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ABSTRACT

For several years, contrast-based Blind Source Separation
(BSS) has been successfully used in several areas, including
radiocommunications. Here a functional approach relying
on differential calculus theory is proposed, aiming at an-
alyzing asymptotic performances of BBS contrast criteria:
the variance of the estimated separating matrix is expressed
as a function of that of estimated cumulants. As an exam-
ple, this paper focuses on three widely used fourth order
(FO) contrast criteria. This allows to quantify the behavior
of these three separators for large samples.
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1. INTRODUCTION

For more than a decade, Second Order (SO) and Higher
Order (HO) blind source separation (BSS) methods [3],
also referred to as Independent Component Analysis (ICA)
methods [2], have been developed to separate several statis-
tically independent sources from measurements. The pur-
pose of this paper is to examine the asymptotic perfor-
mances (e.g. covariance of estimate) of contrast-based al-
gorithms. Although the subject of asymptotic analysis has
already been addressed in the signal processing literature,
for instance, performance of SO [6] and ML [9] estima-
tors in antenna array processing, or behavior of SO and HO
BSS algorithms in the presence of zero-mean cyclostation-
ary sources [7], this paper proposes a functional approach
allowing to compare asymptotic performances of BSS con-
trast criteria. As an illustration, 3 fourth order (FO) contrast
criteria already compared in [5] by computer experiments,
are mainly focused on, for subsequent asymptotic perfor-
mance analysis.

2. ASSUMPTIONS AND NOTATION

Assume that for any fixedn, K complex outputsxk(n) of a
noisy mixture ofP statistically sourcessp(n) are available,
whereK ≥ P . The vectorx(n) of the measured array

outputs is given by

x(n) = H s(n) + v(n) (1)

whereH, s(n), v(n) are theK×P constant mixing matrix,
the source vector and the noise random vector, respectively.
Note that for any fixedn, s(n) andv(n) are independent.

For the sake of convenience we need to define, for anyn,
the entries of the 4th order cumulant tensorCz of a random
vector,z(n), stationary and ergodic up to order 4:

Cjk
i`,z = Cum{zi(n), zj(n)∗, zk(n)∗, z`(n)} (2)

Moreover, we further assume the following hypotheses:

A1. For any fixedn, sourcessp(n) are stationary, ergodic
and uncorrelated at order 4, with values a priori in the
complex field;

A2. For any fixedn, noise valuesvk(n) are stationary, er-
godic, with values a priori in the complex field too;

A3. At most one fourth-order marginal source cumulant,

Cp,s
def
= Cpp

pp,s, is null;

A4. The mixing matrixH is square and unitary.

3. CONTRAST-BASED BSS METHODS

The goal of BSS consists of determining a separating ma-
trix, U , called separator, such that

y(n)
def
= U x(n) (3)

yields an estimate of the vectors(n). On the other hand,
ICA aims at identifying the mixing matrixH .

Note that assumption (A4) is not restrictive if a spa-
tial prewhitening has been performed [3]. But we limit our
study for the time being to the effect of fourth-order estima-
tion errors on the separatorU .

Various approaches have been devised for BSS or ICA
[1]. We shall focus exclusively on those maximizing a
contrast measure ofy. Recall that contrasts are criteria
Υ(U ; Cx) satisfying the properties below [2] [10]:



P1. Invariance: The contrast should not change within
the setT of trivial matrices, which means that∀x ∈
H · S, ∀U ∈ T , Υ(U ; Cx) = Υ(I; Cx).

P2. Domination: If sources are already separated, any
matrix should decrease the contrast. In other words,
∀U ∈ H, ∀x ∈ S, Υ(U ; Cx) ≤ Υ(I; Cx).

P3. Discrimination: The maximum contrast should be
reached only for matrices linked to each other via triv-
ial matrices:∀x ∈ S, Υ(U ; Cx) = Υ(I; Cx) ⇒
U ∈ T .

whereH, H · S, I are a set of matrices, the set of processes
obtained by matrix mappingsH on processes ofS, and the
identity matrix, respectively. Note that a trivial matrix is of
the formΛΠ whereΛ is an invertible diagonal matrix and
Π a permutation.

The goal of this paper is to evaluate the asymptotic sta-
tistical properties (e.g. covariance) of the matrixU deliv-
ered by contrast-based algorithms.

4. ASYMPTOTIC PROPERTIES: A FUNCTIONAL
APPROACH

¿From now on, it is assumed thatΥ(·, C) is of classC2,
andΥ(U , ·) is of classC1. This will be satisfied for criteria
given in section 5. The optimal solutionUo is defined as the
absolute maximum of a contrastΥ(U ; Cx):

Uo = Arg Max
U

Υ(U ; Cx) (4)

whereCx is the exact cumulant tensor of the observation. In
practice,Cx is estimated by a quantitŷCx, which involves
estimation errors onU ; this yields a solution̂U :

Û = Arg Max
U

Υ(U ; Ĉx) (5)

Both Uo andÛ are maxima ofΥ, and thus satisfy the sta-
tionary point equations:

h(Uo, Cx) = 0, h(Û , Ĉx) = 0 (6)

whereh(·, C) denotes the gradient ofΥ(U , C) with re-
spect toU , in a sense subsequently defined.

Now,h is a well defined function in aP 2−dimensional
linear space on the real fieldIR . In fact,Υ is twice continu-
ously differentiable with respect toU , and the tangent space
to the variety of unitary matrices is the linear space of skew-

hermitian matrices (A
H

= −A), which is indeed of dimen-
sionP 2 and admits as a basis the set of matrices{A(q, r)},
null everywhere except in rows and columns(q, r), (r, q),
such that

dU =

P
∑

q,r=1

dµqrA(q, r)U (7)

whereA(q, r)vw
def
= δqvδrw − δqwδrv if q < r, A(q, r)vw

def
=

jδqvδrw if q = r, A(q, r)vw
def
= j (δqvδrw + δqwδrv) if q > r,

and2
def
= −1.

Next, h(·, ·) is continuously differentiable, which al-
lows to resort to the implicit functions theorem in the neigh-
borhood of(Uo, Cx). This yields, from (6):

ḣU (Uo, Cx) dU + ḣC(Uo, Cx) dC = o(dU , dC) (8)

Thus, in the neighborhood of(Uo, Cx), Û = Uo + dU can
be expressed as a function ofĈx = Cx + dC. This can be
rewritten in block form as [5]:

B1 vec[dU ] = B2 vec[dC] (9)

where B1 and B2 are matrices of dimensionP 2 × P 2

and P 2 × M , respectively, built from the second deriva-
tives of Υ, ∂2Υ/∂U∂U and ∂2Υ/∂U∂C, stored in the
proper manner. Here,M denotes the number of free pa-
rameters inCx, and, for anyP ≥ 4, is equal toM =
P (P +1)(P 2+P+1)/8 in the complex case, which deflates
to M = P (P + 1)(P + 2)(P + 3)/24 in the real case.

The variance ofdUvw and therefore, the one of̂Uvw can
thus theoretically be accessed by the formula:

V ar
{

vec

[

Û
]}

=B−1

1 B2V ar
{

vec

[

Ĉx

]}

B
H

2B
−H

1

(10)
Nevertheless, matrixB1 is in general not full rank, because
the set ofdµqr does not form a free family. Its rank is
P (P − 1), so that the inverse above should be replaced by
a pseudo-inverse. Nevertheless, this covariance can be con-
sequently still computed once we know the covariance of
sample cumulants. Using McCullagh bracket notation, and
noting[2̄]expr = expr + expr∗, this covariance is given in
[5] in the general case. In the symetrically distributed case
in which we are interested, the covariance takes the form:

N V ar{Ĉjk
i` , ĈIL

JK} = CjkJK
i`IL

+[2̄][4]CjkJK
iI C`L + [2̄][4]CjkJ

iIL CK
`

+[2̄][4]CJK
iL Cjk

I` + [2̄][4]CK
iILCjkJ

` + Ci`ILCjkJK

+CJK
i` Cjk

IL + [8]CjJ
iI CkK

`L + [2̄][4]CJ
i`IC

jkK
L

+[16]CjJ
iI CkKC`L + [16]CjJ

iI Ck
LCK

`

+[2̄][8]CjJK
i Ck

I C`L + [2̄][8]CJ
i`IC

jKCk
L

+[2̄][2]Ci`ILCjJCkK + [2̄][2]CJK
i` Cj

ICk
L

+[16]CiIC
jJCk

LCK
` + [4]CJ

i Cj
I Ck

LCK
`

+[4]CiIC
jJCkKC`L (11)

whereN denotes the number of snapshots.



5. EXAMPLES AND ASYMPTOTIC ANALYSIS OF
PARTICULAR CONTRASTS

Define the three fourth order contrast criteria below:

Υ1 (U ; Cx) = λ
P

∑

p=1

Cp,y, Υ2 (U ; Cx) =
P

∑

p=1

(Cp,y)2

Υ3 (U ; Cx) =

P
∑

p,k,`=1

∣

∣

∣
Cpk

p`,y

∣

∣

∣

2

(12)

whereλ is a fixed sign. Note [5] thatΥ1 is a contrast if, for
any1 ≤ p ≤ P , Cp,s have the same signλ, and thatΥ3 is
the contrast linked with the JADE algorithm [1].

5.1. Asymptotic results

After a first differential calculus with respect toU , we ob-
tain:

dΥ1,U = 4λ

[

∑

q<r

dµqr<
{

Cqq
rq,y − Crr

qr,y

}

−
∑

q>r

dµqr=
{

Crr
qr,y + Cqq

rq,y

}

]

(13)

dΥ2,U = 8

[

∑

q<r

dµqr

(

Cq,y<
{

Cqq
rq,y

}

− Cr,y<
{

Crr
qr,y

})

−
∑

q>r

dµqr

(

Cr,y=
{

Crr
qr,y

}

+ Cq,y=
{

Cqq
rq,y

})

]

(14)

dΥ3,U = 8





∑

q<r

∑

k,`

dµqr<
{

Cqk
q`,yCq`

rk,y − Crk
r`,yCr`

qk,y

}

−
∑

q>r

∑

k,`

dµqr=
{

Crk
r`,yCr`

qk,y + Cqk
q`,yCq`

rk,y

}



 (15)

where<{z} and={z} are respectively the real and imagi-
nary parts of the complex numberz.

So for each contrast, we can easily deduce from (13),
(14) and (15) the functionhm defined in section (4). In
particular, according to (4), (5), (6) and (13) the function
h1 associated withdΥ1,U is described by

h1(U , C)qr =







<
{

Cqq
rq,y − Crr

qr,y

}

if q < r
−=

{

Crr
qr,y + Cqq

rq,y

}

if q > r
0 if q = r

(16)

The implicit relation (9) rewrites:

d [dhm]U (Uo, Cx) = −d [dhm]C(Uo, Cx) + o(dU , dC)
(17)
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Fig. 1. Variance of estimated separating matrixU obtained
by maximization ofΥ1(U ).

where, forΥ1 and for any1 ≤ q, r ≤ P :

d [h1(U , C)qr]U =

P
∑

i,j=1

Θq′r′

qr dµq′r′ (18)

d [h1(U , C)qr ]C =
P

∑

i,j,k,l=1

Θijkl
qr dCjk

i`,x (19)

whereΘq′r′

qr andΘijkl
qr are given in appendix. Similar (but

more complicated) relations, derived forΥ2 andΥ3, are not
reported here for reasons of space.

5.2. Simulations

Empirical variance estimates. Simulations have been run
for P = 2 independent QPSK sources, in the presence of
Gaussian complex circular noise. The mixing matrix was of
the form

(

cos θ sin θ eϕ

− sin θ e−ϕ cos θ

)

with θ = π/7 andϕ = π/7. The separating matrix has been
computed using algorithms reported in [2], [1], and [4]. In
order to obtain reliable variance estimates, 100 independent
trials have been run, and the variances of each of the four
entriesÛij has been estimated. In figures 1 to 3, we have
plotted the sum of variances

∑2

i=1
Var{Ûii} as a function

of the sample size.
Theoretical asymptotic variance. In order to compute the
theoretical variance, it was necessary to first calculate all the
cumulants of even order up to eight. For this purpose, the
multilinearity property of cumulants has been used, yielding
the cumulants of the two outputs of a linear transform as a
function of those of its inputs. For QPSK sources, we have
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the following (omitting subscripts in Cs):

C11 = 0; C1
1 = 1

C1111 = 1; C1
111 = 0; C11

11 = −1

C111111 = 0; C1
11111 = −4; C11

1111 = 0; C111

111 = 4

C11111111 = −34; C1
1111111 = 0; C11

111111 = 34;

C111

11111 = 0; C1111
1111 = −33

General formulas are given in appendix. SinceP = 2 is a
simple case, first and second order derivatives can be com-
puted directly in terms ofdθ anddϕ, and the2 × 2 matrix
a obtained is invertible. Thus, expressions such as (13) to
(18) did not need to be used. On the other hand, expression
(11) is central in this calculation. Results are reported inthe
figures 1 to 3, and show a good accordance with empirical
results for large samples.

6. CONCLUDING REMARKS

The whole analytical calculus allows to write, for each con-
trast in (12), the link between the covariance of the unbi-
ased estimated separatorÛ and the covariance of the unbi-
ased estimated cumulantĈx. Using also (11), the asymp-
totic performances ofΥ1, Υ2 andΥ3 can be compared to
each other, and to those obtained by averaging independent
trials. Two conclusions can be drawn: first, empirical per-
formances tend to reach theoretical limits as sample sizes
tend to infinity, which justifies our approach. Second, the
contrast leading to the smallest variance isΥ1.

7. APPENDIX

7.1. Multivariate high-order complex cumulants

Cumulants are given as a function of moments in statis-
tics text books, but only in the real case [8]. Therefore, it
seems useful to report here their expressions in the complex
case. Again, we consider only zero-mean complex variables
that are distributed symmetrically with respect to the origin.
However, they do not need to be circularly distributed. Be-
low, cumulants are denoted withκ and moments withµ. As
before, superscripts correspond to variables that are com-
plex conjugated. We have for orders 4 and 6:

κijk` = µijk` − [3]µijµk`

κ`
ijk = µ`

ijk − [3]µijµ
`
k

κk`
ij = µk`

ij − [2]µk
i µ`

j − µijµ
k`

κijk`mn = µijk`mn − [15]µijk`µmn + 2[15]µijµk`µmn

κn
ijk`m = µn

ijk`m − [5]µijk`µ
n
m − [10]µn

ijkµ`m

+2[15]µijµk`µ
n
m

κmn
ijk` = µmn

ijk` − µijk`µ
mn − [8]µm

ijkµn
` − [6]µmn

ij µk`

+[6]µijµk`µ
mn + 2[12]µijµ

m
k µn

`

κ`mn
ijk = µ`mn

ijk − [3]µ`
ijkµmn − [9]µ`m

ij µn
k − [3]µijµ

`mn
k

+2[9]µijµ
`
kµmn + 2[6]µ`

iµ
m
j µn

k

and eventually for order 8:

κijk`mnpq= µijk`mnpq − [28]µijk`mnµpq − [35]µijk`µmnpq

+2[210]µijk`µmnµpq − 6[105]µijµk`µmnµpq

κq
ijk`mnp = µq

ijk`mnp − [7]µijk`mnµq
p − [21]µq

ijk`mµnp

−[35]µijk`µ
q
mnp + 2[105]µq

ijkµ`mµnp

+2[105]µijk`µmnµq
p − 6[105]µijµk`µmnµq

p

κpq
ijk`mn = µpq

ijk`mn − µijk`mnµpq − [12]µp
ijk`mµq

n

−[15]µpq
ijk`µmn − [15]µijk`µ

pq
mn − [20]µp

ijkµq
`mn

+2[15]µijk`µmnµpq + 2[30]µijk`µ
p
mµq

n

+2[120]µp
ijkµ`mµq

n + 2[45]µpq
ij µk`µmn

−6[15]µijµk`µmnµpq − 6[90]µijµk`µ
p
mµq

n



κnpq
ijk`m = µnpq

ijk`m − [3]µn
ijk`mµpq − [15]µnp

ijk`µ
q
m

−[10]µnpq
ijk µ`m − [5]µijk`µ

npq
m − [30]µn

ijkµpq
`m

+2[15]µijk`µ
n
mµpq + 2[30]µn

ijkµ`mµpq

+2[60]µn
ijkµp

`µ
q
m + 2[90]µnp

ij µk`µ
q
m

+2[15]µnpq
i µjkµ`m

−6[45]µijµk`µ
n
mµpq − 6[60]µijµ

n
kµp

`µ
q
m

κmnpq
ijk` = µmnpq

ijk` −[6]µmn
ijk`µ

pq −[6]µmnpq
ij µk` −[16]µmnp

ijk µq
`

−[16]µm
ijkµnpq

` − [18]µmn
ij µpq

k` − µijk`µ
mnpq

+2[2̄]([3]µijk`µ
mnµpq + [48]µm

ijkµn
` µpq)

+2[36]µmn
ij µk`µ

pq + 2[72]µmn
ij µp

kµq
`

−6[72]µijµ
m
k µn

` µpq − 6[24]µm
i µn

j µp
kµq

`

−6[9]µijµk`µ
mnµpq

7.2. Expression of second order differentials

For contrastΥ1, we give below the expressions of the co-
efficients of the second order differential with respect toU

(omitting subscripty in Cjk
i`,y):

for q < r and q′ < r′, Θq′r′

qr =

<{δq′r(C
qq
r′q − 2Cr′r

qr − Crr
r′q) + δq′q(C

qq
r′r + 2Cr′q

qr − Crr
r′r)

+δr′r(C
rr
q′q + 2Cq′r

qr − Cqq
q′q) + δr′q(C

rr
q′r − 2Cq′q

rq − Cqq
rq )}

for q < r and q′ > r′, Θq′r′

qr =

−={δr′r(C
qq
q′q + 2Cq′r

qr − Crr
q′q) + δq′r(C

qq
r′q + 2Cr′r

qr − Crr
r′q)

+δr′q(C
qq
q′r − 2Cq′q

qr − Crr
q′r) + δq′q(C

qq
r′r − 2Cr′q

rq − Crr
r′r)}

for q < r and q′ = r′,

Θq′r′

qr = −={(δr′r − δr′q)(C
qq
rq + Crr

qr )}

for q > r and q′ < r′, Θq′r′

qr =

−={δq′q(C
rr
r′r + 2Cr′q

rq + Cqq
r′r) − δr′q(C

rr
q′r + 2Cq′q

rq + Cqq
q′r)

+δq′r(C
qq
r′q + 2Cr′r

qr + Crr
qr′) − δrr′(Cqq

q′q + 2Cq′r
qr + Crr

qq′ )}

for q > r and q′ > r′, Θq′r′

qr =

−<{δr′q(C
rr
q′r − 2Cq′q

rq + Cqq
q′r) + δq′q(C

rr
r′r − 2Cr′q

rq + Cqq
r′r)

+δr′r(C
qq
q′q − 2Cq′r

qr + Crr
q′q) + δq′r(C

qq
r′q − 2Cr′r

qr + Crr
r′q)}

for q > r and q′ = r′,

Θq′r′

qr = <{(δr′q − δr′r)(C
qq
rq − Crr

qr )}

for q = r, Θq′r′

qr = 0

and those of the second order differential with respect to
Cx:

for q < r, Θijkl
qr = Uri U∗

qj U∗

qk Uql + Uqi U∗

rj U∗

qk Uql

−Uqi U∗

rj U∗

rk Url − Uri U∗

qj U∗

rk Url

for q > r, Θijkl
qr = Uqi U∗

rj U∗

rk Url − Uri U∗

qj U∗

rk Url

+Uri U∗

qj U∗

qk Uql − Uqi U∗

rj U∗

qk Uql

for q = r, Θijkl
qr = 0
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