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ABSTRACT

In this paper, a new algorithm for the blind identification
of SISO communication channels is introduced. Based on
methods from computational algebraic geometry, the ap-
proach achieves a full description of the solution space and
thus avoids the local minima issue of adaptive algorithms.
Furthermore, unlike most symbolic methods, the computa-
tional cost is kept low by a split of the problem into two
stages. First, a symbolic pre-computation is done offline,
once for all, to get a more convenient parametric represen-
tation of the problem. The solutions of the problem are then
easily obtained from this representation by solving a single
univariate polynomial equation.

Keywords—blind channel identification, high-order statis-
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1. INTRODUCTION

One important issue in digital communications (e.g. cel-
lular) is to mitigate the effects of the propagation channel.
This is the role of the equalizer. Reliable equalizers have
been developed, but usually need prior knowledge of the
channel [16, ch.10]. A good estimation of the channel (also
referred to as channel identification) is thus necessary and
quite critical.

In this paper, we consider the case of a linear and time-
invariant (LTI) scalar (SISO) communication channel. Such
a channel can be described as the convolutive filtering of the
input signalx[n] by a filter h[n]. We assume furthermore
thath[n] has finite impulse response (FIR).

x[n] - h[n] - y[n] =
∑N−1

k=0 h[k]x[n− k]

Most identification algorithms rely on the knowledge of
the outputy[n] of the channel for a given inputx[n] [18]

[12] [9]. So-called pilot sequences are usually transmitted,
either in the middle of each data block as in GSM, or as
background signal, in a parallel channel as in UMTS.

On the contrary, our concern isblind channel identifica-
tion, that is, identification without the knowledge of input
symbolsx[n]. Advantages of such approaches include in
particular the possibility to reduce or remove the pilot se-
quence, which permits an increase in the throughput.

Blind identification or equalization is not a new subject,
for it has been addressed as early as in 1980 [6] [2]. How-
ever, most of the algorithms areadaptive, that is, recursive
in time, and converge quite slowly (sometimes even to lo-
cal minima). Improvements made since early algorithms in-
clude (i) the use of the diversity induced by space, time, or
excess bandwidth, to modify the model into a Single Input
Multiple Output problem [3] [1] [4] [5] [22], or (ii) block
calculations (i.e. removal of time recursions) [21] [23].

Our contribution here lies in the field of block blind
identification algorithms when diversity cannot be exploited.
With this respect, our approach is similar to [21], where in-
puts are assumed to belong to the unit circle, and to [23]
where they are assumed to belong to a finite alphabet. The
underlying idea makes sense in digital communications for
the emitted signalx[n] normally comes from a modulation
scheme (typ. BPSK, MSK, QPSK,π4 -DQPSK, 8-PSK or
3π
8 -D8PSK, or one type of QAM). Our algorithm is based

on this discrete character via polynomial relations linking
the channel taps with high order statistics of the outputy[n].
Now, making use of methods coming from computational
algebraic geometry, we get an efficient and exhaustive esti-
mate ofh[0], . . . , h[N−1] from the sole observations{y[n]}.

2. POLYNOMIAL EQUATIONS

For PSK modulations, the symbols are of roots of unity. By
using this property and introducingnon-circular statistics
ony[n], we get the following polynomial equations inh[n].

BPSK, QPSK, 8-PSK: For BPSK,x[n] is iid discrete-uni-
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form {−1, 1}. We get forp = 0, . . . , N − 1,

γp := E(y[n]y[n− p]) =
N−1∑
m=p

h[m]h[m− p]. (1)

For QPSK,x[n] is iid discrete-uniform{1, j,−1,−j},
which gives

E(y[n]y[n− p1]y[n− p2]y[n− p3]) =
N−1∑

m=max(p1,p2,p3)

h[m]h[m− p1]h[m− p2]h[m− p3]. (2)

This case can easily be reduced to the BPSK case by
taking p1 = 0, p3 = p2 and g[n] := h2[n]. In a
similar manner, the 8-PSK and in general all2M -PSK
modulations can be reduced to the BPSK case.

MSK, π
4 -DQPSK, 3π

8 -D8PSK: For MSK, we havex[n] =
jnb[n]x[0] with b[n] BPSK. So, forp = 0, . . . , N−1,

γp := E(y[n]y[n− p]|x[0]) =
N−1∑
m=p

(−1)n−mh[m]h[m− p].

(3)
As above, theπ

4 -DQPSK and3π
8 -D8PSK cases can

be reduced to the MSK case.

E.g. for π
4 -DQPSK andN = 3, we get the following system

of polynomial equations, whereγ0, γ1, γ2 are parameters.
γ0 − h[0]4 + h[1]4 − h[2]4 = 0
γ1 − h[0]2h[1]2 + h[1]2h[2]2 = 0
γ2 − h[0]2h[2]2 = 0.

(4)

From Bézout’s theorem, this system has either infinitely
many solutions, either exactly 64 (with multiplicities), or
no solution.

To illustrate our algorithm, we will focus on this example.
Our approach is easily generalized (and has been imple-
mented [10]) forN = 2, . . . , 7 and the two afore-mentioned
families of modulations (BPSK, QPSK, 8-PSK and MSK,
π
4 -DQPSK,3π

8 -D8PSK).

3. ALGEBRAIC GEOMETRY

Recently, major advances have been achieved in the field
of computational algebraic geometry that lead to new ef-
ficient ways to deal with one of the central application of
computer algebra: solving systems of multivariate polyno-
mial equations [7, 14, 15, 19]. By using the new algorithms
introduced, practical problems can now be solved in a way
that is very competitive with numerical methods. However,

among the most promising approaches to solve systems of
polynomial equations, Gröbner bases, homotopic continu-
ation, or resultants show however some limitations [8, 11]
(typ. high computational cost, non-parametric equations or
only rational parameters) that hinder seriously their interest
in a framework with only limited computational power (typ.
the DSP of a mobile phone) and stringent time-constraints
(fast evolution of the communication channel). We intro-
duce here an ad-hoc approach inspired by [8], [20] and [17]
in which most of the expensive computation is done offline
through the pre-computation of a parametric normal form
[20] of the system. The solutions of the system are then
easily obtained through the computation of a rational uni-
variate representation (RUR). Most of the on-line compu-
tational cost lies then in isolating the roots of an univariate
polynomial of degree the number of solutions (with multi-
plicities) of the system.

Namely, by the following generic change of variables,
g[0] = h[0]2 := x1, g[1] = h[1]2 := x1 + x2, g[2] =
h[2]2 := x1+x2+x3, system (4) can be rewritten as system
(P ),

(P )


γ0 − x2

1 − 2x1x3 − 2x2x3 − x2
3,

γ1 − x1x2 − x2
2 − x1x3 − x2x3,

γ2 − x2
1 − x1x2 − x1x3.

(5)

We check that the monomialsx2
1, x

2
2 et x2

3 can now be ex-
pressed in the monomial basisB = {ω1, . . . , ωd} given by

B = {1, x1, x2, x3, x1x2, x1x3, x2x3, x1x2x3}.

It is then easily seen thatB is indeed a linear base of the
d-dimensional quotient algebraA := Q[x1, . . . , xN ]/〈P 〉
where〈P 〉 denotes the ideal generated by(P ). By working
in this setting, solving system(P ) can now be seen as a
problem of linear algebra. Namely, by introducing for any
polynomial[u] ∈ A, the multiplication operatorMu[v] :=
[uv] onA and expressing it in its matrix form inA, we get
by Stickelberger’s theorem [13] that

χu(t) := det(tI−Mu) =
∏

α∈ZC(〈P〉)
(t− u(α))µ(α)

whereZC(〈P 〉) denotes the set of complex solutions of sys-
tem(P ). Consequently for a well-chosenu (i.e. u separat-
ing the solutions of(P )), we get a one-to-one mapping of
the solutions of the system of multivariate polynomial equa-
tions(P ) onto the roots of the univariate polynomialχu(t).
Furthermore, by introducing the following family of poly-
nomials,

gu(v, t) :=
∑

α∈ZC(〈P〉)
µ(α)v(α)

∏
β∈ZC(〈P〉)\{α}

(t−u(β)),
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and takingα ∈ ZC(I) andt = u(α), we get

gu(v, u(α)) = µ(α)v(α)
∏

β∈ZC(I)\{α}

(u(α)− u(β))

From this, we derive the central result of rational univariate
representation

gu(v, u(α))
gu(1, u(α))

= v(α).

Hence, forv = x1, . . . , xN , we get an easy way to express
the coordinates of the solutions of(P ) from the roots of
χu(t),

α =
[

gu(x1, u(α))
gu(1, u(α))

,
gu(x2, u(α))
gu(1, u(α))

, ...,
gu(xN , u(α))
gu(1, u(α))

]
.

Theorem. If α is a solution of the system, thenu(α) is a
root ofχu(t) with the same multiplicity and conversely, ifζ
is a root ofχu(t), then[

gu(x1, ζ)
gu(1, ζ)

,
gu(x2, ζ)
gu(1, ζ)

, ...,
gu(xN , ζ)
gu(1, ζ)

]
is a solution of the system with the same multiplicity.

Now, we still have to detail a practical way to compute
χu(t) andgu(v, t). First, it is easily seen [17, 7, 10] that we
can computeχu(t) from the scalarstrace(Muk) for k =
0, . . . , d through the formula

χ′u(t) = χu(t)
∑
k≥0

trace(Muk)t−(k+1).

Considering the minimal polynomial associated withχu(t),

χ̃u(t) :=
∏

α∈ZC(I)

(t− u(α)) =
χu(t)

gcd(χu(t), χ′u(t))
,

we get in a similar wayg(v, t) by

gu(v, t)
χ̃u(t)

=
∑
k≥0

trace(Mukv)t−(k+1).

Consequently, thegu(v, t) are easily computed from̃χu(t)
and trace(Mukv), for k = 0, . . . , r. Now, there is also
an easy way to compute these traces sincetrace(Mfg) =
TR(f)[g] where

TR(f) :=
[
trace(Mfω1), . . . , trace(Mfωd

)
]
.

Also, sinceTR(uk+1) = TR(uk)Mu, we get by induction
trace(Muk+1) = TR(uk)[u] andtrace(Mukv) = TR(uk)[v].
So all the computations rely on thetrace matrixdefined by

[TRM]i,j := trace(Mωiωj
) (6)

Furthermore,rank(TRM) = #ZC(I) = deg(χ̃u) =: r iff
u is separating. This gives an easy way to test if a polyno-
mial is separating given that the set of polynomialsS(I) :=
{x1 +kx2 + . . .+kN−1xN | 0 ≤ k ≤ (N−1)

(
r
2

)
} contains

at least one separating polynomial.

4. LINEAR ALGEBRA IN THE QUOTIENT

In this approach, most of the computational cost of a RUR
{χu(t), gu(1, t), gu(x1, t), . . . , gu(xN , t)} thus lies in get-
ting the parametric trace matrix of the system:

TRM(γ0, γ1, γ2) :=

 trace(Mω1ω1 ) ... trace(Mω1ωd
)

...
...

trace(Mωdω1 ) ... trace(Mωdωd
)


This expensive symbolic computation is however done once
for all, i.e.∀(γ0, γ1, γ2) (here offline using Maple) and also
for any type of modulation afore-mentioned. This gives us
a parametric matrix that we can now evaluate on the set of
parameters obtained from the non-circular statistics ofy[n].
E.g. for system(P ) with γ0 = 3, γ1 = 0 andγ2 = 1, we
get

TRM(3, 0, 1) =


8 0 0 0 −10 8 −4 0
0 10 −10 8 0 0 0 −6
0 −10 6 8 0 0 0 −2
0 8 −4 6 0 0 0 4

−10 0 0 0 14 −6 −2 0
8 0 0 0 −6 4 4 0
−4 0 0 0 −2 4 −12 0
0 −6 −2 4 0 0 0 −10

 .

From this matrix, we get thatu := x1 + 2x2 + 4x3 is sepa-
rating, and thus the following RUR for(P ):

χu(t) = (t− 5
2 −

3
2

√
5)(t− 5

2 + 3
2

√
5)(t + 5

2 −
3
2

√
5)

(t + 5
2 + 3

2

√
5)(t− 3− 2j)(t− 3 + 2j)

(t + 3− 2j)(t + 3 + 2j)

and gu(1, t) = 90t6 − 2176t4 + 36990t2 − 33800,

gu(x1, t) = 22t7 − 776t5 + 8450t3 − 20800t,

gu(x2, t) = −14t7 + 600t5 − 11890t3 + 23400t,

gu(x3, t) = 24t7 − 650t5 + 13080t3 − 14950t.

Hence, the following eight solutions for[h[0]2, h[1]2, h[2]2]

{[− 1
2 + 1

2

√
5, 0, 1

2 + 1
2

√
5], [− 1

2 −
1
2

√
5, 0, 1

2 −
1
2

√
5],

[ 12 + 1
2

√
5, 0,− 1

2 + 1
2

√
5], [ 12 −

1
2

√
5, 0,− 1

2 −
1
2

√
5],

[−1,−j,−1], [−1, j,−1], [1,−j, 1], [1, j, 1]}.

By solving now for[h[0], h[1], h[2]], we thus get the 64 pos-
sible solutions for system (4).

This second (on-line) stage of the algorithm does not re-
quire any symbolic computation. The RUR of the system
is easily derived from the evaluated matrix using Matlab or
Scilab. The best solution is then selected from the possible
solutions by introducing circular statistics ofy[n] as in [8]
(or alternatively higher-order statistics),

cp := E(y[n]y∗[n− p]) =
N−1∑
m=p

h[m]h∗[m− p]. (7)
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5. CONCLUSION

Inspired by the works in [8], [20] and [17], we introduce
here a new approach to the problem of blind channel iden-
tification for PSK-like modulations. With this approach,
we are able to get an exhaustive description of the solution
space. Furthermore, the algorithm proposed shows a rather
small on-line computational cost since the expensive sym-
bolic computation of the parametric trace-matrix is obtained
offline once for all. The solutions of the problem are then
easily obtained from this representation by solving a single
univariate polynomial equation. Also, this approach should
also generalize easily to many problems that can be written
in the form of systems of polynomial equations of the form
(1) or (3).
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