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ABSTRACT

Many blind or semi-blind equalizers are implemented with
the help of iterative algorithms, and therefore may require
long convergene times or suffer from local minima. Closed-
form block blind equalizers are attractive, even if they are
suboptimal, since they can serve to initialize them. But
they can perform better in time-varying contexts, that is on
very short data blocks. It is focused here mainly on PSK
modulations, including MSK and QPSK. The proposed al-
gorithms are based on known instantaneous properties of
such modulations.1
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1. INTRODUCTION

Blind equalization of a communication channel has
been extensively studied and numerous recursive al-
gorithms have been proposed. However finding reli-
able initializations appears as a very issue to improve
on perfomances. On the other hand, the information
given by the training sequence should allow to avoid
local minima in semi-blind approaches.

Most popular approaches to blind equalization in-
clude the Constant Modulus (CM) property of the
source signals [4] [17], or the kurtosis maximization [3]
[13] together with fractional sampling at the receiver
or induced cyclostationarity [1] [10] [14].

Another approach, that has recently received grow-
ing interest, is to use the discrete character of the digi-
tal communication sources. This information has been
extensively used in decision directed equalizers [9, 11].
But Li [7, 8] showed that the use of the constellation as
a criterion gives a consistent estimation of the sources
and some recursive algorithms were proposed to achieve
blind equalization [15, 12] or source separation [5].

In this paper, this latter approach is followed but
we do look for closed-form solutions. An analytical so-
lution has been already proposed in [16] for the separa-
tion of BPSK sources. However, compared to the exist-
ing works, our contribution is four-fold. We first show
that the criterion proposed in [8] is MMSE equivalent
for D-PSK sources and for high SNRs, then we propose
an analytical solution for the SISO equalization of D-
PSK sources in the blind and semi-blind contexts and

1This work has been supported in part by the CNRS Telecom-
munications Program TL97104.

investigate the asymptotical behavior of the proposed
algorithm, we eventually give a simple way to avoid the
drastic loss in performance when the equalizer length is
wrongly determined. Moreover, the proposed solution
can be easily applied to CM sources as well.
Notations. Vectors are boldfaced and matrices are
capitalized. The taps of a FIR filter f(.) of length
L will be stored in a column vector of size L, as
fT = [f(0) · · · f(L − 1)]. A finite portion of length L of
a time sequence y(.) will be represented by a column
vector of size L and denoted as :

y(n; L)T = [y(n) y(n − 1) · · · y(n − L + 1)]

Next, given any complex vector g of size L, define g�D

the column vector containing all the distinct order-D
monomials built on the entries of g in an arbitrary fixed
order. The monomials are weighted in order to preserve
the Frobenius norm between the order-D rank-one ten-
sor G = g • · · · • g (D times) and g�D. Here, • stands
for the outer product. For instance, if L = 3 and D =

2, then g�2 =
[

g2
1 ,
√

2g1g2,
√

2g1g3, g
2
2 ,
√

2g2g3, g
2
3

]T
.

Lastly, operators vecsD{.} and unvecsD{.} are de-
fined as :

vecsD{g • · · · • g} = g�q

unvecsD{g�D} = g • · · · • gT

2. PROBLEM STATEMENT

2.1. Context

Suppose we observe the output y(n) of a channel h
excited by a source signal x(n) in presence of corrupting
noise w(n). Assuming linearity and local stationarity of
the channel, the observation model in baseband takes
the form below :

y(n) =

∞
∑

p=−∞

h(p)x(n − p) + w(n) (1)

where x(n) and w(n) are assumed statistically indepen-
dent. Our goal throughout this paper is to compute,
in blind and semi-blind contexts, a Finite Impulse Re-
sponse (FIR) filter, f(n), of length L, so that its output
x̂(n) approximates in some sense the source sequence
x(n), when input by y(n) :

x̂(n) =

L−1
∑

p=0

f(p) y(n − p) (2)
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With the notations introduced in section 1, model (2)
can be compactly written as : x̂ = fTy(n; L).

2.2. Derivation of the MMSE criterion

In a blind context and when the channel input is
discrete, the equalizer estimator in the MMSE sense
writes :

f = Arg min
x(n)∈C,u

E
∣

∣x(n) − uT y(n; L)
∣

∣

2
(3)

where C is the discrete support of the source, also re-
ferred to as the source constellation. If the noise is
sufficiently weak, i.e. the eye is opened, the MMSE
equalizer estimator (3) rewrites :

f = Arg min
u

E

[

min
x(n)∈C

∣

∣x(n) − uT y(n; L)
∣

∣

2
]

(4)

If the source constellation C is D-PSK modulated, then
the min in (4) can be approximated by a product [5].
That is, if we observe N samples of sequence y(n), (3)
can be approximated by :

f = Arg min
u

N
∑

n=1

∣

∣

∣

(

uT y(n; L)
)D − 1

∣

∣

∣

2

(5)

3. BLIND AND SEMI-BLIND
EQUALIZATION

3.1. Blind equalization

Suppose the input source is D-PSK modulated, equa-
tion (5) shows that f is the Least Squares solution of

the system of equations
(

fT y(i; L)
)D

= 1, L ≤ i ≤ N .
Then applying vecsD{.} to this system yields :







y(L; L)�DT

...

y(N ; L)�DT






f�D =







1
...
1






(6)

This final system looks linear but the solution f�D

must have a particular structure, as its elements verify
some non-linear relations. Thus, ideally, we should use
tools like Gröbner bases or Mc Aulay’s theorem [2] to
solve the above system. But the complexity of those
methods rapidly increases with D and L.

Therefore, we prefer to look for fLS in a suboptimal
two-step method. First, we compute the unstructured
Least squares solution f�D

LS by a mere pseudo-inversion

of Y (L : N ; L) =
[

y(L; L)�D, · · · ,y(N ; L)�D
]T

.
Then, we force the structure by looking for the best
rank-one approximation of unvecsD{f�D

LS}.
3.2. Semi-blind equalization

Now, suppose that a part of the source signal is known,
i.e. the training sequence. A possible way to use this
knowledge, is to initialize f with the training sequence

and then perform a gradient descent on the following
combined optimization criterion :

f = Arg min
u

[

α

N1

N1
∑

n=1

∣

∣uT y(n; L) − x(n)
∣

∣

2

+
1 − α

N − N1

N
∑

n=N1+1

∣

∣

∣

(

uT y(n; L)
)D − 1

∣

∣

∣

2
] (7)

where parameter α ∈ [0, 1] can be seen as a confidence
rate in the known part of the signal.But we are looking
for a closed-form solution.

Equation (7) is equivalent to solve the following sys-
tem in the weighted LS sense :













































y(L; L)
...

y(N1 + L − 1; L)






f =







x(1)
...

x(N1)













y(N1 + L; L)�DT

...

y(N ; L)�DT






f�D =







1
...
1







(8)

This system has two unknowns, f and f�D, linked
to each other. The suboptimal solution proposed con-
sists of computing the dominant left singular vector of :

[

unvecsD{f�D
LS}, fLS

]

W

where W is a weighting matrix, and f�D
LS and fLS are

LS solutions of the two systems in (8).

4. BLIND CASE ASYMPTOTICAL STUDY

We now concentrate on two issues. First, we focus on
the invertibility conditions of matrix Y (L : N ; L) and
then look whether the solution f�D

LS is close to the
structured on.

4.1. Invertibility conditions

The pseudo-inversion of equation (6) writes :

Y (L : N ; L)†Y (L : N ; L) f�D = Y (L : N ; L)†d

Now let A and b be defined by :

A = lim
N→∞

Y (L : N ; L)†Y (L : N ; L)

b = lim
N→∞

Y (L : N ; L)†d

Therefore, A = [aij ] is composed of estimations of some
2D-order circular moments of y(.) and the entries of b
are estimations of some D-order noncircular moments
of y(.). Thus asymptotically, equation (6) rewrites :
A f�D = b, where the aij are defined by :

aij = E

[

D
∏

d=1

y∗ (n − `i(d))

D
∏

d=1

y (n − `j(d))

]
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and 0 ≤ `(d) ≤ L. The problem of interest is to find
when A is rank deficient, that is, we have to investigate
if linear relations between the aij exist for all i or for
all j. It is quite obvious that in the presence of noise A
is always full rank. So this study is carried out in the
noiseless case.

4.1.1. MA channel

Suppose that the channel is MA and that the source is
i.i.d (which is the case for D-PSK signals). Then the
aij are given by :

aij =

M
∑

m=1

h∗(m)

D
∏

d=2

h∗ (m + `i(d) − `i(1))

D
∏

d′=1

h (m + `j(d
′) − `i(1))

Therefore, if the aij are linearly independent, then the
taps of the channel h and their conjugate verify a non-
trivial non-linear constraint. Hence, in the case of a
MA channel, the matrix A is generically non-singular.
This holds true when N is finite, because in this case
matrix AN is the sum of A plus the estimation noise.

4.1.2. AR channel

If we now suppose that the channel is AR, an exact
finite length equalizer exists. Thus, in the noiseless
case, if we try to find a too long equalizer, matrix A can
be rank-deficient. Indeed, an AR channel introduces a
linear dependency in the sequence y(.) :

b(0)y(n) = x(n) −
M
∑

`=1

b(`) y(n − `)

where M is the length of the channel inverse. From
this property, one can show that :

y(m)

(

M
∑

`=0

b(`)y(m − `)

)D−1

= (9)

1 −
M
∑

`=1

b(`)y(m − `)

(

M
∑

`′=0

b(`′)y(m − `′)

)D−1

This shows that if L ≤ M , A is generically invertible
because 0 ≤ `(d) ≤ L. But if L > M , (9) can be built
with the entries of A for m ∈ [n, · · · , n − L + M ] and
the dimension of the null space of A is equal to L−M .
It is easily shown that this property remains true for a
finite number of taps N , as (9) is deterministic.

4.2. Structure issue

The previous analysis has shown that in the noiseless
case and if the length of the equalizer is correct, the LS
solution of (6) has the right structure. Indeed, since

the matrix A is non-singular there is only one solution
to (6) and since the correct equalizer satisfies (6), the
LS solution is the good one and has the right structure.

We now study the effects of a bad estimation of the
equalizer length on the LS solution without noise. In
particular, we focus on the effects on its structure.

4.2.1. AR channel and L > M

We know from 4.1.2, that A has a null space whose
dimension is L − M . In fact, the LS solution of (6) is
the minimal norm linear combination of the symmet-
ric vectorization of the rank-one tensors build on the
L − M + 1 delayed versions of the exact channel in-
verse. Hence the LS solution will not have the right
structure. A subspace based method was proposed in
[6] to recover the structure in the case of the analytical
CM algorithm. But, we propose here a simpler method
that applies in the PSK and CM cases. If the first en-
try of a vector g of size L is zero, then the symmetric
vectorization of the rank-one order-D tensors built on
g has its L first entries equal to zero. Then, the M first
entries of the LS solution of (6), f�D

L , are equal up to
a scalar factor to the M first entries of f�D

M . The next
L − M entries of f�D

L are equal to zero. Therefore, in
this case, a good estimation of f is given by the L first
elements of f�D

L .

4.2.2. MA or AR channel and L < M

Denote M the exact equalizer length, which can be in-
finite, and let L be the estimated length which satisfies
L < M . The estimated and optimal equalizers are then

given by ALf̂�D
L = dL and AM f�D

M = dM .
Using permutations, the latter equation rewrites :

[

AL Q
R S

] [

f̂�D
L

δf

]

=

[

dL

δd

]

so that
(

f̂�D
L − f�D

L

)

= A−1
L QdL. This final equa-

tion shows that the structure issue depends on the
channel itself, since AL and Q are functions of h only.
It also shows that the estimator of f�D

L is asymptoti-
cally biased. Nevertheless, simulations show that the
L first entries f�D

L still give a good estimation of the
equalizer.

5. SIMULATION RESULTS

In this section, we investigate the performances of our
blind and semi-blind algorithms. Their behaviors are
studied in terms of average Bit Error Rates for different
SNRs, with either MSK or QPSK signals. The average
performances are then compared to those of the CM
algorithm, the Wiener and Zero-Forcing equalizers.
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5.1. Blind equalization

Computer simulations have been run with QPSK sig-
nals. We used an AR channel for the need of com-
parison with the exact ZF equalizer. The poles of
the AR channel were equal to : 0.354 + 0.354i, −.4i,
−0.35− 0.61i and −0.8109+ 0.39i. Figure 1 shows the
average performance of our algorithm (dashed line), in
the context of QPSK signals, for different SNRs. The
results are then compared to the MMSE and ZF equal-
izers (solid lines) and to the analytical CM algorithm
(dash-dotted line) [16] [6]. This shows that our algo-
tithm behaves better than the CM algorithm for low
SNRs.
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Figure 1: Bit Error Rate as a function of SNR (av-
eraging over 500 bursts of 200 samples)

5.2. Semi-blind equalization

The semi-blind algorithm has been tested with the
same AR channel and with MSK signals, as a function
of α and at 11dB of SNR. Figure 2 shows the average
BER (dashed line) for a training sequence of 20 sam-
ples. The results are compared to the ZF and MMSE
equalizers (solid lines).
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Figure 2: Bit Error Rate as a function of α (averag-
ing over 500 bursts of 200 samples)

6. CONCLUSIONS

In this paper, closed-form solutions dedicated to blind
and semi-blind equalization of PSK sources, includ-

ing MSK and QPSK, are proposed. Simulation results
show a good behavior of the different algorithms. In
particular, we notice a gain in performance compared
to the analytical CM algorithm when the size of the
burst is small.
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