characteristic function (cont’d):

if a c.f. Ψx(t) is a polynomial, then its degree is at most 2 and
x is Gaussian (Marcinkiewicz’1938) [Luka70]
if (x , y) statistically independent, then

Ψx,y (u, v) = Ψx(u) + Ψy (v) (2)

Proof.

Ψx ,y (u, v) = log[E{exp(ux + vy)}]
= log[E{exp(ux)}E{exp(vy)}].
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Problem posed in terms of Characteristic Functions

If sp independent and x = As, we have the core equation:

Ψx(u) =
∑
p

Ψsp

(∑
q

uq Aqp

)
(3)

Proof.

Plug x = As, in definition of Ψx and get

Φx(u)
def
= E{exp(uTAs)} = E{exp(

∑
p,q

uq Aqp sp)}

Since sp independent, Φx(u) =
∏

p E{exp(
∑

q uq Aqp sp)}
Taking the log concludes.

Problem: Decompose a mutlivariate function into a sum of
univariate ones
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Darmois-Skitovich theorem (1953)

Theorem
Let si be statistically independent random variables, and two linear
statistics:

y1 =
∑

i

ai si and y2 =
∑

i

bi si

If y1 and y2 are statistically independent, then random variables sk
for which ak bk $= 0 are Gaussian.

NB: holds in both R or C
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Sketch of proof

Let charatecteristic functions

Ψ1,2(u, v) = log E{exp( y1 u +  y2 v)}
Ψk(w) = log E{exp( yk w)}
ϕp(w) = log E{exp( sp w)}

1 Independence between sp’s implies:

Ψ1,2(u, v) =
∑P

k=1 ϕk(u ak + v bk)

Ψ1(u) =
∑P

k=1 ϕk(u ak)

Ψ2(v) =
∑P

k=1 ϕk(v bk)

2 Independence between y1 and y2 implies

Ψ1,2(u, v) = Ψ1(u) + Ψ2(v)
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Does not restrict generality to assume that [ak , bk ] not
collinear. To simplify, assume also ϕp differentiable.

3 Hence
∑P

k=1 ϕp(u ak + v bk) =
∑P

k=1 ϕk(u ak) + ϕk(v bk)
Trivial for terms for which akbk = 0.
From now on, restrict the sum to terms akbk $= 0

4 Write this at u + α/aP and v − α/bP :

P∑
k=1

ϕk

(
u ak + v bk + α(

ak

aP
− bk

bP
)

)
= f (u) + g(v)

5 Subtract to cancel Pth term, divide by α, and let α → 0:

P−1∑
k=1

(
ak

aP
− bk

bP
) ϕ(1)

k (u ak + v bk) = f (1)(u) + g (1)(v)

for some univariate functions f (1)(u) and g (1)(u).

Conclusion: We have one term less
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6 Repeat the procedure (P − 1) times and get:

P∏
j=2

(
a1

aj
− b1

bj
) ϕ(P−1)

1 (u a1 + v b1) = f (P−1)(u) + g (P−1)(v)

7 Hence ϕ(P−1)
1 (u a1 + v b1) is linear, as a sum of two univariate

functions (ϕ(P)
1 is a constant because a1b1 $= 0).

8 Eventually ϕ1 is a polynomial.

9 Lastly invoke Marcinkiewicz theorem to conclude that s1 is
Gaussian.

10 Same is true for any ϕp such that apbp $= 0: sp is Gaussian.

NB: also holds if ϕp not differentiable
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Equivalent representations

Let y admit two representations

y = As and y = Bz

where s (resp. z) have independent components, and A (resp. B)
have pairwise noncollinear columns.

These representations are equivalent if every column of A is
proportional to some column of B, and vice versa.

If all representations of y are equivalent, they are said to be
essentially unique (permutation & scale ambiguities only).
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Identifiability & uniqueness theorems s

Let y be a random vector of the form y = As, where sp are
independent, and A has non pairwise collinear columns.

Identifiability theorem y can be represented as
y = A1 s1 + A2 s2, where s1 is non Gaussian, s2 is Gaussian
independent of s1, and A1 is essentially unique.

Uniqueness theorem If in addition the columns of A1 are
linearly independent, then the distribution of s1 is unique up
to scale and location indeterminacies.

Remark 1: if s2 is 1-dimensional, then A2 is also essentially unique
Remark 2: the proofs are not constructive [KagaLR73]
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Example of uniqueness s

Let si be independent with no Gaussian component, and bi be
independent Gaussian. Then the linear model below is identifiable,
but A2 is not essentially unique whereas A1 is:(

s1 + s2 + 2 b1

s1 + 2 b2

)
= A1 s+A2

(
b1

b2

)
= A1 s+A3

(
b1 + b2

b1 − b2

)
with

A1 =

(
1 1
1 0

)
, A2 =

(
2 0
0 2

)
and A3 =

(
1 1
1 −1

)
Hence the distribution of s is essentially unique.
But (A1, A2) not equivalent to (A1, A3).
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Example of non uniqueness s

Let si be independent with no Gaussian component, and bi be
independent Gaussian. Then the linear model below is identifiable,
but the distribution of s is not unique because a 2× 4 matrix
cannot be full column rank:

(
s1 + s3 + s4 + 2 b1

s2 + s3 − s4 + 2 b2

)
= A


s1
s2

s3 + b1 + b2

s4 + b1 − b2

 = A


s1 + 2 b1

s2 + 2 b2

s3
s4


with

A =

(
1 0 1 1
0 1 1 −1

)
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Definition of Cumulants

Moments:

µr
def
= E{x r} = (−)r

∂rΦ(t)

∂tr

∣∣∣∣
t=0

Cumulants:

C
x (r)

def
= Cum{x , . . . , x︸ ︷︷ ︸

r times

} = (−)r
∂rΨ(t)

∂tr

∣∣∣∣
t=0

Relationship between Moments and Cumulants obtained by
expanding both sides in Taylor series:

log Φx(t) = Ψx(t)

Needs existence. Counter example: Cauchy

px(u) =
1

π (1 + u2)
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First Cumulants

C(2) is the variance: C(2) = µ(2) − µ2
(1)

For zero-mean r.v.: C(3) = µ(3), and C(4) = µ(4) − 3 µ2
(2)

Standardized cumulants:

K(r) = Cum(r)

{
x − µ′(1)√

µ(2)

}

e.g. Skewness K3, and Kurtosis K4.
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Examples of cumulants (1)

Example: Zero-mean Gaussian

Moments

µ(2r) = µr
(2)

(2r)!

r ! 2r

In particular:

µ(4) = 3µ2
(2), µ(6) = 15µ3

(2)

C(4) = 0, K(4) = 0.

All Cumulants of order r > 2 are null
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Examples of Cumulants (2) s

Example: Uniform

uniformly distributed in [−a,+a] with probability 1
2a

Moments: µ(2k) = a2k

2k+1

4th order Cumulant: C(4) = a4

5 − 3 a4

9 = −2 a4

15

Kurtosis: K(4) = −6
5 .

a
!

1 / 2a

−a

"
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Examples of Cumulants (3) s

Example: Zero-mean standardized binary

x takes two values x1 = −a and x2 = 1/a with probabilities

P1 = 1
1+a2 , P2 = a2

1+a2

Skewness is K(3) =
1

a
− a

Kurtosis is K(4) =
1

a2
+ a2 − 4

Extreme values (bound)

Minimum Kurtosis
for a = 1 (symmetric):
K(4) = −2
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Multivariate Cumulants

Notation: Cij ..!
def
= Cum{Xi , Xj , ...X!}

First cumulants:

µ′i = Ci

µ′ij = Cij + CiCj

µ′ijk = Cijk + [3] CiCjk + CiCjCk

with [n]: Mccullagh’s bracket notation.

Next, for zero-mean variables:

µijk! = Cijk! + [3] CijCk!

µijk!m = Cijk!m + [10] CijCk!m

Again, general formula of Leonov-Shiryayev obtained by
Taylor expansion of both sides of Ψ(t) = log Φ(t)...
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Properties of Cumulants

Multi-linearity (also enjoyed by moments):

Cum{αX , Y , ..,Z} = α Cum{X , Y , ..,Z} (4)

Cum{X1 + X2, Y , ..,Z} = Cum{X1, Y , ..,Z}+ Cum{X2, Y , ..,Z}
Cancellation: If {Xi} can be partitioned into 2 groups of
independent r.v., then

Cum{X1, X2, ..,Xr} = 0

Additivity: If X and Y are independent, then

Cum{X1 + Y1, X2 + Y2, ..,Xr + Yr} = Cum{X1, X2, ..,Xr}
+ Cum{Y1, Y2, ..,Yr}

Inequalities, e.g.:
K2

(3) ≤ K(4) + 2
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Problem posed in terms of Cumulants

Input-output relations If y = As, where sp are independent,
then multi-linearity of cumulants yields:

Cy,ijk..! =
P∑

p=1

Aip Ajp Akp..A!p Cs,ppp..p (5)

Can one identify A form tensor Cy?

Remark

Tensor Cy does not contain all the information whereas the c.f
(3) did.

Possibility to choose cumulant order(s)
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Over-determined mixtures

In that framework, the statistical model involves at most as many
sources as the dimension of the observation space:

y = As, with K
def
= dim{y} ≥ dim{s} def

= P

That is, A admits a left inverse.

Warning:

In practice, Cy or Ψy(u) are estimated from noisy
measurements, so that (5) or (3) are never exactly satisfied if
K ≥ P: they become approximations
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Essential uniqueness

Over-determined mixtures are equivalent iff they are related
by scale-permutation: A = BΛP

Hence in the absence of noise, the source random variables
can be recovered up to scale and permutation as:

z = ΛPs

This is an inherent indeterminacy of the problem.
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Direct vs Inverse

Two formulations in terms of cumulants:

1 Direct: look for A so as to fit eq. (5):

min
A

||Cy,ijk..! −
P∑

p=1

Aip Ajp Akp..A!p Cs,ppp..p||2

i.e. decompose Cy into a sum of P rank-one terms

2 Inverse: look for B:

min
B

∑
mnp..q #=ppp..p

|
∑
ijk..!

Cy,ijk..!Bim Bjn Bkp..B!q|2

i.e. try to diagonalize Cy by linear transform, z = By
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Divide to conquer

Difficulty: many unknowns, in real or complex field

1 1st idea: address a sequence of problems of smaller
dimension instead of a single one in larger dimension.

2 2nd idea: decompose A into two factors, A = LQ, and
compute L so as to exactly standardize the data. Look for the
best Q in a second stage.

! Both are sub-optimal, but of practical value.
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Pairwise vs. Mutual independence (1)

Components sk of s are pairwise independent ⇔ Any pair of
components (sk , s!) are mutually independent.

In general, pairwise and mutual independence are not
equivalent

But...
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Pairwise vs. Mutual independence (2) s

Example: Pairwise but not Mutual independence

3 mutually independent binary sources, xi ∈ {−1, 1},
1 ≤ i ≤ 3

Define x4 = x1x2x3. Then x4 is also binary, dependent on xi

xk are pairwise independent:
p(x1 = a, x4 = b) = p(x4 = b | x1 = a).p(x1 = a) =
p(x2 x3 = b/a).p(x1 = a)
But x1 and x2 x3 are binary ⇒
p(x2 x3 = b/a).p(x1 = a) = 1

2 · 1
2

NB: in particular, Cum{x1, x2, x3, x4} = 1 $= 0
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Pairwise vs. Mutual independence (3)

Corollary of Darmois’s theorem for over-determined mixtures:

Let z = Cs, where si are independent r.v., and assume either

all si are non Gaussian and C is invertible, or

at most one si is Gaussian and C is orthogonal/unitary

Then the following properties are equivalent:

1 Components zi are pairwise independent

2 Components zi are mutually independent

3 C = ΛP, with Λ diagonal invertible and P permutation

Proof... 1 → 3 by contradiction
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Standardization with covariance

Let x be a zero-mean r.v. with covariance matrix:

Γx
def
= E{x xH}

and let L be any square root of Γ:

LLH = Γx

Then x̃
def
= L−1x is a standardized random variable, i.e. it has

unit covariance.

In practice, use SVD to face ill-conditioning or singularity: x̃
may have then a smaller dimension.
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Pre-processing with SVD s

Observed random variable x of dimension K . Then ∃(U, x̃):

x = U x̃, U unitary

where “Principal Components” x̃i are uncorrelated.
ith column ui of U is called “ith PC loading vector”

Two –among many– possible calculations from a K × N
realization matrix X:

EVD of sample covariance Rx : Rx = UΣ2UH, x̃ = UH x
Sample estimate by SVD: X = UΣVH, X̃ = ΣVH

The latter is more accurate, and avoids the calculation of the
covariance.
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Lecture 2/3
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Orthogonal decomposition

If Q orthogonal, the two problems are equivalent:

1 Direct:

min
Q,Λ

||Cijk! −
P∑

p=1

Qip Qjp Qkp Q!p Λpppp||2

2 Inverse: minQ,Λ ||
∑

ijk! Qip Qjq Qkr Q!s Cijk! − Λpppp δpqrs ||2 or

e.g. max
Q

∑
p

|
∑
ijk!

Qip Qjp Qkp Q!p Cijk!|2

Proof. The Frobenius norm is invariant under orthogonal change of
coordinates.
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What we have seen so far

The joint 2nd characteristic function of x = As contains all
the information. The problem consists of decomposing it into
a sum of univariate characteristic functions.

Cumulant tensors contain part of the information, but may
suffice. The problem reduces to decomposing one of them.

Identification of an invertible mixture generally leads to an
approximation problem

1st idea: in an inverse approach, one can process pairwise

2nd idea: two-stage by decomposing A = LQ. First compute
L via an exact standardization of x. Second compute the best
orthogonal matrix Q.

Drawback: one puts an infinite weight on 2nd order statistics
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Estimation of the orthogonal matrix

Assume we have realizations of the standardized r.v. x̃ = L−1 x.
We have to:

1 Choose an optimization criterion to maximize, e.g. based on
the cumulant tensor of z.

2 Devise a numerical algorithm, e.g. proceeding pairwise

Pierre Comon Tensor problems in EE 44



Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other

Contrast criteria

1 Optimization criteria

Let s have stat. independent components, and z = Qs. A good
“contrast” criterion Υ(Q) should:

be maximal if and only if the components of z are
independent, ie. iff Q is trivial (scale-permutation): Q = ΛP,

decrease if Q is not trivial.

This can be summarized by:

Υ(Q) ≤ Υ(I), with equality iff Q = ΛP (6)

Pierre Comon Tensor problems in EE 45

Context Over. Orthog. Invertible Under. Criteria Pair sweep. Other

Examples of contrasts

Denote C the 4th order cumulant tensor of z. If at most 1 source
has a null kurtosis, then

ΥCoM(Q)
def
=

∑
i C

2
iiii (maximize diagonal entries)

ΥSTO(Q)
def
=

∑
ij C 2

iiij (jointly diagonalize 3rd order slices)

ΥJAD(Q)
def
=

∑
ijk C 2

iijk (jointly diagonalize matrix slices)

are “contrast” criteria.
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Examples of contrasts (cont’d)

Proof. We need to prove (6), that is, Υ(Q) ≤ Υ(I). Denote D the
(diagonal) cumulant tensor of s. First use multi-linearity (5) of
cumulant tensors: Cijk! =

∑
p Qip Qjp Qkp Q!p Dp. Then:

ΥJAD
def
=

∑
ijk

C 2
iijk =

∑
ijk

|
∑
p

Q2
ip Qjp Qkp Dp|2

=
∑

i

∑
pq

Q2
ip Q2

iq

∑
j

Qjp Qjq

∑
k

Qkp Qkq Dp Dq

and because Q is orthogonal

ΥJAD =
∑

i

∑
p

Q4
ip D2

p

Now Qij ≤ 1 yields ΥJAD ≤
∑

i

∑
p Q2

ip D2
p =

∑
i D

2
i

def
= ΥJAD(I)

This proves inequality (6) for ΥJAD .
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Proof. (cont’d) On the other hand, clearly

ΥCoM ≤ ΥSTO ≤ ΥJAD

so that we have also proved the inequality (6) for ΥCoM and ΥSTO .

Now if equality holds, all inequalities above are equalities, and in
particular ∑

i

∑
p

(Q2
ip − Q4

ip) D2
p = 0

Thus |Qip| ∈ {0, 1} by Lp-norm inequality, for all i and for all p
such that Dp $= 0. Yet, at most one Dp is null by hypothesis, and
Q is orthogonal. Thus Q must be a signed permutation.
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Examples of contrasts (cont’d)

Interpretation.

ΥCoM ≤ ΥSTO ≤ ΥJAD shows that ΥCoM is more sensitive

ΥSTO and ΥJAD are less discriminant since they also
maximize non diagonal terms

Example for 4× 4× 4 tensors

Matrix slices diagonalization $= Tensor diagonalization
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Algorithms: Jacobi pair Sweeping (1)

2 Pairwise processing

Split the orthogonal matrix into a product of plane Givens
rotations:

G[i , j ]
def
=

1√
1 + θ2

(
1 θ
−θ 1

)
acting in the subspace defined by (zi , zj).

! the dimension has been reduced to 2, and we have a single
unknown, θ, that can be imposed to lie in (−1, 1].
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Algorithms: Jacobi pair Sweeping (2)

Cyclic sweeping with fixed ordering: Example in dimension P = 3

x x̃ z

L−1

Carl Jacobi, 1804-1851
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Algorithms: Jacobi pair Sweeping (3)

Sweeping a 3× 3× 3 symmetric tensor X x x
x x x
x x x


 x x x

x X x
x x x

 → x x x
x x x
x x .



 X x x
x x x
x x x


 x x x

x . x
x x x

 → x x x
x x x
x x X



 . x x
x x x
x x x


 x x x

x X x
x x x


 x x x

x x x
x x X


X : maximized
x : minimized
. : unchanged

 by last Givens rotation
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Algorithms: Jacobi pair Sweeping (4)

Criteria ΥCoM , ΥSTO and ΥJAD , are rational functions of θ,
and their absolute maxima can be computed algebraically.

To prove this, consider the elementary 2× 2 problem

z = G x̃,

denote Cijk! the cumulants of z, and

G
def
=

(
cos β sin β
− sin β cos β

)
def
=

1√
1 + θ2

(
1 θ
−θ 1

)
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Solution for ΥCoM

We have ΥCoM
def
= (C1111)2 + (C2222)2

Denote ξ = θ − 1/θ. Then it is a rational function in ξ:

ψ4(ξ) = (ξ2 + 4)−2
4∑

i=0

bi ξ
i

Its stationary points are roots of a polynomial of degree 4:

ω4(ξ) =
4∑

i=0

ci ξ
i

obtainable algebraically via Ferrari’s technique. Coefficients bi

and ci are given functions of cumulants of x̃.

θ is obtained from ξ by rooting a 2nd degree trinomial.
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Solution for ΥJAD

Goal: maximize squares of diagonal terms of GHN(r)G,

where matrix slices are denoted N(r) =

(
ar br

cr dr

)
and are

cumulants of x̃

Let v
def
= [cos 2β, sin 2β]T. Then this amounts to maximizing

the quadratic form vT Mv where

M
def
=

∑
r

[
ar − dr

br + cr

]
[ar − dr , br + cr ]

Thus, 2β is given by the dominant eigenvector of M

and G is obtained by rooting a 2nd degree trinomial.
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Solution for ΥSTO

Goal: maximize squares of diagonal terms of 3rd order tensors

T[!]pqr
def
=

∑
ijk Gpi Gqj Grk Cijk!

If G =

(
cos β sin β
− sin β cos β

)
then denote v

def
= [cos 2β, sin 2β]T.

Angle 2β is given by vector v maximizing a quadratic form
vTBv, where B is 2× 2 symmetric and contains sums of
products of cumulants of x̃

θ is obtained from ξ by rooting a 2nd degree trinomial.
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First conclusions

Pair sweeping can be executed thanks to the equivalence
between pairwise and mutual independence

The cumulant tensor can be diagonalized iteratively via a
Jacobi-like algorithm

For each pair, there is a closed-form solution for the optimal
Givens rotation (absolute maximimum of the contrast
criterion).

Questions:

But what about global convergence?

Pairwise processing holds valid if model is exact
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Stationary points: symmetric matrix case

Given a matrix m with components mij , it is sought for an
orthogonal matrix Q such that Υ2 is maximized:

Υ2(Q) =
∑

i

M2
ii ; Mij =

∑
p,q

QipQjq mpq.

Stationary points of Υ2 satisfy for any pair of indices
(q, r), q $= r :

MqqMqr = MrrMqr

Next, d2Υ2 < 0 ⇔ M2
qr < (Mqq −Mrr )2, which proves that

Mqr = 0, ∀q $= r yields a maximum
Mqq = Grr , ∀q, r yields a minimum
Other stationary points are saddle points
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Stationary points: symmetric tensor case

Similarly, one can look at relations characterizing local
maxima of criterion Υ

TqqqqTqqqr − TrrrrTqrrr = 0,

4T 2
qqqr + 4T 2

qrrr − (Tqqqq − 3

2
Tqqrr )

2

−(Trrrr − 3

2
Tqqrr )

2 < 0.

for any pair of indices (p, q), p $= q.

As a conclusion, contrary to Υ2 in the matrix case, Υ might
have theoretically spurious local maxima in the tensor case
(order > 2).
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Problem P2

1 At each step, a plane rotation is computed and yields the
global maximum of the objective Υ restricted to one variable

2 There is no proof that the sequence of successive plane
rotations yields the global maximum, in the general case
(tensors that are not necessarily diagonalizable)

3 Yet, no counter-example has been found since 1991
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Other algorithms for orthogonal diagonalization

The 3 previous criteria summarize most ways to address tensor
approximate diagonalization.
But the orthogonal matrix can be treated differently, e.g. via other
parameterizations

express an orthogonal matrix as the exponential of a
skew-symmetric matrix: Q = expS

or use the Cayley parameterization: Q = (I− S)(I + S)−1,

...
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Joint Approximate Diagonalization s

The idea is to consider the symmetric tensor of dimension K
and order d as a collection of Kd−2 symmetric K ×K matrices

This is the Joint Approximate Diagonalization (JAD) problem
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Bibliographical comments s

Orthogonal diagonalization of symmetric tensors:
JAD in 2 modes: [DeLe78] (R), [CardS93] (C), with matrix
exponential [TanaF07]
JAD 2 modes with positive definite matrices: [Flur86]
JAD in 3 modes: [DelaDV01]
direct diago without slicing (pairs): [Como92] [Como94]

Orthogonal diagonalization of non symmetric tensors:
ALS type [Kroo83] [Kier92]
ALS on pairs: [MartV08] [SoreC08]
JAD in 2 modes (R): [Pesq01]
Matrix exponential [SoreICD08]
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Approximate diagonalization by invertible transform

Joint Approximate Diagonalization (JAD) of a collection of:
symmetric matrices
symmetric diagonally dominant matrices
symmetric positive definite matrices
for a collection of matrices, not necessarily symmetric (2
invertible transforms)
...

Direct approaches without slicing the tensor into a collection
of matrices: algorithms devised for underdetermined mixtures
apply (cf. subsequent lecture)
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Problem P3

Ill-poseness of optimization over set of invertible matrices

Possible solution:
impose a constraint like detA ≥ η > 0 ?
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Survey of 4 algorithms

1 Iterative algorithm based on a probabilistic criterion

2 An algorithm of ALS type: ACDC

3 An algorithm with a multiplicative update, valid if A is
diagonally dominant

4 An algorithm based on Joint triangularization
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Probabilistic approach (1) s

Let T(q) be a collection of symmetric positive semidefinite
matrices
Look for B such that M(q)

def
= BT(q)BT are as diagonal as

possible.

1 Choose criterion to maximize Υ
def
=

∑
q αq log detM(q)

detDiag{M(q)}
We have Υ ≤ 0 from Hadamard’s inequality.

Avoids singularity
Linked to Maximum Likelihood

2 Use multiplicative update as B(!+1) = UB(!)

3 Criterion after update: Υ =
∑

q αq log detM(q) det2 U
detDiag{UM(q)UT}
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Probabilistic approach (2) s

4 Variation of Υ during one update:∑
q αq

[
2 log detU− log detDiag{UM(q)UT}+ log detDiagM(q)

]
5 Update two rows at a time, i.e. U is equal to Identity except

for entries (i , i), (i , j), (j , i), (j , j).
By concavity of log, get a lower bound on variation:∑

q

αq

[
2 log detU− log(UPUT)11 − log(UQUT)22

]
where P and Q are the 2× 2 matrices:
P =

∑
q

pq

M(q)ii
M(q)[i , j ] and Q =

∑
q

pq

M(q)jj
M(q)[i , j ]

6 Maximize this bound instead. This leads to rooting a 2nd
degree trinomial. Sweep all the pairs in turns
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Alternate Least Squares

1 Two writings of the criterion:

Υ =
∑
q

||T(q)− BΛ(q)BH||2

Υ =
∑
q

||t(q)− Bλ(q)||2

2 Stationary values for DiagΛ(q): λ(q) = {BH B}−1BH t(q)
3 Stationary value for each column b[!] of matrix B is the

dominant eigenvector of the Hermitean matrix

P[!] =
1

2

∑
q

λ!(q){T̃[q; !]H + T̃[q; !]}

where T̃[q; !]
def
= T(q)−∑

n #=! λn(q)b[n]b[n]H.
4 ALS: calculate Λ(q) and B alternately Use LS solution when

matrices are singular.
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Diagonally dominant matrices (1)

One wishes to minimize iteratively
∑

q ||T(q)− AΛq AT||2
Assume A is strictly diagonally dominant: |Aii | >

∑
j #=i |Aij |

(cf. Levy-Desplanques theorem)

1 Initialize A = I

2 Update A multiplicatively as A ← (I + W)A, where W is
zero-diagonal

3 Compute the best W assuming that it is small and that T(q)
are almost diagonal (first order approximation)
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Diagonally dominant matrices (2)

Computational details:

We have: T(!+1)(q) ← (I + W)T(!)(q)(I + W)T

T(!)(q)
def
= (D− E), where D is diagonal, and E zero-diagonal

If W and E are small:
T(!+1)(q) ≈ D(q) + WD(q) + D(q)WT − E(q)

Hence minimize, wrt W:∑
q

∑
i #=j

|Wij Djj(q) + Wji Dii (q)− Eij(q)|2

This is of the form minw ||Jw− e||2, where J is sparse: JTJ is
block diagonal

Thus one gets at each iteration a collection of decoupled 2× 2
linear systems
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Joint triangularization of matrix slices

1 From T, determine a collection of matrices (e.g. matrix
slices), T(q), satisfying T(q) = AD(q)BT,

D(q)
def
= diag{Cq,:}.

2 Compute the Generalized Schur decomposition
QT(q)Z = R(q), where R(q) are upper-triangular

3 Since QT R(q)ZT = AD(q)BT, matrices R′ def
= QA and

R′′ def
= BT Z are upper triangular, and can be assumed to have

a unit diagonal. Hence R′ and R′′ can be computed by
solving from the bottom to the top the triangular system, two
entries R ′

ij and R ′′
ij at a time:

R(q) = R′ D(q)R′′

4 Compute A = R′ QT and BT = R′′ ZT

5 Compute matrix C from T, A and B by solving the
over-determined linear system C · {(B/ A)T} = TK×JI
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Bibliographical comments s

For collection of symmetric matrices:

maximizes iteratively a lower bound to the decrease on a
probabilistic objective [Pham01]

alternately minimize
∑

q ||T(q)− AΛ(q)AT||2 wrt A and
Λ(q) [Yere02]. See also: [Li07] [VollO06]

minimizes iteratively
∑

q ||T(q)− AΛ(q)AT||2 under the
assumption that A is diagonally dominant [Zieh04] .

For collection of non symmetric matrices:

factor A into orthogonal and triangular parts, and perform a
joint Schur decomposition [DelaDV04].

others: algorithms applicable to underdetermined case work
here [AlbeFCC05]
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Lecture 3/3
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What we have seen so far

For over-determined mixtures:

Solving the invertible problem is sufficient

Orthogonal framework:
Fully use 2nd order statistics, and then decompose
approximately the tensor under orthogonal constraint.
Easier to handle singularity, but arbitrary.
Several (contrast) criteria and algorithms for orthogonal
decomposition

Invertible framework:
Decompose the higher order cumulant tensor directly under
invertible constraint
Ill-posed
Several algorithms, mainly working with matrix slices

Principles & algorithms dedicated to under-determined mixtures
may apply
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Binary case

James Joseph Sylvester (1814–1897)
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Sylvester’s theorem

Sylvester’s theorem in R (1886)

A binary quantic t(x1, x2) =
∑d

i=0 c(i) γi x i
1 xd−i

2 can be
written in R[x1, x2] as a sum of dth powers of r distinct linear
forms:

t(x1, x2) =
∑r

j=1 λj (αj x1 + βj x2)d if and only if:

1 there exists a vector g of dimension r + 1 such that
γ0 γ1 · · · γr

γ1 γ2 · · · γr+1
...

...
γd−r · · · γd




g0

g1
...
gr

 = 0. (7)

2 q(x1, x2)
def
=

∑r
!=0 g! x!

1 x r−!
2 has r distinct real roots

Then q(x1, x2)
def
=

∏r
j=1(βj x1 − αj x2) yields the r forms

Valid even in non generic cases.
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Proof of Sylvester’s theorem (1)

Lemma

For homogeneous polynomials of degree d parameterized as

p(x)
def
=

∑
|i|=d c(i) γ(i; p) xi, define the apolar scalar product:

〈p, q〉 =
∑
|i|=d

c(i) γ(i; p) γ(i; q)

Then L(x)
def
= aTx ⇒ 〈p, Ld〉 =

∑
|i|=d c(i) γ(i; p) ai = p(a)
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Proof of Sylvester’s theorem (2)

1 Assume the r distinct linear forms Lj = αjx1 + βjx2 are given.

Let q(x)
def
=

∏r
j=1(βjx1 − αjx2). Then q(αj ,βj) = 0, ∀j .

2 Hence from lemma, ∀m(x) of degree d − r ,
〈mq, Ld

j 〉 = mq(aj) = 0, and 〈mq, t〉 = 0.

3 Take for instance polynomials mµ(x) = xµ
1 xd−r−µ

2 ,
1 ≤ µ ≤ d − r , and denote g! coefficients of q:

〈mµq, t〉 = 0 ⇒
r∑

!=0

g! γ!+µ = 0

This is exactly (7) expressed in canonical basis

4 Roots of q(x1, x2) are distinct real since forms Lj are.

5 Reasoning goes also backwards
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Algorithm for r th order symmetric tensors of dimension 2

Start with r = 1 (d × 2 matrix) and increase r until it looses its
column rank

1 2
2 3
3 4
4 5
5 6
6 7
7 8

−→

1 2 3
2 3 4
3 4 5
4 5 6
5 6 7
6 7 8

−→

1 2 3 4
2 3 4 5
3 4 5 6
4 5 6 7
5 6 7 8
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Decomposition of maximal rank: x1x
d−1
2

1 Maximal rank r = d when (7) reduces to a 1-row matrix:

[0, 0, . . . 0, 1, 0] g = 0

2 Find (αi ,βi ) such that q(x1, x1) =
∏d

j=1(βjx1 − αjx2)
def
=

∑d
!=0 g! x!

1 x r−!
2 has d distinct roots

3 Take αj = 1. Then gd−1 = 0 just means
∑

βj = 0
Choose arbitrarily such distinct βj ’s

4 Compute λj ’s by solving the Van der Monde linear system:
1 . . . 1
β1 . . . βd

β2
1 . . . β2

d
: : :

βd
1 . . . βd

d

 λ =


0
:
0
1
0
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Rank of binary quantics

A binary quantic of odd degree 2n + 1 has generic rank n + 1

A binary quantic of even degree 2n generic rank n + 1

A binary quantic of degree d may reach maximal rank d .
Orbit of maximal rank is x1 xd−1

2 .

Sylvester’s theorem allows to compute the decomposition,
even in non generic cases
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Problem P16

In the super generic case, there are infinitely many
decompositions

In dimension larger than 2: simple ways to compute one such
decomposition, as in binary case?
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Alexander-Hirschowitz theorem

Theorem (1995) For d > 2, the generic rank of a dth order
symmetric tensor of dimension K is always equal to the lower
bound

R̄s =

⌈(K+d−1
d

)
K

⌉
(8)

except for the following cases:
(d ,K ) ∈ {(3, 5), (4, 3), (4, 4), (4, 5)}, for which it should be
increased by 1 (i.e. only a finite number of exceptions, also called
defective cases)
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Values of the Generic Rank (1)

Symmetric tensors of order d and dimension K

d
K 2 3 4 5 6 7 8

3 2 4 5 8 10 12 15
4 3 6 10 15 21 30 42

R̄s ≥ 1

K

(
K + d − 1

d

)

Bold: exceptions to the ceil rule: R̄s = 2 1
K

(K+d−1
d

)3, sometimes
called defective cases.
Green: lower bound 1

K

(K+d−1
d

)
is integer and nondefective,

hence finite number of solutions with proba 1
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Values of the Generic Rank (2)

Warning: for unsymmetric tensors of order d and dimension K ,
the generic rank is different

d
K 2 3 4 5 6 7

3 2 5 7 10 14 19
4 4 9 20 37 62 97

R̄ ≥ Kd

Kd − d + 1

Bold: exceptions to the ceil rule: R̄ = 2 Kd

Kd−d+13.
Green: lower bound Kd

Kd−d+1 is integer and nondefective
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Numerical computation of the Generic Rank

Mapping (for unsymmetric tensors):

{u(!), v(!), . . . ,w(!), 1 ≤ ! ≤ r} ϕ−→
r∑

!=1

u(!) ⊗ v(!) ⊗ . . . ⊗w(!)

{Cn1 ⊗ . . . ⊗Cnd}r ϕ−→ A

! The smallest r for wich rank(Jacobian(ϕ)) =
∏

i ni is the
generic rank, R̄.

! Example of use of Terracini’s lemma
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Example of computation of Generic Rank

{a(!),b(!), c(!)} ϕ−→ T =
r∑

!=1

a(!) ⊗b(!) ⊗ c(!)

T has coordinate vector:
∑r

!=1 a(!)⊗ b(!)⊗ c(!). Hence the
Jacobian of ϕ is the r(n1 + n2 + n3)× n1n2n3 matrix:

J =



In1 ⊗ bT(1) ⊗ cT(1)
: ⊗ : ⊗ :

In1 ⊗ bT(r) ⊗ cT(r)
a(1)T ⊗ In2 ⊗ cT(1)

: ⊗ : ⊗ :
a(r)T ⊗ In2 ⊗ cT(r)
a(1)T ⊗ b(1)T ⊗ In3

: ⊗ : ⊗ :
a(r)T ⊗ b(r)T ⊗ In3


and

{
rank{J} = dim(Im(ϕ))
R̄ = Min{r : Im{ϕ} = A}
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Problem P5

Similar theorem as AH for unsymmetric tensors?

that is, decomposition of homogeneous polynomials of degree
d but partial degree 1 into sum of products of linear forms

Lectures of Giorgio Ottaviani today...
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Genericity in R vs. C

Define Zr = {tensors of rank r}
A rank r is typical if Zr is Zariski-dense

In the complex field, there is only one typical rank, called the
generic rank.

In the real field, there can be several typical ranks
(smallest equals generic rank in C)
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Problem P10

Case of the Real field

Similar result as AH theorem in the real field?

i.e. values of typical ranks for any order and dimensions
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Low rank approximation

We need

1 to know the exact rank
and

2 the rank to be sub-generic

Hence we make suboptimal rank reduction

by a 2-stage rank reduction
or

by HOSVD truncation
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Two-stage suboptimal rank reduction (1)

1 Associate one linear operator with tensor T, defined by a
matrix M

2 Compute the best rank r approximate of M, e.g. via
truncated SVD (not always possible)

3 Unfold each of the r singular vectors into a matrix, and
compute its rank-1 approximate

4 From this starting point, run a few iterations of a descent on

||T−
r∑

p=1

up ⊗ vp ⊗ . . . ⊗wp||2
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Two-stage suboptimal rank reduction (2)

Example: If T is K × K × K × K symmetric

1 build the symmetric matrix M of size K 2 × K 2.

2 Compute the r dominant eigenvectors ep of M.

3 We wish each e to be of the form u ⊗u.
Hence minimize ||UnvecK (ep)− up uT

p ||2 via rank-1
approximates
Eventually:

T ≈
r∑

p=1

up ⊗up ⊗up ⊗up
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HOSVD s

For a tensor of order d , compute first a rank-(R1,R2, . . . ,Rd)
approximate:

1 Associate d linear operators with tensor T, defined by
unfolding matrices Mi , 1 ≤ i ≤ d

2 Compute the rank-Ri approximation of each matrix Mi

(reduction of the multilinear mode-i ranks)

3 Use truncated left singular marices U(i) to compute the
R1 × R2 × . . .Rd core tensor T0

4 Run an iterative descent on ||T0 −
∑r

p=1 up ⊗ vp ⊗ . . . ⊗wp||2
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Problem P4

Approximation of a tensor by another of lower rank

1 ill-posed in general for free real/complex entries

2 other problem statement (e.g. border rank)?

3 case of positive entries

4 case of semi-definite positive quantic

5 other cases?
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Algorithms when K > 2

Now survey some numerical algorithms to compute the
decomposition:

when rank is strictly smaller than generic

when dimension is larger than 2

suboptimality (symmetry not fully imposed - link with P15)
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BIOME algorithms

These algorithms work with a cumulant tensor of even order
2r > 4

Related to symmetric flattening introduced in previous lectures

We take the case 2r = 6 for the presentation, and denote

C!mn
ijk

def
= Cum{xi , xj , xk , x∗l , x∗m, x∗n} (9)

In that case, we have

C!mn
x , ijk =

P∑
p=1

Hip Hjp Hkp H∗
!p H∗

mp H∗
np ∆p

where ∆p
def
= Cum{sp, sp, sp, s∗p , s∗p , s∗p} denote the diagonal

entries of a P × P diagonal matrix, ∆(6)
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Writing in matrix form

Tensor Cx is of dimensions K × K × K × K × K × K and
enjoys symmetries and Hermitian symmetries.

Tensor Cx can be stored in a K 3 × K 3 Hermitian matrix, C(6)
x ,

called the hexacovariance. With an appropriate storage of the
tensor entries, we have

C(6)
x = H%3 ∆(6) H%3H (10)

Because C(6)
x is Hermitian, ∃V unitary, such that

(C(6)
x )1/2 = H%3 (∆(6))1/2 V (11)

Idea: Use redundancy existing between blocks of (C(6)
x )1/2.
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Using the invariance to estimate V

1 Cut the K 3×P matrix (C(6)
x )1/2 into K blocks of size K 2×P.

Each of these blocks, Γ[n], satisfies:

Γ[n] = (H/HH)D[n] (∆(6))1/2 V

where D[n] is the P × P diagonal matrix containing the nth
row of H, 1 ≤ n ≤ K .
Hence matrices Γ[n] share the same common right singular
space

2 Compute the joint EVD of the K (K − 1) matrices

Θ[m, n]
def
= Γ[m]−Γ[n]

as: Θ[m, n] = VΛ[m, n]VH.
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Estimation of H

Matrices Λ[m, n] cannot be used directly because (∆(6))1/2 is
unknown. But we use V to obtain the estimate of H%3 up to a
scale factor:

Ĥ%3 = (C(6)
x )1/2 V (12)

One possibility to get H from H%3 is as follows:

3 Build K 2 matrices Ξ[m] of size K × P form rows of Ĥ%3

4 From Ξ[m] find Ĥ and diagonal matrices D[m], in the LS
sense:

Ξ[m]D[m] ≈ Ĥ, 1 ≤ m ≤ K 2
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Estimation of H (details) s

Stationary values of criterion
∑M

m=1 ‖ΞmDm −H‖2F , M
def
= K 2,

yield the solution below

Obtain vectors dp
def
= [D1 (p, p) , D2 (p, p) , · · · DM (p, p)]T,

by solving the linear systems:

Fp dp = 0

where matrices Fp are defined as

Fp (m1,m2) =

{
(M − 1)

{
ΞH

m1
Ξm1

}
(p, p) if m1 = m2

−{
ΞH

m1
Ξm2

}
(p, p) otherwise

Deduce the estimate Ĥ = 1
M

∑M
m=1 ΞmDm
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Conditions of identifiability of BIOME(2r) s

Source cumulants of order 2r > 4 are nonzero and have the
same sign

Columns vectors of mixing matrix H are not collinear

Matrix H%(r−1) is full column rank.

This last condition implies that tensor rank must be at most
K r−1 (e.g. P ≤ K 2 for order 2r = 6).
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FOOBI algorithms

Again same problem: Given a K 2 × P matrix H%2, find a real
orthogonal matrix Q such that the P columns of H%2 Q are of the
form h[p]⊗ h[p]∗

FOOBI: use the K 4 determinantal equations characterizing
rank-1 matrices h[p]h[p]H of the form:
φ(X,Y)ijk! = xijy!k − xiky!j + yijx!k − yikx!j

FOOBI2: use the K 2 equations of the form:
Φ(X,Y) = XY + Y X + trace{X}Y + trace{Y}X
where matrices X and Y are K × K Hermitean.

Pierre Comon Tensor problems in EE 104



Context Over. Orthog. Invertible Under. Binary Ranks Biome Foobi CAF Iterative End

FOOBI s

1 Normalize the columns of the K 2 × P matrix H%2 such that

matrices H[r ]
def
= UnvecK

(
h%2[r ]

)
are Hermitean

2 Compute the K 2(K − 1)2 × P(P − 1)/2 matrix P defined by
φ(H[r ],H[s]), 1 ≤ r ≤ s ≤ P.

3 Compute the P weakest right singular vectors of P, Unvec
them and store them in P matrices W[r ]

4 Jointly diagonalize W[r ] by a real orthogonal matrix Q

5 Then compute F
def
= (C(4)

x )1/2∆Q and deduce ĥ[r ] as the
dominant left singular vectors of Unvec (f[r ]).
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FOOBI2 s

1 Normalize the columns of the K 2 × P matrix H%2 such that

matrices H[r ]
def
= UnvecK

(
h%2[r ]

)
are Hermitean

2 Compute the K (K + 1)/2 Hermitean matrix B[r , s] of size
P × P defined by:

Φ(H[r ],H[s])|ij def
= B[i , j ]|rs

3 Jointly cancel diagonal entries of matrices B[i , j ] by a real
congruent orthogonal transform Q

4 Then compute F
def
= (C(4)

x )1/2∆Q and deduce ĥ[r ] as the
dominant left singular vectors of Unvec (f[r ]).

NB: Better bound than FOOBI and BIOME(4), but iterative
algorithm sensitive to initialization
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Algorithms based on characteristic functions

Fit with a model of exact rank

1 Back to the core equation (3):

Ψx(u) =
∑
p

Ψsp

(∑
q

uq Aqp

)

2 Goal: Find a matrix H such that the K−variate function
Ψx(u) decomposes into a sum of P univariate functions

ψp
def
= Ψsp .

3 Idea: Fit both sides on a grid of values u[!] ∈ G
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Equations derived from the CAF

Assumption: functions ψp, 1 ≤ p ≤ P admit finite derivatives
up to order r in a neighborhood of the origin, containing G.

Then, Taking r = 3 as a working example:

∂3Ψx

∂ui∂uj∂uk
(u) =

P∑
p=1

Hip Hjp Hkp ψ(3)
p (

K∑
q=1

uq Hqp)

If L > 1 point in grid G, then yields another mode in tensor
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Putting the problem in tensor form

A decomposition into a sum of rank-1 terms:

Tijk! =
∑
p

Hip Hjp Hkp B!p

or equivalently

T =
∑
p

h(p) ⊗h(p) ⊗h(p) ⊗b(p)

Tensor T is K × K × K × L,
symmetric in all modes except the last.
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Joint use of different derivative orders

Example

Derivatives of order 3:

T (3)
ijk! =

∑
p

Hip Hjp Hkp B!p

Derivatives of order 4:

T (4)
ijkm! =

∑
p

Hip Hjp Hkp Hmp C!p

Derivatives of orders 3 and 4:

Tijk![m] =
∑
p

Hip Hjp Hkp D!p[m]

with D!p[m] = Hmp C!p and D!p[0] = B!p.
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Problem P13

Results for tensors enjoying partial symmetries

e.g., symmetric in the 3 first modes and not not in others

e.g. tensors with symmetries in some modes and Hermitean
symmetries in others

Generic/typical ranks?

Existence/well-poseness?

Uniqueness?
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Problem P18

What is best to do when several symmetric tensors, possibly of
different orders, are supposed to be decomposed with same matrix
H?
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Iterative algorithms

Many practitioners execute more or less brute force minimizations
of ||T−∑r

p=1 up ⊗ vp ⊗ . . . ⊗wp||2
Gradient with fixed or variable (ad-hoc) stepsize

Alternate Least Squares (ALS)

Levenberg-Marquardt

Newton

Conjugate gradient

...

Remarks

Hessian is generally huge, but sparse

Problem of local minima: ELS variants for all of the above
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What we have seen so far

In dimension 2, we are able to handle decompositions of
symmetric tensors algebraically

Suitable to extend this to higher dimensions (now partly done
for sub-generic cases)

Work remains for generic case or above

A lot to do for unsymmetric tensors

Problem of tensors enjoying some symmetries

Collection of tensors sharing common terms is their
decompositions
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Summary of the lectures

We want to know when the decomposition of a tensor is
unique

In the latter cases, we want to be able to compute the
decomposition

We have suboptimal ways of doing it in some cases

Pierre Comon Tensor problems in EE 115


