10th IFAC SYID Symp., vol.1, pp. 77--82, Copenhagen, Denmark, July 4-6 1994

TENSOR DIAGONALIZATION, A USEFUL TOOL IN SIGNAL PROCESSING

Pierre COMON

Thomson-Sintra, B.P.157, F-06903 Sophia-Antipolis cedex, France
135 — CNRS, Sophia-Antipolis, F-06560 Valbonne, France, comon@alto.unice.fr

ABSTRACT

Tensors appear more and more often in signal processing
problems, and especially spatial processing, which typi-
cally involves multichannel modeling. Even if it is not
always obvious that tensor algebra is the best framework
to address a problem, there are cases where no choice 1s
left. Blind identification of multichannel non monic MA
models is given as an illustrating example of this claim.
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1. INTRODUCTION

Many techniques in signal processing are based on the
knowledge of the probability density function (pdf) of
observations, possibly conditionnally to some unknown
parameters. One may think for instance of the likeli-
hood function. The Gaussian approximation has been as-
sumed for a long time because (i) second-order moments
were sufficient to solve most problems of interest, and
(i1) moments of higher order were computationally heavy
to handle. Today several problems have been pointed out
that are not solvable under the Gaussian approximation,
and in addition, the increase in computational power al-
lows the use of more fancy approximations with the help
of Higher-Order Statistics (HOS). The survey paper [15]
points out some advantages in using HOS in signal pro-
cessing and automatic control. See also the indroductory

paper [9].

1.1. Tensors

A tensor of order r is an object defined in a N-dimensional
coordinates system by a table with r indices, g;, ;.,1 <
1 < N, that follows a particular transformation formula
if the coordinates system 1s changed. If the system of
coordinates 1s changed so that any vector u is transformed
into a vector U = Au, where A 1s a N x N matrix, then
the tensor is transformed into:

Givoir = Giv iy = Y, g Aiggin g, (1)

Ji,--dr

This property is often referred to as the multilinearity
property of tensors. Such a tensor will be referred to as a
(N;r)-tensor, in short.

1.2. Cumulants

Expansions of pdf about some given family of densities
lead to objects that are called cumulants. See for in-
stance [11] [12] for a general framework on density ex-
pansions. In general, cumulants (by default) are associ-

ated with expansions about the Gaussian pdf. If a ran-
dom variable of dimension N admits finite moments up
to order 7, then its cumulants of order r exist. In other
words, define the second characteristic function of X as
U, (v) = log F{ Qv X 1, where j = \/—1; this function al-
ways exists in a neighborhood of the origin. Then cumu-
lants are coefficients of j” v1..v, in the Taylor expansion
of ¥, (v) about the origin. An alternative way is to define
them as a function of moments [3]:

ClX, X} = (=0 e -0 | TT BLTT X3

i=1 JEV;

2)
where the summation extends over all partitions (11, ..vp)
of (1,..r), 1 < p < r. Simple expressions can be derived
for cumulants of moderate orders [14]. Such cumulants
will be denoted in short C;, ;. {X} in the present paper,
where indices i, may be distinct or not.

Due to the fact that W 4x (v) = ¥x(Alv), cumulants in-
herit the multilinearity property and may be considered
as tensors [14]. For any random variable X with values in
RN, the indices i1, ..i, can be permuted in any manner
without changing the value of the cumulants C;, ; {X}.
Therefore, cumulants are symmetric tensors.

In practice, it is more convenient to work with so-called
standardized data, because of numerical conditioning,
among other reasons. For scalar random variables, this
operation merely reduces to centering and dividing by the
standard deviation. In the vector case, the standardiza-
tion operation consists of centering, reducing the data by
projection onto its range space, and rotating the subspace
onto the eigenvectors coordinates system.

More precisely, assume T realizations (¢) of a random
variable X are available in the form of a N x T data
matrix, z(1 : 7). Denote the SVD of the centered data
as (1 : T) — mean(z) = USVT | where U is N x p full
column rank, p < N, and X is square invertible. Then
standardized data are defined by #(1 : T) = VTV7T,
and have zero mean and unit covariance. Cumulants of
standardized variables are called standardized cumulants.

High-Order Statistics (HOS) are more and more widely
used in various areas including signal processing and au-
tomatic control, as shows the present literature for the
last few years. In situations where variables are mul-
tidimensional, it is useful to point out that cumulants
may be considered as tensors. Nevertheless, very few
tools are at disposal to manipulate tensors; if we may re-
sort to Cholesky or Eigen-Value decompositions in case of
symmetric matrices, there are unfortunately no such de-



compositions available for completely symmetric tensors.
Some directions are proposed in this paper in sections 3
and 4.

2. APPLICATIONS
2.1. Non monic MA models
As a working example, consider the non monic multichan-

nel MA model:
y(t) = Bew(t — k) + v(1), (3)

where the order ¢ is assumed known, v(¢) is a nui-
sance mnoise, w(t) is a spatially and temporally white
noise, i.e., w;(t) and w;(t') are statistically independent,
Vi,j € {1,.N}, i # j, and Vt,', t # /. Assume all
matrices By are unknown, 0 < k < ¢, and matrix By is
invertible.

The problem of identifying the matrices By from the
observations of system outputs only can be easily de-
composed into two subproblems, as briefly recalled be-
low. Just consider the (temporally) white process z(t) =
Bow(t), and denote By = BkBo_l, for k > 0. Then the
model can obviously be rewritten as:

y(t) =Y Bea(t—k)+o(t), z(t) = Bow(t).  (4)

This model is monic, since By is now the identity matrix.
Many algorithms have been proposed to date for the so-
called blind identification of monic MA models. See for
instance [19] [6] [18]. To give the flavour of these ap-
proaches in a few lines; consider the scalar case (N=1)
and suppose it is wished to use only fourth order output
cumulants. The idea is to remark that output cumulants
are linked to each other through the linear system:

Coigly} Bj = Cojrqly} Bi, (5)

for any triplet of indices (4, j, k) such that 0 < i< j <g¢
and 0 < k < ¢q. The coefficients B;,i > 0, can thus be
obtained just by solving an overdetermined ¢(g + 1)?/2
by ¢ linear system. The idea extends to the multichannel
case to the price of some complication in the notation [6],
that we do not want to introduce here.

Of course, there are many other approaches to monic MA
blind identification [15]. However, our goal is not to focus
on this well known problem, but to spend some time on
the identification of the first matrix coefficient, By.

2.2. Narrow band array processing

There are many cases in spatial signal processing where
it is sought to obtain a diagonal tensor after linear trans-
forms, e.g., seismics, interception problems in Sonar,
blind estimation of radiating sources [5] [7] [17] [18], even
if 1t 1s not stated explicitly in those terms. In fact, the
problem in antenna array processing is to recover source
signals that are statistically independent. Generally, a
linear model is assumed, so that the problem amounts
to identifying a linear system with mutually independent
inputs.

First, independent sources should at least have a diag-
onal covariance matrix. But there are infinitely many

congruent transforms that diagonalize a given covariance
matrix; additional constraints are thus necessary to de-
termine the transform uniquely. Bienvenu and Kopp [1],
and independently Schmidt [16], proposed in the so-called
MUSIC algorithm to fix this indetermination by using
the knowledge of the array: the direction of arrival vec-
tors should lie on some array manifold in the absence of
noise.

Clearly, if the array manifold is not available, the MUSIC
approach cannot succeed, and it is necessary to resort to
HOS. The idea is now that independent sources should
also have diagonal cumulant tensors, for all orders. By
seeking for the linear transform that diagonalizes one or
several tensors, one may identify the linear model, and
eventually the source signals themselves. Nevertheless, it
1s not possible to recover the directions of arrival without
some knowledge on the array manifold. For reasons of
space, the application of tensor diagonalization to array
processing is not developed further in this paper.

3. DIAGONALIZATION ISSUES

Consider in this section the following algebraic problem.
Given a tensor ;5 of order r, 2 < r < 4, is it possible to
find a linear change of coordinates defined by an invertible
matrix, A, such that the tensor takes a diagonal form 7
A necessary condition is that the number of free param-
eters be preserved. A symmetric tensor has (N:_T_l) in-
dependent parameters. In the matrix case, we thus have
N(N + 1)/2 parameters, which is smaller than the N?
entries of A. But in the tensor case, it 1s clear that the
number of free parameters would decrease: O(N") in the
original symmetric tensor, and N? in the decomposition.
This immediate statement proves that only a small subset
of symmetric tensors of order larger than 2 is (linearly)
diagonalizable.

On the other hand, this statement does not prove any-
thing if the transform A is allowed to map the N-
dimensional space into a space of possibly larger dimen-
sion, say P > N. The decomposition can now be written
as:

P
tijn = ZAiijp~~Akapa (6)

p=1

where T, is a diagonal (P; r)-tensor, and A is a N x P ma-
trix. The number of free parameters in decomposition (6)
is now N P. In that case the question is to know (1) how
to choose P, and (2) how to compute the P rows of the
transform A. Thus there are two different approaches:
one can look for an ezact diagonal tensor decomposition,
but in a space of larger dimension, or conversely look for
an approximate tensor diagonalization in a space of same
dimension. These two aspects are now commented.

3.1. Exact diagonalization

There is an obvious bijective relation between the set of
symmetric (N;7r)-tensors, t;; ,, and the set of homoge-
neous polynomials of degree r in N variables. In fact,
associate each tensor ¢ with the polynomial n(z,y,..z) =
> Zj >k tij g 23yj..zx. This equivalence has been al-
ready utilized in many eighteenth century works.
Consequently, looking for a N x P matrix that maps the
(N;r)-tensor into a diagonal (P;r)-tensor is equivalent



to looking for P linear forms such that the polynomial
7 1s mapped to a sum of r-th powers of linear forms.
The exact diagonalization problem exists in the theory of
homogeneous polynomial forms, but very few results are
known today, despite the long history of the subject.

In the case of binary forms (N=2) however, it is known
that every binary form of even degree 2m can be put as
a sum of m perfect powers, provided the determinant of
some Hankel matrix built with the polynomial coefficients
is null [13]. This determinant is often referred to as the
Catalecticant. Moreover, a general binary form of degree
2m can be written as a sum of m + 1 perfect powers.
For instance, a binary quartic can still be expressed as a
sum of 3 perfect powers, even if its catalecticant is non
zero. There are also a number of results in the case of
forms of odd degree. For instance, a theorem attributed
to Sylvester claims that a binary form of degree 2m + 1
can be written as a sum of m + 1 perfect powers of linear
forms. These decompositions are generally not unique.
Now regarding forms with more than 2 variables, the re-
sults become much more confusing. In fact, it is not pos-
sible to state systematically what is the minimal mumber
of forms, P, as a function of the dimension N and the de-
gree r. If P is chosen just in order to satisfy the inequality
NP > (N:_T_l), then P turns out to be too small in some
cases. Actually, every case is particular. Additionally, as-
suming P is known, the calculation of the decomposition
itself is very difficult to carry out. That’s why this dis-
cussion is deferred to a companion paper [8], where the
case of cubics (r = 3) and quartics (r = 4) will be mainly

addressed.

3.2. Approximate diagonalization

In this section, only invertible transforms are considered
(i.e. P = N). As pointed out previously, tensors of order
r and dimension N cannot generically be exactly diag-
onalized. Thus, there is first a need to define in what
respect the approzimation will be understood. Carl Ja-
cobi introduced in 1846 a criterion dedicated to matrices.
In order to diagonalize a symmetric matrix by an orthog-
onal change of coordinates, he proposed to minimize the
sum of squares of non-diagonal entries. Denote ) the ma-
trix defining the transformation, and ¢ a given symmetric
matrix. Since the Froebenius norm of the transformed
matrix, G = QgQT remains the same, one can alterna-
tively maximize the sum of squares of diagonal entries.
This defines an optimization criterion for second order
symmetric tensors:

T2(Q;9) = Z Grzzn' (7)

For tensors of higher order, we define the following crite-
ria, that will find steady justifications in the next section:

N N
T3(Qi9) =D G2 Ta(@i9) =D Gl (8)
n=1 n=1

It must be kept in mind that, because of the multilinear-
ity property, these criteria are implicit functions of the
matrix @:

Gijk = ZQimanQkogmnoa (9)

mno

Ghijk = ZthQimanQkonnm (10)

Imno

In the remaining sections, the optimization criteria will
be justified, and the approximate diagonalization will be
described in detail.

4. BLIND IDENTIFICATION OF STATIC
LINEAR SYSTEMS

4.1. Notation
Given realizations y(t) of a random vector Y with val-
ues in R, it is desired to estimate a matrix F such
that Y = F'Z, where Z is a random vector whose com-
posents are statistically independent. In this framework,
only independence up to order 3 or 4 will be required
(that is, cross cumulants of components of 7 are null at
orders 2 and 3 or 4). Standardization already insures
independence at order 2 (the covariance matrix is iden-
tity). Yet, standardized data are defined up to a mul-
tiplicative orthogonal matrix (in addition to scale and
permutation transforms already pointed out). So there is
clearly some degree of freedom left to improve statistical
independence.
It can be sought for an orthogonal matrix ¢ such that
higher-order correlations of 7 = QY are minimized (since
the transform is now invertible, we also have

y=Q"Zz (11)

equivalently). For this purpose, define the third and
fourth order sample cumulants of Z [11, 12]:

Gijp = %Zzi(t)zj(t)zk(t), (12)
Gijki = %Zzi(t)zj(t)zk(t)zl(t)

t

1
—0i;0k1 — dindjr — 0itdjn, (13)

where ¢ is the Kronecker symbol, and z(t) realizations of
Z. Denote g;;, and g;;5 the corresponding cumulants of
Y defined in the same manner.

4.2. Definition of ICA

Let Y be a random vector with values in /R” admitting a
probability density py (u), and assume T realizations y(¢)
are observed (index t does not necessarily refer to time).
The ICA of Y consists of searching for a N x p matrix, F,
N > p, that minimizes the statistical dependence between
the components of the p x 1 vector, Z, defined by

Y=FZ, (14)
in the sense of the maximization of a contrast function:

Definition 4.1 Let £y be the space of real random vari-
ables of dimension N admitting a density. A contrast is
a mapping ¥ from the sel of densities {pz,Z € En} lo
IR satisfying the 3 requirements:

1. W(pgz) does not change if the components Z; are per-
muted: ¥(ppz) = ¥(pz), VP permutation;

2. W is invariant by scale change: ¥(paz) = ¥(pz), VA
diagonal invertible;



3. U decreases by linear combination: if X has inde-
pendent components, then ¥(pax) < ¥(px), VA in-
vertible.

For the sake of clarity, let us also give the definition below:

Definition 4.2 The W—ICA of a random vector Y of
size N with finite covariance matriz Vy s the pair of
matrices (F, A) such that: (i) matriz A is diagonal posi-
tive and F is N X p full column rank, (ii) the covariance
of Y factorizes as Vy = FAFT (iii) vector Y writes
as Y = F Z, where Z is a p x 1 random vector, p < N,
with covariance A% and whose density mazimizes a given
contrast function, ¥.

If requirement (iii) in the definition above is replaced by
FTF = I, then we get the definition of Principal Compo-
nent Analysis (PCA). Other links with PCA are pointed
out in section 4.5.

Conversely, consider the static linear system:

Y=MX+W, (15)

where vector X is the input vector and has independent
components, and W stands for various nuisances (e.g.
measurement noise). Then ICA can be viewed as a means
to obtain estimates 7, of the input components X,,, when
only realizations of the output, y(t) = Mx(t) + w(t), are
observed. Note that the (only) key assumption that may
be used in this problem is the statistical independence of
the components X,,; for instance, statistics of the noise
W are unknown.

4.3. Identifiability

The first property that can be noticed, is that if a pair
(F, A)is the U—ICA of Y, then so is any pair of the form
(FADP, PTA=TAP), where A is a p x p invertible real
positive diagonal scaling matrix, D is a p x p diagonal
matrix with entries of unit modulus, and P is a p x p
permutation. In other words, as is the case for PCA,
solutions need to be considered modulo this equivalence
relation.

Definition 4.3 A contrast ¥ will be said discriminating
over a set & if the equality ¥(pax) = ¥(px) holds only
when A 1s of the form AP, as soon as X is a random
vector of £ having independent components.

Then we have the following identifiability theorem:

Proposition 4.4 Let no noise be present in model (15),
and define’ Y = M X and Y = F 7, X being in some
set £ of En, and having independent components and an
wmvertible covartance. Then of ¥ is discriminating over
E U(pz) = ¥(px) if and only if FF = MAP, where A is

wmvertible diagonal and P is a permutation.

In other words, the matrix M can be uniquely estimated
by matrix I’ modulo the above mentioned equivalence
relation. The identifiability theorem 4.4 needs some space
to be proved, and it is referred to [7] for more details.
Related results can also be found in [10].

Reminding that N random variables X, are independent
if and only if their joint pdf px(u) is equal to the prod-
uct of the marginal pdf’s, HnN:1 px, (un), a quite natu-
ral measure of independence is the distance between two

such quantities. If the Kullback divergence is taken as a
distance measure [2], then we obtain the average mutual
information:

u
I(pz) = /pz(u) log —sz( ) (16)
[Tn=1 Pz, (un)
It can be shown that ¥q Lef —I(pz) is a contrast, and is
discriminating over the set of random variables having at
most one Gaussian component [7].

Proposition 4.5 With the definitions given in section I,
it can be shown [7] that the functionals U, below are also
contrasts, and are discriminating over the subset of En
of random vectors with finite moments up to order r and
with at most one component with null cumulant of order
7

ZGZZZ ’ W ZGZZZZ (17)

This last property gives steady foundations to the criteria
suggested in section 3.

4.4. Numerical aspects

Since any orthogonal matrix can be decomposed into a
product of N(N — 1)/2 plane rotations and a diagonal
matrix with entries of unit modulus, it seems natural to
look first at the case of plane rotations. It turns out that
in dimension N = 2, explicit expressions can be given
for contrast functions and their maxima. Denote 6 the
tangent of the rotation angle of @, and & = 6 — 1/6; then
these contrasts are simple rational functions:

l)_S Z a; (9
Zb 3 (19)

where coefficients a; and b; are given in appendix. If N =
2, 1t 1s consequently easy to find the absolute maximum
of i,.. In fact, it can be shown that non trivial stationary
points of ¢, are given by the roots of polynomials of the
form:

vs(0;g) = —(=0)7") (1)

a(€i9) = (£ +4)7

4
ws(€59) = do €2+ d1 € —Ady, wa(E;g) = Z

Coefficients ¢; and d; are given in appendix.

4.5. The CM algorithm

Assume standardized data are available, y,, (¢),1 < n <
N,1 <t < T. The algorithm proposed proceeds (pair-
wise) as follows, for r equals either 3 or 4:

1. Initialize F = U X/ VT, as defined in section 1, and
z(1:T)=y(1:T);

2. For sweep =1 to S,

3. Sweep all the pairs (4,7) in a prescribed ordering,
and for each pair, do:
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Figure 1: Variation of contrast 14 for 3 different orderings
and with input kurtosis [1 11110-1-1-1-1].

(a) Compute the r + 1 cumulants of order r of the
pair (z;,z;), denoted here g, with the help of
expressions similar to (12) or (13);

(b) Root the polynomial of degree r, w, (&), and re-
tain the value of £ yielding the largest ¢, (€);

(c) Compute the plane rotation Q) acting in the
plane (4, 7), with tangent ¢ defined by the root
of: 62 — €0 —1 =0 in the interval (—1, 1];

(d) Apply the plane rotation to rows ¢ and j of z(¢)
for every t: z(t) « QU z(1);

(¢) Accumulate the transform: F « FQU-J)T;

4. Stop if sweep = 5, or if all estimated angles have
been small in the last sweep.

It is reasonable to take S = 14 floor(N%),a < 1/2. Tt
can be checked out that the most computationally heavy
step is 3a; the complete algorithm requires approximately
0(12—1 S N2T) operations for r = 3, and O(6 SN?T) op-
erations if » = 4. For instance, if T = O(N?3/?) and
S = O(v/N), the complexity is of order N* for r = 4.

But much larger values of T' can be envisaged.

Computer results

Simulations presented now were run with N = 10, the
mixing matrix M was defined by M;; = 1 and M;; = 2
elsewhere. The contrast ¥, was used, and fourth order
input cumulants were those given in the figure captions.
Figures 1 and 2 give the behaviour of contrast ¥, as more
and more pairs are processed. The 3 particular order-
ings tested have been performed by just swapping input
cumulants, and the same cyclic ordering was performed
afterwards. As expected, the speed of convergence de-
pends on the ordering, but not the limit reached in these
examples.

Limatations

The Jacobi algorithm was originally dedicated to the
diagonalization of symmetric matrices by orthogonal
change of coordinates. More precisely, given a matrix g
with components g;;, at each step of the algorithm, it is
sought for an orthogonal matrix @) such that the criterion

1o 18 maximized:

e (G) = ZG%S Gij = ZQinqupq~ (21)

p,q

Stationary points of 15 can be shown to satisfy G4qGqr =
GryGgr, for any pair of indices (¢,7),¢ # r. Next, the
relation d%ys < 0 & Ggr < (Ggq — Grp)? proves (in
an original and elegant manner) that the only maximum
corresponds to G = 0, whereas G4q = G, corresponds
to a minimum. Other stationary points are then saddle
points.

Similarly, one can look at relations characterizing local
maxima of criteria W3 and ¥y :

ququqr - Grrr qur
4Gqu + 4GZ7‘7‘ - (quq - G‘]“‘)z - (G“‘T - quT)Z

ququqqu - G“‘“‘ G‘ﬂ'“‘
4G§qqr + 4G§7‘7‘7‘ - (quqq - %qu“')z
_(Grrrr - quqrr)z < Q25)

(22)
(23)
(24)

N

for any pair of indices (p,q),p # ¢. As a conclusion,
contrary to ¥, in the matrix case, ¥, might have theo-
retically spurious local maxima in the tensor case, r > 2,
even if this has never been observed (see also computer
experiments carried out in presence of noise [7]).

5. CONCLUDING REMARKS

As tensors are more and more utilized in various ar-
eas, including signal processing and control, it would be
useful to know what are the decompositions at disposal
for completely symmetric tensors (e.g. Cholesky, Eigen-
value...) and what algorithms can be resorted to for
their effective computation. The problem of tensor di-
agonalization can be addressed in various manners. It is
clear that only a small subset of symmetric tensors can
be exactly diagonalized by orthogonal change of coordi-
nates. In fact, the number of free parameters is much
smaller in a diagonalizable tensor. In particular, a di-
agonalizable tensor of order 4 and dimension 2 satisfies
(Gr112 — G1222)% — G1129(Gr111 + Gasao) + 2G3 4, = 0.
More generally, entries of a (linearly) diagonalizable ten-
sor liec on a N2-dimensional manifold, as already pointed
out.
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Figure 2: Variation of contrast 14 for 3 different orderings
and with input kurtosis [54 321 -1-2-3-4-5].



The algorithm proposed with » = 3 or 4, and N > 2,
has been proved to converge to the absolute maximum
of the criteria only for N = 2. Thus convergence needs
to be studied more thoroughly. Besides this key remark,
other issues that have been left aside for the moment in-
clude: (i) speed and memory issues, that can be probably
addressed by designing appropriate sweeping strategies,
(ii) the possibility of carrying out the diagonalization of
a symmetric tensor without calculating i1ts entries explic-
itly, as is done by the SVD for covariance matrices (an ef-
fort in this direction was made in the algorithm proposed
in section 4.5), (iii) the exploitation of possible structures
in tensors (e.g. sparse, banded, Toeplitz...).

A suboptimal algorithm has been proposed by Cardoso
(see [5] or the proceedings of SPIE in 1990 pages 361-
372), and considers tensors of order 4 and dimension N as
linear operators acting on matrices of size N?. The com-
putation of the EVD of such operators gives a means to
compute the ICA by resorting to standard reliable codes.
But it has the inconvenience to break symmetry, and to
be applicable only for even orders. In addition, an ap-
proximation must be made when the diagonalization is
not exact, and and the approach then also lacks in con-
vergence proof [4].

The principles used for handling matrices are not as ef-
fective as expected for handling tensors. Specific tools
dedicated to tensors remain to be developed.

6. APPENDIX

Coefficients a;, b;, ¢; and d; are polynomial functions of
the standardized cumulants of the observations, g;;5 and
Giju1- For W3 and ws:

az = g%n +g§22a

az = 6(91229222 —4g111 9112),

a = 9(9%224‘9%12) ‘1‘6(91129222-1-91119122);
dy = Clz/6 = 41229222 — g111 9112,

di = a1/3—as.

Next for ¥4 and wy, 1t is useful to define:

t 16 (97115 + 9T292),

u = g1111 + gazee — 6 91122,
v o= 4 (g1222 - 91112),

w 6 91122 (91111 + g2222).

Then : by = gl + 95am0,
by = —8(9111191112—9122292222),
be = 4bs+t+2w,
bl = 4b3—2uv,
bo = 2(ba+t4+2w4 369709+ 29111192222

+ 32 g1112 91222);
Cqy = —b3/8 = d1111 91112 — g2222 91222,

3 = 2by—bo/4 = by— (T +2w)/4,
ca = 3b3/2—3b,/8 = 3uv/4,

1 = bs—bo/2,

co = b1/2 = 2bs— uw.
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