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ABSTRACT outputs is given by

For several years, contrast-based Blind Source Separation x(n) = H s(n) +v(n) 1)
(BSS) has been successfully used in several areas, ingludin
radiocommunications. Here a functional approach relying
on differential calculus theory is proposed, aiming at an-
alyzing asymptotic performances of BBS contrast criteria:
the variance of the estimated separating matrix is expdesse For the sake of convenience we need to define, formany
as a function of that of estimated cumulants. As an exam-the entries of the 4th order cumulant tenégrof a random
ple, this paper focuses on three widely used fourth ordervector,z(n), stationary and ergodic up to order 4:

(FO) contrast criteria. This allows to quantify the behavio "

of these three separators for large samples. Cz'Jl,z = Cum{zi(n), z;(n)", zx(n)", 2e(n)}  (2)

whereH, s(n), v(n) are the/{ x P constant mixing matrix,
the source vector and the noise random vector, respectively
Note that for any fixed:, s(n) andv(n) are independent.

Moreover, we further assume the following hypotheses:

Al. For any fixedn, sources;,(n) are stationary, ergodic
1. INTRODUCTION and uncorrelated at order 4, with values a priori in the
complex field;

For more than a decade, Second Order (SO) and Higher
Order (HO) blind source separation (BSS) methods [3],
also referred to as Independent Component Analysis (ICA)
methods [2], have been developed to separate several statis A3. At most one fourth-order marginal source cumulant,
tically independent sources from measurements. The pur- %t cmp s null:
pose of this paper is to examine the asymptotic perfor- ps pp,s? '
mances €.g. covariance of estimate) of contrast-based al- A4. The mixing matrixH is square and unitary.
gorithms. Although the subject of asymptotic analysis has
already been addressed in the signal processing literature 3. CONTRAST-BASED BSSMETHODS
for instance, performance of SO [6] and ML [9] estima-
tors in antenna array processing, or behavior of SO and HOThe goal of BSS consists of determining a separating ma-
BSS algorithms in the presence of zero-mean cyclostation-rix, U, called separator, such that
ary sources [7], this paper proposes a functional approach
allowing to compare asymptotic performances of BSS con- y(n) 'y x(n) 3)
trast criteria. As an illustration, 3 fourth order (FO) cast ] ]
criteria already compared in [5] by computer experiments, Yi€!ds an estimate of the vecte(n). On the other hand,

are mainly focused on, for subsequent asymptotic perfor-/CA aims atidentifying the mixing matridl.
mance analysis. Note that assumptionAd) is not restrictive if a spa-

tial prewhitening has been performed [3]. But we limit our
study for the time being to the effect of fourth-order estima
2. ASSUMPTIONS AND NOTATION tion errors on the separatbf.
Various approaches have been devised for BSS or ICA
Assume that for any fixed, K complex outputs:;(n) of a [1]. We shall focus exclusively on those maximizing a
noisy mixture ofP statistically sources,(n) are available,  contrast measure af. Recall that contrasts are criteria
where K > P. The vectorxz(n) of the measured array Y (U; C;) satisfying the properties below [2] [10]:

A2. For any fixedn, noise valuesy(n) are stationary, er-
godic, with values a priori in the complex field too;



P1. Invariance: The contrast should not change within
the set7 of trivial matrices, which means thetec €
H-S,VU € T,Y(U;C,) = Y(I; Cy).

P2. Domination: If sources are already separated, any
matrix should decrease the contrast. In other words,

YU € H,Vx € S, T(U; Cy) < Y(I;Cy).

P3. Discrimination: The maximum contrast should be
reached only for matrices linked to each other via triv-
ial matrices:vVx € S, Y(U;Cy) = Y(I;C,) =

UeT.

whereH, H - S, I are a set of matrices, the set of processes
obtained by matrix mappingg on processes &, and the
identity matrix, respectively. Note that a trivial matrixof

the form ATI whereA is an invertible diagonal matrix and
IT a permutation.

The goal of this paper is to evaluate the asymptotic sta-
tistical properties€.g. covariance) of the matrit/ deliv-
ered by contrast-based algorithms.

4. ASYMPTOTIC PROPERTIES: A FUNCTIONAL
APPROACH

¢From now on, it is assumed thé(:, C) is of classC?,
andY (U, -) is of classC*. This will be satisfied for criteria
given in section 5. The optimal solutids, is defined as the
absolute maximum of a contra${(U; Cy,):

(4)

whereC,, is the exact cumulant tensoerf the observation. In
practice,C; is estimated by a quanti;,, which involves
estimation errors olV; this yields a solutioV:

U, = Arg Mgmx T(U; Cy)

U = Arg Méle(U; C’m) (5)
Both U, andU are maxima ofY', and thus satisfy the sta-
tionary point equations:

h(U,,Cp) =0, h(U,Cp)=0 (6)

whereh(-,C) denotes the gradient 6f (U, C) with re-
spect toU, in a sense subsequently defined.

Now, h is a well defined function in #2—dimensional
linear space on the real field. In fact, T is twice continu-
ously differentiable with respect @, and the tangent space
to the variety of unitary matrices is the linear space of skew
hermitian matricesAH = —A), which is indeed of dimen-
sion P2 and admits as a basis the set of matrigdsq, )},
null everywhere except in rows and columsr), (r,q),
such that

P
dU = > dp, A(g, 1)U

qr=1

(7)

whereA(q, 7w def v Orw — Oquwlry If ¢ < 7, A(q, T )ow

j(squrw If q=r, A(q7 T)U'w déf .7 (d]vd'w + 5q'wdrv) If q >,
and? % 1.

def

Next, h(-,-) is continuously differentiable, which al-
lows to resort to the implicit functions theorem in the neigh
borhood of(U,,, C,,). This yields, from (6):

hu (U,,Cy) dU + he(U,, Cy) dC = o(dU,dC)  (8)
Thus, in the neighborhood ¢t/,, Cy), U = U, + dU can
be expressed as a function@f = C, + dC. This can be
rewritten in block form as [5]:

B vec[dU| = B3 vec[dC] 9

where B, and B, are matrices of dimensiof? x P?
and P2 x M, respectively, built from the second deriva-
tives of Y, 92T /0UOU and 9*Y/0UAC, stored in the
proper manner. Here)/ denotes the number of free pa-
rameters inC,, and, for anyP > 4, is equal toM =

P(P+1)(P%+P+1)/8inthe complex case, which deflates
to M = P(P +1)(P + 2)(P + 3)/24 in the real case.

The variance ofiU,,,, and therefore, the one &f,,, can
thus theoretically be accessed by the formula:

Var{vec {U’} } :Bl_lBgVar{vec [C’w} }B;BIH
(10)

Nevertheless, matriB; is in general not full rank, because
the set ofdy,, does not form a free family. Its rank is
P(P — 1), so that the inverse above should be replaced by
a pseudo-inverse. Nevertheless, this covariance can be con
sequently still computed once we know the covariance of
sample cumulants. Using McCullagh bracket notation, and
noting [2]expr = expr + expr*, this covariance is given in

[5] in the general case. In the symetrically distributedecas
in which we are interested, the covariance takes the form:

N Var{C}}',Cik} = Clr*

HAMICH Cor + 241G CF

HAMICH Oy + RIAICK L CI* + Cuar CTHK
+C O}, + BICY CEf + 241G, C1*

+H16)C% C*E Oy + [16]CY] CE O
+[2)[8]CI* CFCor, + [2)[8]Cy,C7 5 CF
+[2][2]Cier O CFE 2] [21C5 K OO0k

H16]Cy C crCE + [4)cf olck ek

+[4]C;;CTT CHE Oy (11)

whereN denotes the number of snapshots.



5. EXAMPLES AND ASYMPTOTIC ANALY SIS OF
PARTICULAR CONTRASTS

Define the three fourth order contrast criteria below:

T (U; Cy) AZcpy,n (U; Cy) Z
p=1 p=1
s (U: Cy) ‘cgfy‘ (12)

p,k, =1

where is a fixed sign. Note [5] thal} is a contrast if, for
anyl < p < P, C, s have the same sigh, and thatY; is
the contrast linked with the JADE algorithm [1].

5.1. Asymptotic results

After a first differential calculus with respect &, we ob-
tain:

Cary}

dYiu = 4X lz dpgrR{CHS , —

q<r

— > dp,S{Cyr, +C2

q>r

(13)

dYoy =8 lz dpgr (CoyR{CH } = CryR{CI 1)

q<r

N i (CoyS{CI ) + GO ;u})] (14)

q>r

Tty =8| Y RO, O, Oty O )
q<r k.t
7zzdﬁ4¥’“ { 7éy qky Cgfycff;y} (15)
q>r kl

whereR {z} and< {z} are respectively the real and imagi-
nary parts of the complex number

Mean-square error of the separating matrix estimate using Y,

. :
O experimental resuls for Cov(dU)
*_analytical results for Cov(dU)

14

12

10

L i i i i |
0 500 1000 1500 2000 2500
Number of samples

Fig. 1. Variance of estimated separating mattixobtained
by maximization ofY', (U ).

where, forY; and foranyl < ¢g,r < P:

P
d[h(U,Clgrly = > O dpyrr (18)
.,j_l
d[h(U,C)y] Z OUHACTY, (19)
i,9,k,l=1

where®¢"" and©%*! are given in appendix. Similar (but
more complicated) relations, derived fify andYs, are not
reported here for reasons of space.

5.2. Simulations

Empirical variance estimates. Simulations have been run
for P = 2 independent QPSK sources, in the presence of
Gaussian complex circular noise. The mixing matrix was of

the form
cosf
—sinfe ¥

with § = = /7 andy = /7. The separating matrix has been

sin 6 7%
cosf

So for each contrast, we can easily deduce from (13) computed using algorithms reported in [2], [1], and [4]. In

(14) and (15) the functioth,,, defined in section (4).

order to obtain reliable variance estimates, 100 indep@nde

particular, according to (4), (5), (6) and (13) the functlon trials have been run, and the variances of each of the four

h; associated witllY; ¢; is described by

?R{Cﬁgy C’”y} ifg<r
hMU,C)gr = *\Y{C;Ty + ngy} if g>r (16)
ifg=r

The implicit relation (9) rewrites:

d[dhm)y (Us, Cy) = —d [dhu] o (U, Cy) + o(dU, dC)
17)

entrlesU” has been estimated. In flgures 1 to 3, we have
plotted the sum of varlanc<§i:1 Var{U,;} as a function

of the sample size.

Theoretical asymptotic variance. In order to compute the
theoretical variance, it was necessary to first calculatbel
cumulants of even order up to eight. For this purpose, the
multilinearity property of cumulants has been used, yieidi
the cumulants of the two outputs of a linear transform as a
function of those of its inputs. For QPSK sources, we have
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the following (omitting subscript in Cs):

011 == 0; Cll =1
Cun =1 C'1111 =0; 01111 =-1
Ciiin = 0; C’111111 = —4; 0111111 = 0; 0111111 =4

_ .ol 0 o1l oy
Cunnn = =345 Ciyjpn =05 Chiinn = 34

111 _ . 1111 __
C’11111 - 07 1111 — —33

General formulas are given in appendix. Sirte= 2 is a

simple case, first and second order derivatives can be com-

puted directly in terms ofl# anddp, and the2 x 2 matrix

6. CONCLUDING REMARKS

The whole analytical calculus allows to write, for each con-
trast in (12), the link between the covariance of the unbi-
ased estimated separatdrand the covariance of the unbi-
ased estimated cumula@t,. Using also (11), the asymp-
totic performances offy, T, and Y3 can be compared to
each other, and to those obtained by averaging independent
trials. Two conclusions can be drawn: first, empirical per-
formances tend to reach theoretical limits as sample sizes
tend to infinity, which justifies our approach. Second, the
contrast leading to the smallest varianc&is

7. APPENDIX

7.1. Multivariate high-order complex cumulants

Cumulants are given as a function of moments in statis-
tics text books, but only in the real case [8]. Therefore, it
seems useful to report here their expressions in the complex
case. Again, we consider only zero-mean complex variables
that are distributed symmetrically with respect to the iorig
However, they do not need to be circularly distributed. Be-
low, cumulants are denoted withand moments with. As
before, superscripts correspond to variables that are com-
plex conjugated. We have for orders 4 and 6:

Kijke Wijre — [3]pij bike
¢ ¢ ¢
Kijk Hije — [3]Hijﬂk
ke ke ko ke
Rig = M5 — (2] Ky — Higl

Rijkémn = Wijkémn — [15]M1jklﬂmn + 2[15]M1j,uklﬂmn
Kiikem = Hijkem — [DIijrettm, — (1011 ttem
+2[15] i porce oy,
Kiike = Higke — Hagkept™" — [8 it pg — [6] 03" pue
, JF[G]eHinkZMmT; + 2[12]%'#2;#? ,
“zﬁn = Niﬁcn - [3]l‘ijkﬂmn - [9]/%';71#2 — [3lpiz ™"
+2(9] i p ™™ + 2[6) el

and eventually for order 8:

Rijktmnpqg=— MHijktmnpq — [28],uijk€mn,upq - [35]/Lijklﬂmnpq
+2(210] ikt tirmn tipg — 6[105] ijhthe tann pipg
H;}jkémnp = ngkémnp - WWU”MH”% - [QI]ngkgmﬂnp
7[35]Uijk’fugnnp + 2[105],Ugjkﬂém,unp
+2[105] 13k o i, — 6[105] 13 poke pomm 145

a obtained is invertible. Thus, expressions such as (13) to Ky htmn = Hijhemn — HijkemntP? — 12005y 00 1,

(18) did not need to be used. On the other hand, expression —[15] o ttmn — [15] ket — (2010871
(11) is central in this calculation. Results are reportetthén +2[15] ikt rmn 7T + 2[30] i e i, 1

figures 1 to 3, and show a good accordance with empirical +2[120] 17y poem 1, + 2[45] 1 beke tmn

results for large samples. —6[15] i ke formn iP? — 6[90] 1 pore i, 1o



Kifhem = Higntm — Bl em P — (1545 o1ty
—[10] 1y trem — [5]pigre pi?® — (30113 1,
+2[15] ety 1P + 2[30] 17 b P
+2[60] 117} 17 1%, + 2[90] 7] ey
21517 e trem

—6[45] i pure iy, 1Pt — 6[60] i pat iy i,

= e+ = 6l ugi Pt = 6] e — [16] 55 1]
— (16}t gyt — 18] by — prijre ™"
+2[2]([3] e ™" pP? + (48] il puy) 41P9)
+2[36] 7" e + 2072
—6[T2 g 1P — 6[24] " 1} i
—6(9] i e ™" P

Kijke

7.2. Expression of second order differentials

For contrastl’y, we give below the expressions of the co-

efficients of the second order differential with respeciito
(omitting subscripy in C’fé’fy):

forg < randq <1, @g;"l =

R{0yr (CI) — 2057 — CL) + 5 (CH 4 2007 — CI1)
07 (Cory + 203" — CIL) + 6,0(Cyfy, — 2077 — CHI)}
for g < randq > 1/, @g;"l =
—=3{0pr (C2, + 208" — Cgl) + 64 (CHL +2C5," — CI7)
+5T/q(C’g/qr = 2088 = Cyl) + 64q(CH —2CT 7 = C7T)}
forg <randq =1/,

04" = =3{(0rr — 6,4) (CH + O30}
o1 =
{8y (CI5 + 2070 + CI) = 6,0y (O, + 208 + €21 )
0y (CIL + 2007 + CoT,) — 8,0 (CIL + 2097 + CI1)}
for ¢ > rand ¢ >, @g;fl =
—R{6,1¢(Cyy = 2085 + CIL) + 644 (CF, = 2C77 + O )
+5T/T(C’gf]q —2C3" +Cy,) + 5q/T(C’f,qq —2C,,"+Cy)}
forg > randq =1/,

04" =R{(0rq — ) (C] — Cy)}
01" =0

forg > randq <1/,

for ¢ =,

and those of the second order differential with respect to

Cy:

forg < r, @f'ffl =U,; q;f U],’; Uy + U,
Vi ’l“;f Urz U — Uy Uq; UTZ U

GZZ«kl =Uqgi lé}‘ Ur Un — Uy qu Ur Ut
Ui U — U U5 Uy Uy

@f]j}kl -0

U;;; Uql

*
A
for g > r,
+Uri U

forq =,
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