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ABSTRACT

Tensors appear more and more often in signal processing
problems� and especially spatial processing� which typi�
cally involves multichannel modeling� Even if it is not
always obvious that tensor algebra is the best framework
to address a problem� there are cases where no choice is
left� Blind identi�cation of multichannel non monic MA
models is given as an illustrating example of this claim�
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��� INTRODUCTION

Many techniques in signal processing are based on the
knowledge of the probability density function �pdf� of
observations� possibly conditionnally to some unknown
parameters� One may think for instance of the likeli�
hood function� The Gaussian approximation has been as�
sumed for a long time because �i� second�order moments
were su�cient to solve most problems of interest� and
�ii� moments of higher order were computationally heavy
to handle� Today several problems have been pointed out
that are not solvable under the Gaussian approximation�
and in addition� the increase in computational power al�
lows the use of more fancy approximations with the help
of Higher�Order Statistics �HOS�� The survey paper �	
�
points out some advantages in using HOS in signal pro�
cessing and automatic control� See also the indroductory
paper ����

���� Tensors

A tensor of order r is an object de�ned in aN �dimensional
coordinates system by a table with r indices� gi����ir � 	 �
ik � N � that follows a particular transformation formula
if the coordinates system is changed� If the system of
coordinates is changed so that any vector u is transformed
into a vector U  Au� where A is a N � N matrix� then
the tensor is transformed into�

gi����ir � Gi����ir 
X
j����jr

Ai�j� ��Airjrgj����jr �	�

This property is often referred to as the multilinearity
property of tensors� Such a tensor will be referred to as a
�N � r��tensor� in short�

���� Cumulants

Expansions of pdf about some given family of densities
lead to objects that are called cumulants� See for in�
stance �		� �	�� for a general framework on density ex�
pansions� In general� cumulants �by default� are associ�

ated with expansions about the Gaussian pdf� If a ran�
dom variable of dimension N admits �nite moments up
to order r� then its cumulants of order r exist� In other
words� de�ne the second characteristic function of X as

�x�v�  logEf e�vTX g� where � 
p�	� this function al�

ways exists in a neighborhood of the origin� Then cumu�
lants are coe�cients of �r v���vr in the Taylor expansion
of �x�v� about the origin� An alternative way is to de�ne
them as a function of moments ����

CfX�� ��Xrg 
X

��	�p�� �p� 	��
�
� pY
i��

Ef
Y
j��i

Xjg
�
� �
���

where the summation extends over all partitions ���� ���p�
of �	� ��r�� 	 � p � r� Simple expressions can be derived
for cumulants of moderate orders �	��� Such cumulants
will be denoted in short Ci����irfXg in the present paper�
where indices ik may be distinct or not�

Due to the fact that �AX �v�  �X �A
yv�� cumulants in�

herit the multilinearity property and may be considered
as tensors �	��� For any random variableX with values in
IRN � the indices i�� ��ir can be permuted in any manner
without changing the value of the cumulants Ci����irfXg�
Therefore� cumulants are symmetric tensors�

In practice� it is more convenient to work with so�called
standardized data� because of numerical conditioning�
among other reasons� For scalar random variables� this
operation merely reduces to centering and dividing by the
standard deviation� In the vector case� the standardiza�
tion operation consists of centering� reducing the data by
projection onto its range space� and rotating the subspace
onto the eigenvectors coordinates system�

More precisely� assume T realizations x�t� of a random
variable X are available in the form of a N � T data
matrix� x�	 � T �� Denote the SVD of the centered data
as x�	 � T � � mean�x�  U�V T � where U is N � � full
column rank� � � N � and � is square invertible� Then
standardized data are de�ned by �x�	 � T � 

p
T V T �

and have zero mean and unit covariance� Cumulants of
standardized variables are called standardized cumulants�

High�Order Statistics �HOS� are more and more widely
used in various areas including signal processing and au�
tomatic control� as shows the present literature for the
last few years� In situations where variables are mul�
tidimensional� it is useful to point out that cumulants
may be considered as tensors� Nevertheless� very few
tools are at disposal to manipulate tensors� if we may re�
sort to Cholesky or Eigen�Value decompositions in case of
symmetric matrices� there are unfortunately no such de�
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compositions available for completely symmetric tensors�
Some directions are proposed in this paper in sections �
and ��

��� APPLICATIONS

���� Non monic MA models

As a working example� consider the non monic multichan�
nel MA model�

y�t� 

qX
k��

Bk w�t� k� � v�t�� ���

where the order q is assumed known� v�t� is a nui�
sance noise� w�t� is a spatially and temporally white
noise� i�e�� wi�t� and wj�t�� are statistically independent�
�i� j � f	� ��Ng� i � j� and �t� t�� t � t�� Assume all
matrices Bk are unknown� � � k � q� and matrix B� is
invertible�
The problem of identifying the matrices Bk from the
observations of system outputs only can be easily de�
composed into two subproblems� as brie�y recalled be�
low� Just consider the �temporally� white process x�t� 
B�w�t�� and denote �Bk  BkB

��
� � for k � �� Then the

model can obviously be rewritten as�

y�t� 

qX
k��

�Bk x�t� k� � v�t�� x�t�  B�w�t�� ���

This model is monic� since �B� is now the identity matrix�
Many algorithms have been proposed to date for the so�
called blind identi�cation of monic MA models� See for
instance �	�� ��� �	��� To give the �avour of these ap�
proaches in a few lines� consider the scalar case �N	�
and suppose it is wished to use only fourth order output
cumulants� The idea is to remark that output cumulants
are linked to each other through the linear system�

C�ikqfygBj  C�jkqfygBi� �
�

for any triplet of indices �i� j� k� such that � � i � j � q
and � � k � q� The coe�cients Bi� i � �� can thus be
obtained just by solving an overdetermined q�q � 	����
by q linear system� The idea extends to the multichannel
case to the price of some complication in the notation ����
that we do not want to introduce here�
Of course� there are many other approaches to monic MA
blind identi�cation �	
�� However� our goal is not to focus
on this well known problem� but to spend some time on
the identi�cation of the �rst matrix coe�cient� B��

���� Narrow band array processing

There are many cases in spatial signal processing where
it is sought to obtain a diagonal tensor after linear trans�
forms� e�g�� seismics� interception problems in Sonar�
blind estimation of radiating sources �
� ��� �	�� �	��� even
if it is not stated explicitly in those terms� In fact� the
problem in antenna array processing is to recover source
signals that are statistically independent� Generally� a
linear model is assumed� so that the problem amounts
to identifying a linear system with mutually independent
inputs�
First� independent sources should at least have a diag�
onal covariance matrix� But there are in�nitely many

congruent transforms that diagonalize a given covariance
matrix� additional constraints are thus necessary to de�
termine the transform uniquely� Bienvenu and Kopp �	��
and independently Schmidt �	��� proposed in the so�called
MUSIC algorithm to �x this indetermination by using
the knowledge of the array� the direction of arrival vec�
tors should lie on some array manifold in the absence of
noise�
Clearly� if the array manifold is not available� the MUSIC
approach cannot succeed� and it is necessary to resort to
HOS� The idea is now that independent sources should
also have diagonal cumulant tensors� for all orders� By
seeking for the linear transform that diagonalizes one or
several tensors� one may identify the linear model� and
eventually the source signals themselves� Nevertheless� it
is not possible to recover the directions of arrival without
some knowledge on the array manifold� For reasons of
space� the application of tensor diagonalization to array
processing is not developed further in this paper�

��� DIAGONALIZATION ISSUES

Consider in this section the following algebraic problem�
Given a tensor tij��k of order r� � � r � �� is it possible to
�nd a linear change of coordinates de�ned by an invertible
matrix� A� such that the tensor takes a diagonal form �
A necessary condition is that the number of free param�
eters be preserved� A symmetric tensor has

�
r

N�r��

�
in�

dependent parameters� In the matrix case� we thus have
N �N � 	��� parameters� which is smaller than the N�

entries of A� But in the tensor case� it is clear that the
number of free parameters would decrease� O�N r� in the
original symmetric tensor� and N� in the decomposition�
This immediate statement proves that only a small subset
of symmetric tensors of order larger than � is �linearly�
diagonalizable�
On the other hand� this statement does not prove any�
thing if the transform A is allowed to map the N �
dimensional space into a space of possibly larger dimen�
sion� say P � N � The decomposition can now be written
as�

tij��k 
PX
p��

AipAjp��AkpTp� ���

where Tp is a diagonal �P � r��tensor� and A is a N�P ma�
trix� The number of free parameters in decomposition ���
is now NP � In that case the question is to know �	� how
to choose P � and ��� how to compute the P rows of the
transform A� Thus there are two di�erent approaches�
one can look for an exact diagonal tensor decomposition�
but in a space of larger dimension� or conversely look for
an approximate tensor diagonalization in a space of same
dimension� These two aspects are now commented�

���� Exact diagonalization

There is an obvious bijective relation between the set of
symmetric �N � r��tensors� tij��k� and the set of homoge�
neous polynomials of degree r in N variables� In fact�
associate each tensor t with the polynomial ��x� y� ��z� P

i

P
j ��
P

k tij��k xiyj ��zk� This equivalence has been al�
ready utilized in many eighteenth century works�
Consequently� looking for a N � P matrix that maps the
�N � r��tensor into a diagonal �P � r��tensor is equivalent
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to looking for P linear forms such that the polynomial
� is mapped to a sum of r�th powers of linear forms�
The exact diagonalization problem exists in the theory of
homogeneous polynomial forms� but very few results are
known today� despite the long history of the subject�
In the case of binary forms �N�� however� it is known
that every binary form of even degree �m can be put as
a sum of m perfect powers� provided the determinant of
some Hankel matrix built with the polynomial coe�cients
is null �	��� This determinant is often referred to as the
Catalecticant� Moreover� a general binary form of degree
�m can be written as a sum of m � 	 perfect powers�
For instance� a binary quartic can still be expressed as a
sum of � perfect powers� even if its catalecticant is non
zero� There are also a number of results in the case of
forms of odd degree� For instance� a theorem attributed
to Sylvester claims that a binary form of degree �m � 	
can be written as a sum of m�	 perfect powers of linear
forms� These decompositions are generally not unique�
Now regarding forms with more than � variables� the re�
sults become much more confusing� In fact� it is not pos�
sible to state systematically what is the minimal mumber
of forms� P � as a function of the dimension N and the de�
gree r� If P is chosen just in order to satisfy the inequality
NP � � r

N�r��

�
� then P turns out to be too small in some

cases� Actually� every case is particular� Additionally� as�
suming P is known� the calculation of the decomposition
itself is very di�cult to carry out� That�s why this dis�
cussion is deferred to a companion paper ���� where the
case of cubics �r  �� and quartics �r  �� will be mainly
addressed�

���� Approximate diagonalization

In this section� only invertible transforms are considered
�i�e� P  N �� As pointed out previously� tensors of order
r and dimension N cannot generically be exactly diag�
onalized� Thus� there is �rst a need to de�ne in what
respect the approximation will be understood� Carl Ja�
cobi introduced in 	��� a criterion dedicated to matrices�
In order to diagonalize a symmetric matrix by an orthog�
onal change of coordinates� he proposed to minimize the
sum of squares of non�diagonal entries� Denote Q the ma�
trix de�ning the transformation� and g a given symmetric
matrix� Since the Froebenius norm of the transformed
matrix� G  QgQy remains the same� one can alterna�
tively maximize the sum of squares of diagonal entries�
This de�nes an optimization criterion for second order
symmetric tensors�

 ��Q� g� 
NX
n��

G�
nn� ���

For tensors of higher order� we de�ne the following crite�
ria� that will �nd steady justi�cations in the next section�

 ��Q� g� 
NX
n��

G�
nnn� ��Q� g� 

NX
n��

G�
nnnn� ���

It must be kept in mind that� because of the multilinear�
ity property� these criteria are implicit functions of the
matrix Q�

Gijk 
X
mno

QimQjnQkogmno� ���

Ghijk 
X
lmno

QhlQimQjnQkoglmno� �	��

In the remaining sections� the optimization criteria will
be justi�ed� and the approximate diagonalization will be
described in detail�

��� BLIND IDENTIFICATION OF STATIC

LINEAR SYSTEMS

���� Notation

Given realizations y�t� of a random vector Y with val�
ues in IRN � it is desired to estimate a matrix F such
that Y  FZ� where Z is a random vector whose com�
posents are statistically independent� In this framework�
only independence up to order � or � will be required
�that is� cross cumulants of components of Z are null at
orders � and � or ��� Standardization already insures
independence at order � �the covariance matrix is iden�
tity�� Yet� standardized data are de�ned up to a mul�
tiplicative orthogonal matrix �in addition to scale and
permutation transforms already pointed out�� So there is
clearly some degree of freedom left to improve statistical
independence�
It can be sought for an orthogonal matrix Q such that
higher�order correlations of Z  QY are minimized �since
the transform is now invertible� we also have

Y  QT Z �		�

equivalently�� For this purpose� de�ne the third and
fourth order sample cumulants of Z �		� 	���

Gijk 
	

T

TX
t��

zi�t� zj�t� zk�t�� �	��

Gijkl 
	

T

TX
t��

zi�t� zj�t� zk�t� zl�t�

�	ij	kl � 	ik	jl � 	il	jk� �	��

where 	 is the Kronecker symbol� and z�t� realizations of
Z� Denote gijk and gijkl the corresponding cumulants of
Y de�ned in the same manner�

���� De�nition of ICA

Let Y be a random vector with values in IRN admitting a
probability density pY �u�� and assume T realizations y�t�
are observed �index t does not necessarily refer to time��
The ICA of Y consists of searching for a N �� matrix� F �
N � �� that minimizes the statistical dependence between
the components of the � � 	 vector� Z� de�ned by

Y  F Z� �	��

in the sense of the maximization of a contrast function�

De�nition ��� Let EN be the space of real random vari�
ables of dimension N admitting a density� A contrast is
a mapping � from the set of densities fpZ� Z � ENg to
IR satisfying the � requirements�

�� ��pZ� does not change if the components Zi are per�
muted� ��pPZ �  ��pZ�� �P permutation�

�� � is invariant by scale change� ��p�Z�  ��pZ�� �!
diagonal invertible�
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�� � decreases by linear combination� if X has inde�
pendent components� then ��pAX � � ��pX �� �A in�
vertible�

For the sake of clarity� let us also give the de�nition below�

De�nition ��� The ��ICA of a random vector Y of
size N with �nite covariance matrix VY is the pair of
matrices �F�"� such that� 	i
 matrix " is diagonal posi�
tive and F is N � � full column rank� 	ii
 the covariance
of Y factorizes as VY  F"�FT � 	iii
 vector Y writes
as Y  F Z� where Z is a � � 	 random vector� � � N �
with covariance "� and whose density maximizes a given
contrast function� ��

If requirement �iii� in the de�nition above is replaced by
FTF  I� then we get the de�nition of Principal Compo�
nent Analysis �PCA�� Other links with PCA are pointed
out in section ��
�
Conversely� consider the static linear system�

Y M X �W� �	
�

where vector X is the input vector and has independent
components� and W stands for various nuisances �e�g�
measurement noise�� Then ICA can be viewed as a means
to obtain estimates Zn of the input componentsXn� when
only realizations of the output� y�t� Mx�t� � w�t�� are
observed� Note that the �only� key assumption that may
be used in this problem is the statistical independence of
the components Xn� for instance� statistics of the noise
W are unknown�

���� Identi�ability

The �rst property that can be noticed� is that if a pair
�F�"� is the ��ICA of Y � then so is any pair of the form
�F!DP�PT!��"P �� where ! is a � � � invertible real
positive diagonal scaling matrix� D is a � � � diagonal
matrix with entries of unit modulus� and P is a � � �
permutation� In other words� as is the case for PCA�
solutions need to be considered modulo this equivalence
relation�

De�nition ��� A contrast � will be said discriminating
over a set E if the equality ��pAX �  ��pX � holds only
when A is of the form !P � as soon as X is a random
vector of E having independent components�

Then we have the following identi�ability theorem�

Proposition ��� Let no noise be present in model 	��
�
and de�ne Y  MX and Y  F Z� X being in some
set E of EN � and having independent components and an
invertible covariance� Then if � is discriminating over
E� ��pZ�  ��pX � if and only if F  M!P � where ! is
invertible diagonal and P is a permutation�

In other words� the matrix M can be uniquely estimated
by matrix F modulo the above mentioned equivalence
relation� The identi�ability theorem ��� needs some space
to be proved� and it is referred to ��� for more details�
Related results can also be found in �	���
Reminding that N random variables Xn are independent
if and only if their joint pdf pX�u� is equal to the prod�

uct of the marginal pdf�s�
QN

n�� pXn
�un�� a quite natu�

ral measure of independence is the distance between two

such quantities� If the Kullback divergence is taken as a
distance measure ���� then we obtain the average mutual
information�

I�pZ� 

Z
pZ�u� log

pZ�u�QN
n�� pZn�un�

du� �	��

It can be shown that ��
def
 �I�pZ � is a contrast� and is

discriminating over the set of random variables having at
most one Gaussian component ����

Proposition ��� With the de�nitions given in section ��
it can be shown �� that the functionals �r below are also
contrasts� and are discriminating over the subset of EN
of random vectors with �nite moments up to order r and
with at most one component with null cumulant of order
r�

���pZ� 
X
i

G�
iii � ���pZ� 

X
i

G�
iiii� �	��

This last property gives steady foundations to the criteria
suggested in section ��

���� Numerical aspects

Since any orthogonal matrix can be decomposed into a
product of N �N � 	��� plane rotations and a diagonal
matrix with entries of unit modulus� it seems natural to
look �rst at the case of plane rotations� It turns out that
in dimension N  �� explicit expressions can be given
for contrast functions and their maxima� Denote 
 the
tangent of the rotation angle of Q� and �  
� 	�
� then
these contrasts are simple rational functions�

���
� g�  �
 �
	



���

�X
i��

ai
�

i � ��
��i� �	��

����� g�  ��� � ����
�X

i��

bi �
i� �	��

where coe�cients ai and bi are given in appendix� If N 
�� it is consequently easy to �nd the absolute maximum
of �r� In fact� it can be shown that non trivial stationary
points of �r are given by the roots of polynomials of the
form�

���� g�  d� �
� � d� � � � d�� ���� g� 

�X
i��

ci �
i� ����

Coe�cients ci and dj are given in appendix�

���� The CM algorithm

Assume standardized data are available� yn�t�� 	 � n �
N� 	 � t � T � The algorithm proposed proceeds �pair�
wise� as follows� for r equals either � or ��

	� Initialize F  U � �
p
T � as de�ned in section 	� and

z�	 � T �  y�	 � T ��

�� For sweep  	 to S�

�� Sweep all the pairs �i� j� in a prescribed ordering�
and for each pair� do�
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Figure 	� Variation of contrast �� for � di�erent orderings
and with input kurtosis �	 	 	 	 	 � �	 �	 �	 �	��

�a� Compute the r � 	 cumulants of order r of the
pair �zi� zj�� denoted here g� with the help of
expressions similar to �	�� or �	���

�b� Root the polynomial of degree r� r���� and re�
tain the value of � yielding the largest �r����

�c� Compute the plane rotation Q�i�j	 acting in the
plane �i� j�� with tangent 
 de�ned by the root
of� 
� � �
 � 	  � in the interval ��	� 	��

�d� Apply the plane rotation to rows i and j of z�t�
for every t� z�t�� Q�i�j	z�t��

�e� Accumulate the transform� F � FQ�i�j	T �

�� Stop if sweep  S� or if all estimated angles have
been small in the last sweep�

It is reasonable to take S  	 � floor�N��� � � 	��� It
can be checked out that the most computationally heavy
step is �a� the complete algorithm requires approximately
O���� S N� T � operations for r  �� and O��S N� T � op�

erations if r  �� For instance� if T  O�N���� and
S  O�

p
N �� the complexity is of order N� for r  ��

But much larger values of T can be envisaged�

Computer results

Simulations presented now were run with N  	�� the
mixing matrix M was de�ned by Mii  	 and Mij  �
elsewhere� The contrast �� was used� and fourth order
input cumulants were those given in the �gure captions�
Figures 	 and � give the behaviour of contrast �� as more
and more pairs are processed� The � particular order�
ings tested have been performed by just swapping input
cumulants� and the same cyclic ordering was performed
afterwards� As expected� the speed of convergence de�
pends on the ordering� but not the limit reached in these
examples�

Limitations

The Jacobi algorithm was originally dedicated to the
diagonalization of symmetric matrices by orthogonal
change of coordinates� More precisely� given a matrix g
with components gij� at each step of the algorithm� it is
sought for an orthogonal matrix Q such that the criterion

�� is maximized�

���G� 
X
i

G�
ii� Gij 

X
p�q

QipQjqgpq � ��	�

Stationary points of �� can be shown to satisfy GqqGqr 
GrrGqr � for any pair of indices �q� r�� q � r� Next� the
relation d��� � � 	 G�

qr � �Gqq � Grr�
� proves �in

an original and elegant manner� that the only maximum
corresponds to Gqr  �� whereas Gqq  Grr corresponds
to a minimum� Other stationary points are then saddle
points�
Similarly� one can look at relations characterizing local
maxima of criteria �� and �� �

GqqqGqqr� GrrrGqrr  ������

�G�
qqr� �G

�
qrr� �Gqqq � Gqrr�

�� �Grrr�Gqqr�
� � ������

GqqqqGqqqr� GrrrrGqrrr  ������

�G�
qqqr� �G

�
qrrr� �Gqqqq� �

�Gqqrr�
�

��Grrrr� �
�
Gqqrr�

� � ����
�

for any pair of indices �p� q�� p � q� As a conclusion�
contrary to �� in the matrix case� �r might have theo�
retically spurious local maxima in the tensor case� r � ��
even if this has never been observed �see also computer
experiments carried out in presence of noise �����

��� CONCLUDING REMARKS

As tensors are more and more utilized in various ar�
eas� including signal processing and control� it would be
useful to know what are the decompositions at disposal
for completely symmetric tensors �e�g� Cholesky� Eigen�
value���� and what algorithms can be resorted to for
their e�ective computation� The problem of tensor di�
agonalization can be addressed in various manners� It is
clear that only a small subset of symmetric tensors can
be exactly diagonalized by orthogonal change of coordi�
nates� In fact� the number of free parameters is much
smaller in a diagonalizable tensor� In particular� a di�
agonalizable tensor of order � and dimension � satis�es
�G���� � G������ � G�����G���� � G����� � �G�

����  ��
More generally� entries of a �linearly� diagonalizable ten�
sor lie on a N��dimensional manifold� as already pointed
out�
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The algorithm proposed with r  � or �� and N � ��
has been proved to converge to the absolute maximum
of the criteria only for N  �� Thus convergence needs
to be studied more thoroughly� Besides this key remark�
other issues that have been left aside for the moment in�
clude� �i� speed and memory issues� that can be probably
addressed by designing appropriate sweeping strategies�
�ii� the possibility of carrying out the diagonalization of
a symmetric tensor without calculating its entries explic�
itly� as is done by the SVD for covariance matrices �an ef�
fort in this direction was made in the algorithm proposed
in section ��
�� �iii� the exploitation of possible structures
in tensors �e�g� sparse� banded� Toeplitz�����

A suboptimal algorithm has been proposed by Cardoso
�see �
� or the proceedings of SPIE in 	��� pages ��	#
����� and considers tensors of order � and dimensionN as
linear operators acting on matrices of size N�� The com�
putation of the EVD of such operators gives a means to
compute the ICA by resorting to standard reliable codes�
But it has the inconvenience to break symmetry� and to
be applicable only for even orders� In addition� an ap�
proximation must be made when the diagonalization is
not exact� and and the approach then also lacks in con�
vergence proof ����

The principles used for handling matrices are not as ef�
fective as expected for handling tensors� Speci�c tools
dedicated to tensors remain to be developed�

��� APPENDIX

Coe�cients ai� bj� ci and dj are polynomial functions of
the standardized cumulants of the observations� gijk and
gijkl� For �� and ��

a�  g���� � g�����

a�  � �g��� g��� � g��� g�����

a�  � �g���� � g����� � � �g��� g���� g��� g�����

d�  a���  g��� g��� � g��� g����

d�  a���� a��

Next for �� and �� it is useful to de�ne�

t  	� �g������ g�������

u  g����� g���� � � g�����
v  � �g����� g������

w  � g���� �g���� � g������

Then � b�  g������ g������

b�  �� �g���� g����� g���� g������

b�  � b� � t � �w�

b�  � b� � �u v�
b�  � �b� � t� �w � �� g������ � g���� g����

� �� g���� g������

c�  �b���  g���� g����� g���� g�����

c�  � b� � b���  b� � �t� �w����
c�  � b���� � b���  �u v���

c�  b� � b����

c�  b���  � b� � u v�
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