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ABSTRACT

Blind equalization of non minimum phase FIR channels
requires prior identification, for stability reasons. We
present a novel algorithm able to identify a channel in
presence of an unknown MSK modulated input (which
can be viewed as an approximation of the GMSK mod-
ulation used in GSM mobile systems), by resorting only
to output second order moments. Blind identification
is made possible because the input is not circular. It
is shown that this approach leads to a system of L
quadrics in L unknowns, if L. denotes the number of
taps of the unknown FIR channel. This system is then
solved with the help of an original algorithm based on
resultant techniques. Performances in terms of Bit Er-
ror Rates are eventually reported.

1. INTRODUCTION

The growing computational power of digital signal pro-
cessors makes it possible to process the data block-wise
instead of fully recursively. This has the advantage of
allowing a better use of the information contained in
limited data records, which may be especially attrac-
tive in non stationary environments. For this reason,
closed-form solutions to blind and semi-blind identifi-
cation and equalization problems are being sought.

In a companion paper [4] [7], the FIR equalization
problem has been investigated. Its limitation is that
the channel cannot be well compensated when it is Sin-
gle Input Single Output (SISO) FIR. In such a situa-
tion, it is necessary to identify the FIR channel before
seeking to invert it, in a stabilized manner?.

The problem of system blind identification has been
addressed for a long time, with the help of second-order
statistics [17] [11] or higher orders [16] [15], rarely ded-
icated to communications inputs [6] [3].

In this paper, a novel closed-form block blind iden-
tification algorithm is proposed, that is applicable to

1 This work has been supported in part by the CNRS Telecom-
munications program No. TL97104.

2Equalizing a channel with a stable AR filter is equivalent to
identify a minimum phase MA channel. Here, the phase is not
assumed to be minimal.
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SISO, SIMO or MIMO systems. The principle is based
on the knowledge of the desired source distribution, as-
sumed to be discrete. A special attention is given to
the case of Minimum Shift Keying Modulation (MSK),
since it is known to linearly approximate the GMSK
modulation utilized in the widely spread GSM stan-
dard [2] [9]. In the latter case, the algorithm is based
on second order statistics of the observations. But the
principle applies to other discrete modulations, with or
without memory, e.g. PSK—n. This distinguishes the
present contribution compared to previously published
algorithms; see for instance [15] and references therein.

2. BLIND SISO IDENTIFICATION

2.1. Notation

Vectors are boldfaced and matrices are capitalized.
The taps of a Finite Impulse Response (FIR) filter A(-)
of length L will be stored in a column vector of size L,
as h* = [h(0)...A(L — 1)]. A finite portion of length
L of a time sequence will be stored in a column vector
and denoted as:

y(n; L) = [y(n),y(n — 1), --y(n — L +1)].

The set of polynomials in the variables hq, ..., h; with
coefficients in C will be denoted by R = Clhy, ..., ] =
Clh]. For any polynomial fi,..., f,, € R, the ideal
T =(f1,..., fm) generated by these polynomials is the
set of polynomials > 7", fiqi, ¢: € R.

2.2. Modeling

Assume P independent complex symbol sequences are
wished to be transmitted through a communication
channel. Denote x;(n) the symbol sequence of source
J, 1 <j < P, and H;;(m) the impulse response link-
ing source j to antenna element ¢ (which includes the
channel), 1 < i < K, assuming local stationarity of the
channel. Also denote L the length of the channel (that
can theoretically be infinite). Then the signal observed
at the K —element receiver takes the following compact
form:



where matrices H(m) are K x P, and v(n) stands for
background and modeling noise.

2.3. Principle

In order to fix the ideas, assume first that sources are
MSK modulated. This means in particular that, con-
ditionally to x(0), sources are cyclostationary:

E{z;(n);(n—m) |x(0)} =8(i—3)é(m)(—1)"z: (0)*
(2)

where § = 1 at the origin and is null elsewhere. In
absence of noise, the second-order moments of the ob-
served sequences can thus be easily calculated:

E{yp(n)yq(n—0) [x(0)} =

-0 (=1)

t~

—

Hpi(m)Hgi(m
1

(0). )

m=0 ¢

Considering the fact that the filters H;;(m) can be
identified only up to P x P constant post-multiplicative
diagonal factor, the constants z;(0)? can be dropped
(that is, pulled inside the above unknown diagonal fac-
tor). The consequence is that we have at disposal a set
of polynomial equations that the filter H should satisfy,
in absence of noise. For instance, in the SISO case, we
have for L = 3:

()" E{y(n)*} = hi—hi+h3
1)"E{y(n)y(n—1)} = hoh1—hihy
D) "E{y(n)y(n—2)} = hohs

n— (4)
n—

On the other hand, for stationary second-order white
sources, e.g. BPSK-modulated, moments of y(n) take

a simpler expression:

1

E{yp (n)yg(n)} =)

=0

Z Hpi(m) Hyi (m—0) E{z} (m)}

and a similar system of equations can be obtained along
the same lines. For n—PSK modulations, the degree of
the polynomial system needs to be increased, but the
principle remains the same.

2.4. Solution of the polynomial system
Consider a system P of L polynomial equations of de-
gree d in L unknowns:

def

fe(€) =0, €= (h1,ha, ... (5)

Denote by R = C[¢] the ring of polynomials in the
variables hy,... hp with coefficients in C and by Z
the ideal generated by polynomials {f1,..., fr}. Bé-
zout’s theorem [8][p. 227] states that either the set of
solutions is infinite, or its cardinality is at most d*.

hr), 1< (< L.

bl
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A classical way to compute these solutions is to re-
duce the problem to an eigenvector computation. More
precisely, consider the quotient ring A of the ring of
polynomials R by the ideal Z: A = R/Z. If the num-
ber of solutions of (5) is finite, then A is also a finite
vector space. Let M, be the operator of multiplication
by a fixed element a € A.

(6)

and denote M, the matrix of M, in a fixed basis (m;)
of A. The transposed matrix M} represents the trans-
posed map from the dual A to itself. Recall that A is
the set of linear forms from A to C. Our approach is
based on the following property [12] [1] [14]:

Lemma 1 The linear forms 1c : p — p(C), where ¢
1s any solution of P, are eigenvectors of all matrices
(ME)aea. The corresponding eigenvalues are a(C).

As an application, if one chooses a(&) = hq, then the
eigenvalues of M, will yield the d solutions hq = Ay,
1 < m < d¥. This procedure could be repeated for
every component h; (see lemma 2 in appendix).

But it turns out that there is a better way to
address the problem via eigenvectors of M}. In-
deed, the eigenvectors of the transposed operators
yield directly the roots of P, for they represent (up
to a scalar) the evaluation at theses roots. Take
for instance {1,h1,ha,... ,hihs,...} as a basis of
A.  Then the entries of the eigenvectors will be
{1,&01,802, - .- ,€01&02, . .. }, where &, is a root of (5).

The crucial point is thus to compute one of these
matrices of multiplication M,.

One can use for instance Grobner basis techniques
[5], in order to get a basis of A and the matrices of mul-
tiplication through normal form computations. This
method has to be performed in exact arithmetic, which
often means computations with big numbers. Grobner
bases can also be used to eliminate L — 1 variables and
reduce the computation of roots to those of a univari-
ate polynomials (of degree at most dl). But both of
these methods are expensive and not adapted to input
polynomials f; with approximate coefficients.

We retained here another approach, which is some-
what more stable. It is a modification of the old method
by Macaulay [10], utilized for the construction of resul-
tants; it can be viewed as an extension of Sylvester’s
theorem to polynomials in several variables. Macaulay
matrices represent mappings of the form

S: Wox---xVp — V

L
(q0,---,q1) — Zqz'fi
=0



where fo € R is fixed, e.g. fo = a as in the above sec-
tions, and Vj, ..., Vg are finite vector subspaces of R.
Let d; = deg(f;), and v = Zz’L:O d;i — L + 1. Then first
define V' as the set of monomials of degree smaller than
or equal to v. Next define hi»V,, as the subset of V of

dny dn_1
hn—l n—1 the

subset of polynomials of V — hd= V], which are divisible
by hi"_‘f , and so forth for V,,_», ... V. In this construc-
tion, Vjp is eventually generated by the [] d; monomials
of the form A7* - --h%» with 0 < a; < d; — 1.

For instance, in the case of two univariate polynomi-
als fo and f1, Vo would be generated by 1, h, ... hA%~1
Vi by 1,h,... h%~1 and S would be the well-known
Sylvester matrix.

In the generic case of this construction [10] [12], a
basis of V4 is also a basis of A. In our problem, the
matrix of § can be divided into 4 blocks

(2 2)

C D
in such a way that D is invertible, possibly after a
change of coordinates. Now it is desired to find the
coordinates of M, (V) in the basis of V4.

Since Vj is a basis of A, the matrix of multiplication
by fo in this basis is obtained by reducing the multiples
m fy, m € Vi, modulo the polynomials fi,..., f,. In
order to do this in terms of matrix operations, one looks
for linear combinations of the columns of the second
block, [B* D®]*, that would produce a zero block in
the place of C' if added to the first block [A® C*]*. This
can be done explicitly, by right-multiplication of the
matrix S by the matrix

(

which yields the formula My, = A — BD~'C.

Taking into account the geometry of the monomials
involved in this computation, we can replace the in-
version of the big square matrix D, of size (LLdH) -
d", by Ld — L inversions of smaller systems of size
$1,...,8L (d—1) such that s; + -+ s (q_1) = Ldb-1.
This new algorithm is illustrated in the next section
and yields the multiplication map, in A, by any fixed
element fy, and thus provides us with the roots of the
system P given in (5).

2.5. SISO algorithm with 3 taps

In this section, it is assumed that L = 3,d = 2, and
the system P to be solved is the one given by (4). Ac-
cording to the previous section, the standard Macaulay
construction procedure would lead to the solution of
a linear system of size (°f') — 2% = 27, whereas our
procedure needs the solution of 6 — 3 = 3 smaller lin-
ear systems. In fact, their respective sizes are s; = 3,

polynomials which are divisible by A

I 0
-D7C 1

1571

sy = 3, and s3 = 6, and we can check out that
81+82+83:322212.

Given N samples y(n),1 < n < N, the algorithm
proceeds in six steps.

1. Computation of system P. The left-hand side
of (4) is replaced by the following unbiased esti-
mates, 0 <A< L —1:

. Change of variables. Variables z = T'h are
utilized instead of h, in order to avoid singularity
of the systems to solve. Matrix 7" is chosen to be
(but many others could have been assumed):

T =

o =N

1 0
0 1
-1 1

. Expression of every monomial in the basis.
The canonical basis is formed of the 8 entries of
. t
b = (1, 21, 22, 23, 2122, 2123, 2223, Z212223)". System
(4) can then be rewritten as

A1 Z[?] = Bl b (7)

IS

) Al

— O N

[SEIRN
[SININ NN

—4
-2
2

o OO
o OO
o OO
N — N © N W
— N N
OO OO OO

Thus the monomials z7 can be expressed in the
basis b by solving the 3 x 3 linear system (7)
by z[2] = C;b, denoting C; = A7'B;. Simi-
larly, one can express the 6 third degree mono-
mials 2229, 2223, 2221, 2223, 2321, 2229 in the basis
b by solving another 6 x 6 linear system:
As Z[3] =Byb = Z[3] =Cyb (8)
monomials
in the

Finally, the 3 fourth degree
222923, 212523, 212925 are  expressed
basis by solving a 3 x 3 linear system.
A3 Z[4] = ng = Z[4] = Cgb (9)
Construction of Mf. The multiplication by
a(z1,72,23) = z1 can be represented in the same



basis by the following matrix:

01 0 0 0 0 0 0
C1(1,:)

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0
M. = c2(1,)
C2(2,:)

0 0 0 0 0 0 0 1
C3(1,:)

where C;(j4,:) the jth row of C;. To obtain this, it
suffices to compute the image of vector b, and to
use the previous relations.

Computation of eigenvectors. The 8 eigenvec-
tors u,, of MY are computed; their multiplicative
factor are chosen so that their first entry equals
1. Then the entries 2,3,4 of each of these vec-
tors provide us with a possible solution for z =
(21, 22, z3). The corresponding filters are obtained
by transforming back h = 7'z,

Choice of the best solution. In order to select
the proper filter, one computes the circular mo-
ments E{y(n)y(n — £)*}, and select the filter that
best matches them.

3. COMPUTER RESULTS

Once the channel impulse response h has been identi-
fied by a filter fl, it is wished to compare the perfor-
mances obtained. One could choose a Relative Mean
Square Error between (RMSE) h and h. The inconve-
nience is that a large error does not necessarily yield a
large bit error. So this RMSE would not be very mean-
ingful. Because the goal is to transmit a sequence of
bits, the most natural criterion is the Bit Error Rate
(BER) itself. But this performance measure requires
that an informed equalizer be applied to the obser-
vation sequence y(n). Two equalizers are available,
namely the Zero-Forcing g,,, and the Wiener g,, ..
equalizers. In absence of constraint on the finiteness of
the impulse response, they are given by:

Yzr (z) = h(z)_17 gMSE(Z) = Cx(Z) h(z)T Cy(Z)_l

If both channel and equalizer are FIR of length L and
L', respectively, then the tap vector g can be obtained
from the L' by L + L’ — 1 To6plitz matrix H built on h
as: gt = et C, HY C; ', where e denotes the L+ L' —1
dimensional vector, whose entries are all null but the
first one, set to 1, Cp = E{x(n; L+ L' — 1)x(n; L+ L' —
'}, and Cy = E{y(n; L')y(n; L')T}. Tt is assumed
that ¢; = 1.

In a first experiment, we take a minimum phase MA2
channel with zeros 0.540.61 and 0.4 —0.5i. One reports
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in figure 1 the BERs obtained with the AR ZF equalizer
(the inverse) and the MA MSE equalizer of length 15.
In each case, true and identified channels are compared.
400 trials have been run with 500 samples each.

In the second experiment, we have assumed a channel
with zeros 1.2 + 0.81 and 0.4 — 0.51, which does not
admit a stable inverse. The BERs reported in figure 2
correspond to a AR ZF and ARMA MSE equalizers.

-6 I I
11 12

1‘3 dB
Figure 1: Bit Error rates of the linear equalizer output
obtained when the channel admits a stable inverse; solid:

True ZF, dashed: Estimated ZF, dashdotted: True MSE,
dotted: Estimated MSE.
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Figure 2: Bit Error rates of the DFE equalizer output
when the channel does not admit a stable inverse; solid:
True ZF, dashed: Estimated ZF, dashdotted: True MSE,
dotted: Estimated MSE.

4. CONCLUDING REMARKS

The blind identification scheme proposed in this paper
is dedicated to MSK or BPSK inputs. But the same
principle applies to other modulations such as QPSK,
to the price of an increase in the polynomial degrees,
and thus in complexity. Computer simulations have



been limited to the SISO MSK case but could be carried
out in the MIMO case as well.

A related problem that needs to be addressed is the
one of semi-blind identification. In the present frame-
work, it means that additional linear equations should
be taken into account, so that the system to solve be-
comes overdetermined.
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6. APPENDIX

Definitions. For any ideal Z C R, the quotient al-
gebra R/Z is the set of classes of polynomials p € R,
modulo the ideal Z: p = ¢q iff p — ¢ € Z. The quotient
algebra is denoted by .A.

The dual space of R is the set of linear forms from
R to the field C. It is denoted by R. The special linear
form which evaluates a polynomial p at a point ¢ is
denoted by 1¢: 1¢(p) = p(¢). The dual space A of A
is the subset of R of linear forms which vanish on the
ideal Z. We easily check that the evaluation 1 is in A
iff { is a root of all the polynomials in Z.

Given an element a € A, we define the operator of
multiplication by a as the map (6). The transpose op-
erator from A to A is by definition the map M? such
that (g, MEA) = (Maq,A) = (ag,A), VA € A Vg € R
so that we have ME(A)(¢) = A(ga).

Lemma 2 Let a be a fired given polynomial of R.
Then the eigenvalues in A of the operator M, are the
roots of system P.

Proof of lemma 2. Assume that for some ¢ # 0,
My -q =A¢gin A Then (¢ — A)g = 0 in A means
(a—A)g = Zle fiqi in R. But ¢ # 0 also in R, thus
3¢, such that f;(€,) = 0 and ¢(&,) # 0. Thus (e — ) ¢
cancels for some &, satisfying P such that ¢(&,) # 0,
which yields a(€,) = A. O

If one chooses a = hy, then the eigenvalues of M,
will yield the d¥ solutions h1 = A, 1 < m < dF.
In practice, the linear operator M, can be defined by
its matrix in a canonical basis (see section 2.5). This
procedure could be repeated for every component hy.
By using lemma 1, every eigenvector provides us with
all the unknowns related to each solution. This makes
the task easier compared to lemma 2.

Proof of lemma 1. Apply the definition of M} to
the linear forms 1¢  Then Vg, M (1¢ )(q) = 1¢, (aq) =
a(§,) 1¢,(q) In other words, M (1¢, ) = a(€,) 1¢,. This
shows that the forms 1¢ are eigenvectors of M asso-
ciated with eigenvalues a(€,). O

The converse, unused in this paper, is proved in [12].
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