Ultimate performance of QEM classifiers
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Abstract—Supervised learning of classifiers often resorts to
the minimization of a quadratic error, even if this criterion is
more especially matched to nonlinear regression problems.
It is shown that the mapping built by a Quadratic Error
Minimization (QEM) tends to output the Bayesian discrim-
inating rules even with nonuniform losses, provided the de-
sired responses are chosen accordingly. This property is for
instance shared by the MultiLayer Perceptron (MLP). It is
shown that their ultimate performance can be assessed with
finite learning sets by establishing links with kernel estima-
tors of density.

I. INTRODUCTION

The classification problem consists of building a mapping
¢ from a set of patterns (observations), £, to a set of classes.
But in practice, ¢ often maps & to a set decision variables
instead, F. In classification problems, the set ¢(&) is finite
(and can be indexed by an integer 7), and contains as many
elements as classes. Denote y' the variable encoding in F
the it? class, w;. With this formulation, any pattern z in &
is wished to be associated with a variable y* in ¢(&) C F.

In the context of supervised classification, a set of ex-
amples A(N) = {(z™) ")) 1 < n < N} is given, so
that mapping ¢ is apparently known at a finite number
of points. This set of input-output pairs is subsequently
referred to as the learning set. It 1s assumed throughout
this paper that patterns are real valued and of dimension
d, that is, £ = R%.

Next, let (W, -) be a mapping parametrized by a set of
weights, W, that associates any vector & of £ to an output
vector y = ®(W, z) in F, from which the decision will be
made; ®(W, ) is the estimate of ¢.

Of course, regardless of the algorithm that will be used
for this purpose, learning requires the existence of a link
(generally of statistical nature) between the data present
in the learning set, and the data to be classified [11] [13].
In the Bayesian context, it is assumed that any vector x
of a given class wy that may be observed is drawn from a
fixed (but a priori unknown) conditional density, p(x|ws).
In addition, the occurence of any class wy has a constant
probability denoted Pj,. These notations will be subse-
quently assumed. The Bayesian approach is known to be
able to detect new classes, but this will not be debated in
the present letter. Also note that the true classes are not
assumed to be disjoint, so that the ideal classifier may have
a non zero misclassification rate (it does not bear overfit-
ting).

In the classification context, the Quadratic Error Mini-
mization (QEM) criterion consists of minimizing over the
learning set a gap between desired responses and the out-
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puts of the parametrized mapping, (W, -):

N
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The output space is assumed to be provided with a norm,
and it is assumed throughout that 7 = R®. Many neu-
ral networks dedicated to classification are proceeding this
way, and the numerous algorithms proposed in the litera-
ture actually aim at reaching the same goal.

The matter presented in this letter has been already pub-
lished in a French conference [5]. At the same time, re-
sults related to asymptotical performance of the MLP have
been independently published in this journal [10]. One can
also note that historically, asymptotical performance of the
MLP have also been derived earlier [1], but the proof re-
lied very much on the numerical algorithm utilized. It has
been established in [9] that probabilities of misclassifica-
tions are minimized when data samples are infinite and
when losses are uniform. The scope of the paper is to show
that similar results hold true for non uniform losses, and
for finite databases when noisy replicates are fed infinitly
many times in the network. The statements presented are
valid for general QEM classifiers independently of the exact
form of the learning algorithm.

II. NoTATION

Assuming the existence of the above mentioned statisti-
cal links, the Bayesian solution minimizes a risk function,
corresponding to probabilities of misclassification weighted
by losses. More precisely the risk takes the form [6]:

K
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p(ulw;)du,

where %(i,7) denotes the loss associated with the classifi-
cation in w; of a member of class w;, D; is the domain in
which patterns are assigned class w;, and K is the num-
ber of classes. In practice it is not very useful to assign
a non-zero loss to patterns correctly classified. Therefore
it can be set %(i,4) = 0, and the minimization of (2) then
simplifies. In this case a vector z will be assigned the class
Wj(z) Which minimizes the expression By (x) over index k:

(3)

Wi(z) assigned to # < j(z) = Arg 1\/[kin By (x),

Bi(z)= Y «(i,k) Pip(w|w). (4)
1<i<K
i<k
For instance, in the case of uniform losses, k(Z,j) = 1 —

d;;, and the minimization of By(x) is equivalent to the
maximization of:

br(x) = P p(x|wy). (5)

The Bayesian discriminating rule is generally better known
in this latter form. See for instance [9] where Richard
and Lippmann discuss this case in detail. In practice, a
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finite learning set A(N) containing N patterns is given.
Let Ax(N) = wi N A(N) be the learning set for class k,
and denote Nj the number of elements it contains. In or-
der to calulate the Bayesian discriminating function (4),
one can replace probabilities P; by their relative frequency
of occurrence:

P, = N (6)

Next, the conditional densities p(z|w;) can be estimated by
resorting to kernel estimators of density, that have (among
others) the remarkable property to be able to deliver es-
timates being positive, indefinitely differentiable, and of
unit sum, regardless of the number of samples available,
provided the kernel i1s appropriately chosen. The kernel
estimator is defined as:
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where d denotes the dimension of the space where vectors
2" live, F is the kernel function, and h(N;) is a width pa-
rameter to be determined as a function of N;. Under fairly
mild conditions, it has been proved that this estimator is
strongly consistent [3]. The kernel ' may be chosen to be
a radial function, that is, a function depending only on the
norm of its argument, or may not.

This estimator was originally proposed in 1962 by Parzen
[8], and Cacoullos [3] extended it a few years later to the
multivariate case. The very useful suggestion of a variable
width proposed independently by Wagner [12] and Breiman
[2] will not be utilized in this paper. Because of their di-
versity, kernel estimators should not be generically called
Parzen estimators, as is sometimes the case. Some links
can also be emphasized with the so-called radial basis func-
tions independently proposed twenty years later [7].

III. QEM CLASSIFIERS

In this section, asymptotic performances of QEM-based
learning algorithms are investigated and their convergence
to Bayes general solution is stated; proofs are postponed
to the last section.

The first lemma proves convergence to the Bayesian solu-
tion when the number of examples in each class, Vi, tends
to infinity. It extends a theorem published by Ruck and
Rogers [10], that applied only to uniform losses. Since the
MLP is a particular QEM-based learning system, the anal-
ysis of its ultimate performance falls in the present frame-
work. On the other hand, the second one proves conver-
gence when the numbers Vi are fixed but when an increas-
ing number of noisy replications are added to the learning
set.

A. Infinite samples

Denote G(u) the vector-valued function whose compo-
nents are:

Gi(u) = Bi(u)/p(u), (8)

with B;(u) defined as in (4), and p(u) denoting the density
of all observable patterns:

p(u) = Z Py p(ulwr). (9)

Such a G(u) vector is also a Bayesian discriminating rule,
since p(u) is a scalar function.

Lemma II1.1: If the ith component of the desired out-
put, yl(n), is chosen to be k(j, i) each time (") € w;, then
the error (1) converges to (10) when the numbers Ny tend
all to infinity:

e(o0) = /p(v) || ®(W,v) — G(v) ||*dv + constant. (10)

In other words, the optimal value of W defines the best
QEM estimate of G(v) in the class of functions of the form
®(W, -). If this class is large enough, and if the optimization
algorithm is able to reach an acceptable local minimum,
the minimal component of ®(W, ) will thus have the same
index as the minimal one of G/(x), i.e., the same class will
be assigned to .

B. Finite samples

Let p;(u) be a probability density defined on &£. For
finite NV, define now the following estimates:

ko) = X w0
2 EAR(N)

plu) = Y Puplulwr), (12)

Be(v) = Zﬁ(j,k) P, p(vlw;), (13)

Gr(v) = l;’“((v”)) (14)

Lemma I11.2: Assume all Ny are strictly positive, and
define a learning set of arbitrariliy large size obtained
from A(N) by duplication and noise addition: A(N, R) =
{2 4 207 where z(®") are independent random vec-
tors drawn from a given distribution p, (u), with 1 <n < N
and 1 < r < R. Then, if again yi = k(j, k), the error (15)
converges to (16) when R tends to infinity:

N R
11 i(n n n,r
SN R) = o S0 I - (e ) | (1)
n=1r=1
g(N,00) = | p(v) || 2(W,v) — G’(v) ||*dv + constant. (16)

C. Application

This last result shows that any QEM solution minimizing
(15) tends to a kernel approximate of the Bayesian solution,
where conditional densities have been replaced by kernel
estimates (11), and with p,(u) as probability kernel.



This estimate is of the form (7). As a consequence, the
noise pdf should satisfy the properties requested for kernel
functions [3]. In addition, one should vary the width pa-
rameter h(N;) (which controls monotonically the variance)
such that A(N;) — 0 and N; h(N;)¢ — oo for every i as
N; — oo [3]. Of course every N; is finite in practice, but
as explained in [4], a good choice is to take h(N;) propor-

tional to NN, L@+ This conclusion is important from the
practical point of view.

Existing neural network training algorithms are used to
minimize the unweighted quadratic error, so that loss terms
are not taken into account. Our results show that the same
algorithms can indeed take into account the losses provided
the desired responses are chosen accordingly. For instance,
the general Bayesian classifier can be implemented on a

MLP and trained with any standard QEM algorithm.

D. A simpler case

If desired responses are set instead to yl(n) = ¢;; when
() e w;, then it can be proved similarly [5] that QEM
classifiers ultimately yield the same discriminating rule as
in (5), where Py and p(x|wy) are replaced by the same es-
timates as above. The reasoning is the same (though sim-
pler): it suffices to interchange the roles played by Bj(x)
and by (), and to replace the minimization by a maximiza-
tion. We do not repeat the statements. Note that this has
been discussed in [9] in the infinite sample case.

IV. Proors
A. Infinite samples

The error (1) can be written as a function of the K pos-
sible values of the desired response, y*:

vyl s

k=1 x(")EAk(N)

ly* =W, ™)[]P. (17)

z|2

Ni

In fact, remind that v* is the value of the desired response
y'(") when pattern (™) is is class wr. Now let N tend to
infinity and get:

ZPI«/ ulwr) [V = B(W, w)||? du.

Now by expanding the squared norm and using definition

(9) yields:

(18)

/ p(u) [|B(W, w)|[? du

e(o0) =

—QZPk/ (uwr) (W, )Ty du + €1,

where (1) denotes transposition, and ¢; is independent of
®(W,-). Now since y¥ = r(k,i), the complete expanded
form of the error turns out to be:

/ p(u) [|B(W, w)|[? du

e(o0) =

—QZZPk/p wlwy )@ (W, u)k(k, i) du + €a,

k=1i=1

and finally utilizing the definition (8):
e(o0) =

/ p(u) [|B(W, w)|[? du

—Q/p(u)G(u)TCI)(W, u) du + €3, (19)

where €5 and e3 are independent of the ®(W,-)’s. Thus,
the error is eventually of the form:
(o) = [ )G - el Fdutes,  (20)

which proves the lemma.

B. Finite samples

Rewrite the Quadratic Error criterion (15), for finite N
and R:

K N1
> ww

k=
R
Now denote Yu € &:
Erl(u) =
This is possible since the output y*(") = ¥ when 2(®) € wy,

and thus depends only on the class label, k. Assume every
N; is non zero and let R tend to infinity. We get:
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|y — (W, w)||> forz™ ew,. (22)

€k(x(") + u) du.
k

(23)
By making the change of variable v = (") + u, and using
(11), it can be obtained that:

Zpk/ (v|wk) & (v) dv.

Now with G’(u) defined as in (14), it appears after a short
manipulation that the error can be expressed as:

(24)

f(N,00) = / B(v) [|B(W, 0)]|? dv

[

where €1 is independent of the ®;’s. Another manipulation
finally leads to:

v) @y (W, v) dv + 1, (25)

£(N, 50) = / P(0) 1O(W, 0) — G)|IP dv+ s, (26)



where €2 is again independent of vector ®. This last result
shows that the mapping ® (W, -) obtained is the one closest
to G’(v) Yet, this is an estimate of the Bayesian discrimi-
nating functions G (v) defined in (8). In other words, if the
family of functions ®(W,-) is sufficiently large, the small-
est @5 (W; v) will be reached for the same k as the smallest
G’k(v), yielding the same decision.
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