Monitoring of Three-Phase Signals based on Singular-Value Decomposition

V. Choqueuse, Member, IEEE, P. Granjon, A. Belouchrani, Senior Member, IEEE, F. Auger, Senior Member, IEEE, and M. Benbouzid, Senior Member, IEEE,

Abstract—In this paper, a new approach for the analysis of three-phase electrical signals is considered. While most of the existing techniques are based on fixed transforms such as the Clarke transform, this paper investigates the use of a data-driven approach called the Singular Value Decomposition (SVD). As compared to other transforms, this study shows that the SVD has the distinct advantage of clearly separating the contributions of the phasor configuration and signal instantaneous parameters. Under additive white Gaussian noise, this paper also describes several algorithms based on the SVD for signal monitoring. The first algorithm can detect unbalanced systems and classify them into two categories: system with an off-nominal subspace and systems with ellipticity. The second algorithm can estimate the angular frequency based on the periodogram of the right singular vectors. As compared to other existing approaches, simulations show that the proposed techniques give a good compromise between computational complexity and statistical performance.

Index Terms—Three-phase signals, Singular-Value Decomposition, Generalized Likelihood Ratio Test, Frequency Estimation.

I. INTRODUCTION

Three-phase electrical signals play a key role in power electronic applications at the generation, transmission and distribution side. Under nominal conditions, each phase signal has a sinusoidal shape with a constant magnitude and a fundamental frequency equal to 60Hz (or 50Hz) [1], [2]. Moreover, balanced three-phase signals have equal magnitude and are ideally $2\pi/3$ apart in terms of phase angles. In practice, three-phase signals are seldom stationary and the phasor configuration may deviate significantly from the balanced case [3]. In a smart grid, these deviations are monitored using synchronized devices called Phasor Measurement Units (PMU) [4]–[6]. In particular, two signal parameters are of main interest: the signal fundamental frequency [7]–[10] and the phasor configuration [11], [12]. This has motivated the development of new low-complexity algorithms for frequency estimation and unbalanced detection in PMU devices.

Numerous studies have addressed the frequency estimation problem for electrical signals [6]. A commonly used approach for frequency estimation is based on the Discrete Time Fourier Transform (DTFT) [13], [14] and its extension such as the Interpolated Discrete Fourier Transform (IpDFT) [15]–[17]. Nevertheless, as recently pointed out in [18], these single-phase techniques usually require a large number of cycles and Signal to Noise Ratio (SNR) to meet the requirements of the IEEE Standard C37.118-2011 dealing with PMU specifications. To improve the estimator performance, one possible solution is to exploit the multi-dimensional nature of three-phase signals. For balanced signals, a conventional approach is based on the Clarke transform [19], [20]. After Clarke transform, the so-called $\alpha\beta$ components can be further processed to estimate the signal frequency [7], [8], [21]–[25] and other parameters of interest [23], [25]. For unbalanced signals, several authors have also investigated the use of the $\alpha\beta$ components for frequency estimation [7], [24]. However, this strategy has two major drawbacks. First, under unbalanced conditions, the use of the $\alpha\beta$ components usually requires sophisticated approaches since the signal trajectory depends both on the phasor configuration and on the signal instantaneous parameters. Then, while the Clarke transform is perfectly well-suited for the analysis of balanced three-phase signals, this technique is inherently suboptimal under unbalanced conditions [10]. Departing from this approach, some authors have also investigated the use of a data-driven approach called the Principal Component Analysis (PCA) for signal analysis [10], [23]. As compared to the Clarke transform, the PCA has the distinct advantage of extracting two orthogonal components directly from the covariance matrix of the multi-dimensional signal whatever the unbalance configuration [26].

Regarding the unbalance detection problem, conventional approaches are based on the computation of the voltage unbalance factors [27] or the analysis of the $\alpha\beta$ components [28]. To improve the detection performance, some authors have investigated the use of parametric approaches. These include the Generalized Likelihood Ratio Test (GLRT) [29], the Generalized Locally Most Powerful Test (GLMP) [30], or Information Theoretical Criteria techniques [31], [32]. While these techniques are based on the raw three-phase signal, a GLRT-based approach has also been proposed for the challenging case where only the native PMU outputs are available for detection purpose [33]. As compared to non-parametric approaches, parametric techniques have better statistical performance but are less robust to model mismatch. In particular, these parametric detectors assume perfectly sine-wave signals and their performance degrades quickly in the presence of time-varying amplitude and/or frequency.

In this paper, we propose a new approach for the analysis of
three-phase signals based on a Singular-Value Decomposition (SVD). As compared to other multi-dimensional tools such as the Clarke transform or the PCA, the main advantage of the SVD is that it gives a better insight into the structure of the three-phase signal. Specifically, by decomposing the three-phase signal into a product of three matrices, the SVD allows to clearly distinguish between the contribution of the phasors and signal instantaneous parameters. In particular, contrary to the PCA which has been previously used for estimation purpose [10], [23], the proposed technique can be used both for unbalance detection and frequency estimation. In this context, the contribution of this paper is twofold:

- First, we show how the SVD is related to the structure of the three-phase signal.
- Second, under Gaussian noise assumption, we show how to process the SVD to detect different types of off-nominal frequency. Finally, Section V reports on the performance of the proposed techniques with simulation signals.

II. SIGNAL MODEL

A. Three-phase Signal Model

Unbalanced three-phase signals can be described under noiseless condition by the following scalar-form model [34]

\[x_k[n] = d_k [a[n] \cos (\phi[n] + \varphi_k), \]

where the quantities \(a[n] \) and \(\phi[n] \) correspond to the instantaneous amplitude and phase respectively, while \(d_k \geq 0 \) and \(\varphi_k \in [0, 2\pi) \) correspond to the scaling factor and initial phase-angle on phase \(k = 0, 1, 2 \). Using complex notations, the three-phase signal can be expressed more compactly as \(z_k[n] = \Re (c_k z[n]) \) where the complex stationary phasors \(c_k \) \((k = 0, 1, 2)\) and the complex signal \(z[n] \) are given by

\[
\begin{align*}
 c_k &\triangleq d_k e^{j \varphi_k}, \\
 z[n] &\triangleq a[n] e^{j \phi[n]}.
\end{align*}
\]

In practice, note that three-phase signal can also contains other frequency components such as harmonics or inter-harmonics. In this study, we assume that these high-frequency components have been removed in a pre-processing stage by using a digital low-pass filter\(^1\).

The goal of this study is to analyse the complex phasors \(c_k \) and the complex signal \(z[n] \) from \(N \) samples of the three-phase signal \(x_k[n] \) \((k = 0, 1, 2)\). By using matrix notations, the three-phase signal of Eq. (1) can be expressed as

\[X = CZ^T, \]

where \((.)^T\) denotes the matrix transpose, and

\(^1\)It should be noted that the use of a digital low-pass filter introduces a phase shift and can increase the computation time.

- \(X \) is a \(3 \times N \) matrix which is defined as
 \[
 X = \begin{bmatrix}
 x_0[0] & \cdots & x_0[N-1] \\
 x_1[0] & \cdots & x_1[N-1] \\
 x_2[0] & \cdots & x_2[N-1]
 \end{bmatrix}, \tag{4}
 \]

 - \(Z \) is a \(N \times 2 \) matrix containing the real and imaginary parts of the complex signal \(z[n] \) and is defined as
 \[
 Z \triangleq \begin{bmatrix}
 \Re (z) & \Im (z)
 \end{bmatrix}^T, \tag{5}
 \]

 where \(z \triangleq [z[0] \cdots z[N-1]]^T \).

 - \(C \) is a \(3 \times 2 \) matrix which is defined as
 \[
 C \triangleq \begin{bmatrix}
 \Re (c) & \Im (c)^*
 \end{bmatrix}^T, \tag{6}
 \]
 where \((.)^*\) denotes the complex conjugate and \(c \triangleq [c_0 \ c_1 \ c_2]^T \).

B. Assumptions

In Eq. (1), the signal model cannot be uniquely identified. Indeed, as \(x_k[n] = \Re (c_k z[n]) \), it can be easily checked that \(x_k[n] = \Re (c_k^b z_k^b[n]) \) where \(c_k^b = \beta c_k \) and \(z_k^b[n] = z[n]/\beta \) with \(\beta \in \mathbb{C}^\star \). In this study, we assume a particular normalisation on the stationary phasors and complex signal in order to obtain simple expressions for the SVD.

Assumption 1. The energy of \(z[n] \), denoted \(\epsilon_z \), is equal to

\[
\epsilon_z \triangleq z^H z = \sum_{n=0}^{N-1} |z[n]|^2 = 2. \tag{7}
\]

Assumption 2. The sum of the squared phasors, denoted \(q_c \), is a positive real number i.e. \(\text{Arg} (q_c) = 0 \) where

\[
q_c \triangleq c^T c = \sum_{k=0}^{2} c_k^2. \tag{8}
\]

It is important to note that these two assumptions are not restrictive. Indeed, it is always possible to preserve the two requirements \(\epsilon_z = 2 \) and \(\text{Arg} (q_c) = 0 \) by making the substitution \(c_k \rightarrow \beta c_k \) and \(z[n] \rightarrow z[n]/\beta \) with \(\beta = \sqrt{\epsilon_z/2e^{-j \text{Arg}(q_c)/2}} \). To obtain simple expressions for the SVD, we also make the classical assumption that \(z[n] \) is an analytic signal, at least asymptotically. Mathematically, a signal is said to be analytic if its Discrete Time Fourier Transform (DTFT), \(Z(\omega) \), satisfies [35]

\[
Z(\omega) \triangleq \sum_{n=0}^{N-1} z[n]e^{-j \omega n} = 0 \quad \text{for} \quad -\pi < \omega < 0. \tag{9}
\]

By using the Parseval Identity, this assumption implies that

\[
q_c \triangleq \sum_{n=0}^{N-1} z[n]^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} Z(\omega)Z(-\omega)d\omega = 0. \tag{10}
\]

By using Assumptions 1 and 2 and Eq. (10), we obtain the following proposition.

Proposition 1. The matrices \(Z^T Z \) and \(C^T C \) can be decomposed as

\[
Z^T Z = \mathbf{I}_2, \tag{11a}
\]

\[
C^T C = \frac{1}{2} \begin{bmatrix}
\epsilon_c + q_c & 0 \\
0 & \epsilon_c - q_c
\end{bmatrix}, \tag{11b}
\]
where I_2 is the identity matrix of size 2×2, and $\epsilon_c = \sum_{k=0}^{2} |c_k|^2$.

III. SINGULAR-VALUE DECOMPOSITION OF THE THREE-PHASE SIGNAL

As C in (3) is a 3×2 matrix, the Singular-Value Decomposition of X presents at most two non-zero singular values. Therefore, the “compact” SVD can be expressed as

$$X = U_xS_xV_x^T$$ \hspace{1cm} (12)

- U_x is a 3×2 semi-orthogonal matrix ($U_x^TU_x = I_2$) that contains the left singular vectors of X.
- $S_x = \text{diag}(\sigma_2, \sigma_1)$ is a 2×2 diagonal matrix that contains the singular values of X with $\sigma_2 \geq \sigma_1$.
- V_x is a $N \times 2$ semi-orthogonal matrix ($V_x^TV_x = I_2$) that contains the right singular vectors of X.

In the following subsections, we show how the SVD matrices are related to the complex phasors c_k and analytic signal $z[n]$.

A. General case

Proposition 2. Using Proposition 1, the SVD of X can be expressed as $X = U_xS_xV_x^T$, where

- $U_x = CS_x^{-1}$
- $S_x = \begin{bmatrix} \sqrt{\sigma_2 + \epsilon_c} & 0 \\ 0 & \sqrt{\sigma_2 - \epsilon_c} \end{bmatrix}$
- $V_x = Z$

with $\epsilon_c = \sum_{k=0}^{2} |c_k|^2$ and $\epsilon_c = \sum_{k=0}^{2} c_k^*$.

Proof. Using Eq. (13a) to (13c), one can check that $U_xS_xV_x^T = CS_x^{-1}S_xZ^T = CZ^T = X$. Then, we have to verify that U_x and V_x are semi-orthogonal matrices. Proposition 1 and Eq. (13b) lead to $C^T C = S_x^2$ and so $U_x^TU_x = S_x^{-1}C^TCS_x^{-1} = I_2$. Then, Proposition 1 and Eq. (13c) show that $V_x^TV_x = Z^TZ = I_2$.

Remark 1. For the particular case where $q_c = 0$, the SVD of X is not unique since X can also be decomposed as $X = U_xQS_xQ^TV_x^T$ where Q is an 2×2 orthogonal matrix.

The previous proposition gives the structure of the “compact” SVD. From a geometrical point of view, it is also interesting to analyse the full SVD, which is given by

$$X = [U_x \qquad v_0] \begin{bmatrix} \sigma_2 & 0 & 0 \\ 0 & \sigma_1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} V_x^T \\ v_0 \end{bmatrix},$$ \hspace{1cm} (14)

where u_0 and v_0 are the left and right singular vectors associated with the null singular value of X. Regarding the left singular vector, u_0 can be obtained from the solution of the equation $C^T u_0 = 0$ under the unit-norm constraint $u_0^Tu_0 = 1$. By imposing the unit-norm constraint, u_0 can be decomposed as $u_0 = g/\|g\|$ where g is the vector cross-product between the two columns of C, i.e., $g = \Re(e^c) \wedge \Im(e^c)$. Therefore, we obtain the following proposition.

2Note that this proposition constitutes a generalization of a previous result obtained in [36] for purely stationary three-phase signals.

Proposition 3. The normal vector perpendicular to the signal subspace is given by

$$u_0 = \frac{g}{\|g\|},$$ \hspace{1cm} (15)

where $g = 3m \left([c_1c_2^* \quad c_2c_0^* \quad c_0c_1^*] \right)^T$.

B. Nominal condition

Under nominal condition, the three-phase signal is balanced and the corresponding complex phasors can be expressed as $c_k = c_0e^{-2\pi kj\pi/3}$. It follows that $q_c = 0$ and $\epsilon_c = 3|c_0|^2$ and we obtain the following decomposition.

Proposition 4. Under nominal condition, the SVD of X can be expressed as $X = U_xS_xV_x^T$ where $U_x = \alpha C$, $S_x = \frac{1}{\alpha}I_2$, $V_x = Z$, and $\alpha = \sqrt{\frac{2}{3|c_0|^2}}$.

Regarding u_0, it can be checked that $c_1c_2^* = c_2c_0^* = c_0c_1^* = |c_0|^2e^{2\pi j\pi/3}$. Therefore, we obtain the following result.

Proposition 5. Under nominal condition, the normal vector perpendicular to the signal subspace i.e.,

$$u_0 = n = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}^T.$$ \hspace{1cm} (17)

C. Geometrical interpretations

Several studies have shown the advantage of plotting the three-phase signal in the 3D Euclidean space [36]. As an example, Figure 1 presents the 3D trajectory for the case of an off-nominal modulated three-phase signal. The quantities defined through the SVD of Eq. (12) may be interpreted with a geometric point of view, and shed some highlights on the 3D trajectory of X.

- From Eq. (5) and (13c), it is clear that the right singular vectors V_x contain the real and imaginary parts of the analytic signal $z[n]$, which correlation matrix is the identity matrix (see Eq. (11a)). This indicates that the real and imaginary parts of $z[n]$ are uncorrelated and have the same energy, or equivalently that the scatter plot of $z[n]$ in the complex plane has a global circular shape.

- The diagonal matrix S_x containing the two singular values of X can be interpreted as a scaling matrix applied to the previous complex-valued signal, where σ_2 is the scaling factor applied to $\Re(z[n])$ and σ_1 is applied to $\Im(m(z[n]))$. Consequently, these two positive factors contain the information on the global ellipticity of the trajectory followed by X, σ_2 being related to its semi-major axis and σ_1 to its semi-minor axis.

- The left singular vectors U_x form an orthonormal basis for the three-phase signal X, and therefore give the orientation of the plane containing the trajectory of the whole three-phase signal, as well as the orientation of its minor and major axes. Equivalently, the 3×3 matrix $[U_x \ q_0]$ appearing in the full SVD of X in Eq. (14) is an orthogonal matrix, and can also be interpreted as a 3D rotation matrix applied to the previous plane elliptic trajectory.
where W is a 3 \times 3 diagonal matrix with $\tilde{\sigma}_2 \geq \tilde{\sigma}_1 \geq \tilde{\sigma}_0 \geq 0$, and $V = [\tilde{V}_2, \tilde{V}_1, \tilde{V}_0]$ is a $N \times 3$ semi-orthogonal matrix.

In this section, we propose to detect unbalance systems from the structure of \hat{U} and \hat{S}, and to estimate the angular fundamental frequency from the right singular vectors \tilde{V}.

A. Off-nominal subspace detection test

As stated in Prop. 5, the noiseless three-phase signal belongs to a plane with normal vector $u_0 = n$ under nominal condition.

To detect a off-nominal signal subspace, we therefore propose to address the following hypothesis testing problem:

- H_0: $u_0 = n$
- H_1: $u_0 \neq n$;

where n is defined in (17). Then, we propose to use a GLRT detector for choosing between the two hypothesis. This detector chooses H_1 if

$$T_n(Y, \sigma^2) = 2\ln \left(\frac{\mathcal{L}(Y; \bar{Z}, \sigma^2, H_1)}{\mathcal{L}(Y; Z, \sigma^2, H_0)} \right) > \tau, \quad (20)$$

where $\mathcal{L}(Y; Z, \sigma^2, H_k)$ corresponds to the likelihood function of Y [37, Section 6.5]. It is demonstrated in Appendix A that

$$T_n(Y, \sigma^2) = \frac{1}{\sigma^2} (||n^T Y||_F^2 - \tilde{\sigma}_0^2). \quad (21)$$

This detector relies on the difference between two positive terms normalized by the noise variance. Obviously, $T_n(Y, \sigma^2)$ is close to zero under nominal condition, and positive otherwise. Moreover, under assumption H_0, it is known that the GLRT follows a chi-squared distribution with r degrees of freedom, where r corresponds to the number of free parameters under H_0 [37, Section 6.5]. As u_0 is a 3 unit-norm column vector, it follows that the criterion follows under H_0 a chi-squared distribution with 2 degrees of freedom, i.e. $T_n(Y, \sigma^2) \sim \chi^2_2$. Note that the evaluation of $T_n(Y, \sigma^2)$ requires the knowledge of the noise variance. When the noise variance is unknown, we propose to replace it by the following estimator $\hat{\sigma}^2 = \tilde{\sigma}_0^2 / N$. For large N, as the variance of $\tilde{\sigma}^2$ is negligible as compared to the variance of $T_n(Y, \sigma^2)$, the distribution of $T_n(Y, \hat{\sigma}^2)$ can be approximated by the distribution of $T_n(Y, \sigma^2)$. Using this approximation, we obtain the following proposition.

Proposition 6. The GLRT detector chooses hypothesis H_1 if

$$T_n(Y) = N \frac{1}{\tilde{\sigma}_0^2} (||n^T Y||_F^2 - \tilde{\sigma}_0^2) = N \left(\frac{||n^T Y||_F^2}{\tilde{\sigma}_0^2} - 1 \right) \quad (22)$$

is greater than a threshold τ_m. Furthermore, under H_0, $T_n(Y)$ follows, asymptotically, a chi-squared distribution with 2 degrees of freedom.

In practice, the test threshold τ_m can be set according to the desired probability of false alarm, $p_{fa} \triangleq 1 - \int_{\tau_m}^{\infty} p(T_n(Y) = x | H_0) \, dx$. Indeed, by using Proposition 6, we obtain

$$p(T_n(Y) = x | H_0) = \begin{cases} \frac{x}{\tau_m} e^{-\frac{x}{\tau_m}} & x > 0 \\ 0 & x < 0 \end{cases} \quad (23)$$

and so $\tau_m = -2 \ln(p_{fa})$.

IV. Estimation / Detection of Off-Nominal Conditions under Gaussian Noise

In practice, the signal is usually corrupted by an additive noise i.e. $y_k[n] = x_k[n] + w_k[n]$. Using a matrix form, the noisy signal can be expressed as

$$Y \triangleq \begin{bmatrix} y_0[0] & \cdots & y_0[N-1] \\ y_1[0] & \cdots & y_1[N-1] \\ y_2[0] & \cdots & y_2[N-1] \end{bmatrix} = X + W, \quad (18)$$

where $X = CZ^T$ is the noiseless signal defined in Eq. (3) and W contains the additive noise. In the following, we assume that the element of W located in the u^{th} row and v^{th} column, denoted $w[u, v]$, has a Gaussian distribution with zero-mean and variance equal to σ^2, i.e. $w[u, v] \sim \mathcal{N}(0, \sigma^2)$ [3]. Moreover, this noise is assumed to be white in the time domain (regarding v) and uncorrelated from phase to phase (regarding u). Note that because of the additive noise, the SVD of Y is generally different from that of X. The SVD of Y can be expressed as

$$Y = \hat{U} \hat{S} \hat{V}^T, \quad (19)$$

- $\hat{U} = [\bar{u}_2, \bar{u}_1, \bar{u}_0]$ is a 3×3 orthogonal matrix,
- $\hat{S} = \text{diag}(\hat{\sigma}_2, \hat{\sigma}_1, \hat{\sigma}_0)$ is a 3×3 diagonal matrix with $\hat{\sigma}_2 \geq \hat{\sigma}_1 \geq \hat{\sigma}_0 \geq 0$, and
- $\hat{V} = [\tilde{V}_2, \tilde{V}_1, \tilde{V}_0]$ is a $N \times 3$ semi-orthogonal matrix.

c. Trajectory of the three-phase signal $X = U_{3x} S_{3x} V_{3x}^T$

Fig. 1: Geometrical analysis of the trajectory of the three-phase signal ($c_0 = 1$, $c_1 = 0.8 e^{-2.2j\pi/3}$ and $c_2 = 1.9 e^{-3.9j\pi/3}$, amplitude-modulated sine wave signals).
B. Ellipticity test

Under nominal conditions the two largest singular values of the three-phase signal are equal. Then, we propose to address the following ellipticity test detection:

- \mathcal{H}_0: the signal is globally circular i.e. $\sigma_2 = \sigma_1$,
- \mathcal{H}_1: the signal is not globally circular i.e. $\sigma_2 \neq \sigma_1$.

The GLRT detector chooses \mathcal{H}_1 if

$$\mathcal{T}_\sigma(Y, \sigma^2) = 2\ln \left(\frac{L(Y; \hat{X}, \sigma^2, \mathcal{H}_1)}{L(Y; \hat{X}, \sigma^2, \mathcal{H}_0)} \right) > \tau. \quad (24)$$

It is demonstrated in the Appendix B that

$$\mathcal{T}_\sigma(Y, \sigma^2) = \frac{1}{2\sigma^2} (\hat{\sigma}_2 - \hat{\sigma}_1)^2. \quad (25)$$

This equation shows that the GLRT approach leads to a simple intuitive criterion that is equal to the weighted squared difference of the two largest singular values. This criterion can also be viewed as the weighted squared difference between the semi-major and semi-minor axes of the ellipse approximating the signal 3D trajectory. Under assumption \mathcal{H}_0, the two singular values are nearly equal and their difference is close to 0 i.e. $\mathcal{T}_\sigma(Y, \sigma^2) = 0$. Under assumption \mathcal{H}_0 and additive Gaussian noise, than’s to the properties of the GLRT, the decision statistic follows asymptotically a chi-squared distribution with 2 degrees of freedom, i.e. $\mathcal{T}_\sigma(Y, \sigma^2) \sim \chi^2_2$. When the noise variance is unknown, we propose to replace σ^2 by $\hat{\sigma}^2 = \frac{\hat{\sigma}_2^2}{N}$ using similar arguments as in section IV-A.

Proposition 7. The GLRT detector chooses hypothesis \mathcal{H}_1 if

$$\mathcal{T}_\sigma(Y) = \frac{N}{2\hat{\sigma}_0} (\hat{\sigma}_2 - \hat{\sigma}_1)^2 \quad (26)$$

is greater than a threshold τ_m. Furthermore, under hypothesis \mathcal{H}_0, $\mathcal{T}_\sigma(Y)$ follows, asymptotically, a chi-squared distribution with 2 degrees of freedom.

C. Estimation of the angular frequency

The analytic signal \hat{z} can be estimated from the 2 principal right-singular vectors $\hat{V}_\mathcal{S} = [\hat{v}_2, \hat{v}_1]$ as $\hat{z} = \hat{v}_2 + j\hat{v}_1$. It is demonstrated in Appendix C that the estimated analytic signal $\hat{z} = [\hat{z}[0], \cdots, \hat{z}[N-1]]^T$ can be approximated by

$$\hat{z}[n] \approx a[n]e^{j(\rho[n]+\phi)} + b[n], \quad (27)$$

where $b[n]$ contains the additive noise, ϕ corresponds to an unknown phase-shift and $\rho \in [1, -1]$. Regarding the additive noise, as $w[u, v] \sim \mathcal{N}(0, \sigma_w^2)$, $b[n]$ follows a complex zero-mean noncircular white Gaussian distribution. Note that the additive noise becomes circular if and only if $\hat{\sigma}_1^2 = \hat{\sigma}_2^2$. In the following, we show how to accurately estimate the signal angular frequency from $\hat{z}[n]$ for the particular case where the instantaneous amplitude is constant, i.e. $\hat{z}[n] = ce^{j\omega_0 n}$. To estimate the unknown signal parameters, a natural approach is to minimize the sum of squared residuals between $\hat{z}[n]$ and $ce^{j\omega_0 n}$. Mathematically, the Least-Squares (LS) estimator is then given by

$$\{\hat{\rho}, \hat{\omega}_0, \hat{c}\} = \arg \min_{\rho, \omega, c} \sum_{n=0}^{N-1} |\hat{z}[n] - ce^{j\omega_0 n}|^2, \quad (28)$$

where $r \in \{1, -1\}$, $\omega \in [0, \pi]$ and $c \in \mathbb{C}$. In the following, instead of minimizing the LS cost-function directly, we propose an alternative low-complexity technique based on the decoupled estimation of ρ, ω_0, and c.

1) Estimation of ρ: As $z[n]$ is an analytic signal, its Discrete Time Fourier Transform is equal to 0 for $-\pi < \omega < 0$ (modulo 2π). In order to estimate ρ, a simple solution is to compare the energy of $\hat{z}[n]$ in the frequency band $0 < \omega < \pi$ to the one in the band $\pi < \omega < 2\pi$. Specifically, let us define the DTFT of the truncated signal $\hat{\tilde{z}}$ as

$$Z_m \triangleq \sum_{n=0}^{M-1} \hat{z}[n]e^{-j\frac{2\pi n m}{N}}, \quad (29)$$

where $M < N$ is the truncated signal length. Then, a simple estimator of ρ is given by

$$\hat{\rho} = \begin{cases} 1 & \text{if } \sum_{m=0}^{M/2-1} |Z_m|^2 \geq \sum_{m=M/2}^{M-1} |Z_m|^2, \\ -1 & \text{elsewhere} \end{cases} \quad (30)$$

2) Estimation of c and ω_0: In (28), it can be checked that the LS cost-function is minimized when $c = \frac{1}{N} \sum_{n=0}^{N-1} \hat{z}[n]e^{-j\hat{\omega}_0 n} [38]$. Then, by replacing c and ρ by their estimate, the angular frequency estimator can be obtained from the maximizer of the direction-corrected Periodogram of \hat{z} i.e.

$$\hat{\omega}_0 = \arg \max_\omega \frac{1}{N} \sum_{n=0}^{N-1} |\hat{z}[n]e^{-j\hat{\omega}_0 n}|^2. \quad (31)$$

D. Algorithms Summary

Under additive Gaussian noise, we have proposed two techniques for the detection of unbalanced systems: the first one is described by the Algorithm 1 and can be used to detect an off-nominal signal subspace, the second one is described by the Algorithm 2 and can be used to detect an elliptic signal trajectory. The proposed frequency estimator is described by the Algorithm 3. Figure 2 shows how to combine these algorithms for the analysis of three-phase signals. From a physical viewpoint, it should be mentioned that the proposed detectors can distinguish between two classes of unbalanced systems. Specifically, the first class corresponds to the case where the zero-sequence is not equal to 0 while the second one corresponds to the case where the signal is not circular in the 2D plane. If a three-phase signal belongs, at least, to one of these classes, then the system is unbalanced. Note that these two classes are not exclusive since some unbalanced systems may have a non-null zero-sequence component and be non-circular in the 2D plane.

V. SIMULATION RESULTS

To highlight the interest of this study, this section reports on the performance of the proposed techniques with Monte Carlo simulations. In each simulation, the three-phase signal is described by the signal model in (18) where $w[u, v] \sim \mathcal{N}(0, \sigma_w^2)$. Concerning the analytic signal, $z[n] = ce^{j\omega_0 n}$ where the (normalized) angular frequency is given by $\omega_0 = 2\pi f_0/F_s = 120\pi/F_s$, $f_0 = 60$ Hz corresponds to the signal frequency, and
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSG.2019.2898118, IEEE Transactions on Smart Grid

Algorithm 1 Blind Off-nominal subspace detection test

Input: Three Phase Signal Y, threshold τ_m.

Output: detected (True or False)

1. Compute the SVD of $Y = \hat{U}\hat{S}\hat{V}^T$
2. Extract the smallest singular value $\hat{\sigma}_0$ from \hat{S}
3. Compute $\|n^T Y\|^2_F$
4. Compute the test criterion $T_n(Y)$ in (22).
5. if $(T_n(Y) > \tau_m)$ then
 6. detected ← True
 7. else
 8. detected ← False
9. end if
10. return detected

Algorithm 2 Blind Ellipticity detection test

Input: Three Phase Signal Y, threshold τ_σ.

Output: detected (True or False)

1. Compute the SVD of $Y = \hat{U}\hat{S}\hat{V}^T$
2. Extract the three singular values $\hat{\sigma}_2 \geq \hat{\sigma}_1 \geq \hat{\sigma}_0$ from \hat{S}
3. Compute the test criterion $T_\sigma(Y)$ in (26).
4. if $(T_\sigma(Y) > \tau_\sigma)$ then
 5. detected ← True
 6. else
 7. detected ← False
8. end if
9. return detected

Algorithm 3 Angular frequency Estimator

Input: Three Phase Signal Y, truncated signal length M

Output: Angular frequency ω_0

1. Compute the SVD of $Y = \hat{U}\hat{S}\hat{V}^T$
2. Estimate the analytical signal with $\hat{z} = \hat{v}_2 + j\hat{v}_1$
3. Compute the DTFT of the truncated signal $z[n]$ ($n = 0, \ldots, M - 1$).
4. Estimate the rotating direction ρ using (30).
5. Estimate ω_0 by maximizing the direction-corrected periogram of \hat{z} in (31) using an optimisation algorithm.
6. return $\hat{\omega}_0$

$F_s = 60 \times 24 = 1440 \text{ Hz}$ is the sampling rate. Using these parameters, the cycle duration is equal to $N = 24$ samples. For the considered signal, it should be mentioned that the requirement in (10) is only satisfied when $N = k\pi/\omega_0 = 12k$ ($k \in \mathbb{N}$) or asymptotically when $N \gg \frac{\pi}{\omega_0}$. The values of c_k are set according to one of the configurations in Table I, where the four configurations refer respectively to a perfectly balanced signal ($\omega_0 = \pi$ and $\sigma_2 = \sigma_1$), a signal with off-nominal subspace ($\omega_0 \neq \pi$), a non-circular signal ($\sigma_2 \neq \sigma_1$), and a full unbalanced signal. In the following simulations, the Signal to Noise Ratio (SNR) is defined as $SNR = 10\log(\|c\|^2/(6\sigma^2))$ and the performance is estimated from 10^5 Monte Carlo trials.

A. Off-nominal subspace detection

This subsection presents the performance of several detectors for the discrimination of phasor configurations 1 and 2 in Table I. In each simulation, three detectors are considered: the clairvoyant detector that requires a perfect knowledge of σ^2 (denoted clair), the blind detector (denoted blind), and the GLRT detector proposed by Sun that requires a perfect knowledge of σ^2 and ω_0 [29]. Mathematically, the clairvoyant and blind detectors are based on the GLRT expressions given by Eqs.(21) and (22), respectively.

Figure 3a gives the probabilities of detection, P_D, and false alarm, P_{FA}, versus the signal length N when the test threshold is computed as $\tau_m = -2\ln(p_{FA})$ with $P_{FA} = 0.1$. We observe that the three detectors allow to detect the off-nominal subspaces with high probability when $N > 80$ samples. In particular, the proposed blind and clairvoyant detectors perform well even if the condition $q_2 = 0$ is not perfectly fulfilled. Moreover, we note that the experimental probability of false alarm is close to its theoretical value, $p_{FA} = 0.1$, from $N = 100$ samples. Figure 3b shows the Receiver Operating Characteristic (ROC) curve i.e. the probability of detection versus the probability of false alarm for different values of the test threshold τ_m. The ROC curves are evaluated for $N = 48$ samples and different SNRs. We observe that the clairvoyant and blind detectors have similar performance whatever the SNR. We also note that the Sun detector clearly outperforms the two proposed detectors whatever the SNR. Nevertheless, it should be mentioned that the performance of the Sun detector, which has been designed for perfectly sine-wave signals, significantly degrades in the presence of dynamic conditions. To illustrate this behavior, Fig 3c presents the evolution of the experimental probability of false alarm in presence of amplitude modulation. We see that Sun detector is not able to maintain the probability of false alarm to $p_{FA} = 0.1$ when the modulation index increases, while the two proposed detectors are insensitive to the presence of amplitude modulation.

B. Ellipticity detection

This subsection reports on the performance of several detectors for the discrimination of phasor configurations 1 and 3 in Table I. In each simulation, three detectors are considered: the proposed clairvoyant detector, the proposed blind detector, and the Sun detector [29]. The two proposed detectors are based on the equations (25) and (26), respectively. Figure 4a

![Fig. 2: Analysis of three-phase signals using SVD](image-url)
shows the values of P_d and P_{fa} versus the signal length N when $p_{fa} = 0.1$. We observe that the probabilities of detection and false alarm exhibit strong oscillations for the two proposed detectors. These oscillations are caused by the fact that the assumption $q_k = 0$ is not fulfilled for small values of N. We also note that the experimental probability of false alarm seems to be exactly equal to its expected value when $N = 12k$ ($k \in \mathbb{N}$). Figure 4b presents the Receiver Operating Characteristic (ROC) for the two detectors when $N = 48$ samples. We observe that a large SNR is required to guarantee satisfying performance. Figure 4c reports on the ability for the three detectors to maintain the probability of false alarm in presence of amplitude modulation. We see that the performance of the considered techniques critically depend on the number of samples. Indeed, we observe that the three detectors are not able to maintain the probability of false alarm when $N = 48$ samples, but lead to satisfactory results when $N = 288$ samples. As compared to the proposed techniques, we observe that the Sun detector clearly outperforms the proposed approaches for ellipticity detection. Nevertheless, it should be emphasized that this detector requires a perfect knowledge of the fundamental frequency and noise variance, while our techniques can be used without a priori information about these parameters.

C. Angular frequency estimation

In this section, we focus on the angular frequency estimation problem. Specifically, this section compares the performance of the following techniques for frequency estimation.

- The proposed SVD-based estimator described in subsection IV-C (SVD).
- The DTFT algorithm obtained by maximizing the periodogram of the signal on the first phase $x_0[n]$ [13].
- The Maximum Likelihood Estimator (ML) [10].
- The Maximum Likelihood Estimator under balanced assumption (ML-bal) [25].
- The Clarke-based approximate Maximum Likelihood Estimator (ML-Clarke) [7].

For these techniques, the frequency estimate is obtained by maximizing a cost-function whose evaluation requires the computation of several DTFTs. These cost-functions are maximized by using the Nelder-Mead optimisation algorithm with an initial value $\omega_{init} = 120\pi/F_s$ [39]. For the proposed estimator, the SVD has been implemented using the svd() subroutine of Python/Numpy and the rotating direction has been estimated using several Monte Carlo trials. Note that the MSE can be decomposed as $MSE(\hat{\omega}_0) = \text{var}(\hat{\omega}_0) + \text{bias}^2(\hat{\omega}_0, \bar{\omega}_0)$ where $\text{var}(\hat{\omega}_0)$ is the estimator variance and bias$^2(\omega_0, \bar{\omega}_0) = E(\hat{\omega}_0) - \omega_0$ corresponds to the estimator bias [38]. In each trial, the angular frequency is set to $\omega_0 = 2\pi \times 65/F_s$ ($f_0 = 65$Hz) and the phasors are given by the configuration 4 in Table I. The approximate Cramér-Rao Bound $\text{CRB} = \frac{2\pi^2}{N\max|\hat{\omega}|}$ is also reported for comparison [10].

Figure 5a presents the evolution of the MSE versus N. We observe that the ML estimator achieves optimal performance for $N > 20$ samples. Concerning the ML-Clarke and ML-bal techniques, we note that the MSE exhibits a strong oscillation with period $N \approx 12$ samples. To explain this behavior, Fig. 5b reports on the estimator bias for the considered techniques. We see that the oscillations of the MSE for the DTFT, ML-Clarke and ML-bal techniques are due to the estimator bias. We also note that the contribution of the bias seems to be negligible for the proposed and ML techniques. Finally, Figure 5c shows the influence of the SNR on the MSE. Except for the ML
technique, we observe that the estimators exhibit an error floor at SNR > 30 dB. This error floor appears to be caused by the estimator bias for finite \(N \).

To evaluate the estimator performance, the IEEE Standard C37.118.1-2011 has introduced a criterion called the Frequency Error (FE) which is defined as \(FE = |f_0 - \hat{f}_0| \) \[40\]. To be compliant with this standard, the frequency error must be bounded by \(FE < 0.005 \). As pointed out in \[10\], when the signal is corrupted by an additive noise, this criterion is not well suited for the analysis of the estimation performance since the frequency error becomes a random variable. In this context, a natural extension is to evaluate the probability of Frequency Error compliance, i.e. \(P_{FE} \triangleq P[|f_0 - \hat{f}_0| < 0.005] \). Figure 6 presents the evolution of \(P_{FE} \) versus \(N \). It shows that the performance of the proposed estimator is closed to the one of the ML technique, and that the performance of the other estimators are strongly affected by the presence of the estimator bias.

Fig. 4: Ellipticity detection (phasor configurations 1 and 3 in Table I, \(\omega_0 = 2\pi \times 65/F_s \)).

Fig. 5: Angular Frequency Estimation (phasor configuration 4 in Table I).
where \(\| \cdot \|_F^2 \) corresponds to the Frobenius norm and \(\beta = \left(\frac{1}{2\pi\sigma^2} \right) ^{\frac{1}{2}} \). In practice, the matrix \(\mathbf{Z}_F^T \) is unknown and can be replaced by its Maximum Likelihood estimate \(\mathbf{Z}_F^T = (\mathbf{C}^T\mathbf{C})^{-1}\mathbf{C}^T\mathbf{Y} \) [38, Chapter 7]. Let us introduce \(\mathbf{P}_C \mid \mathbf{I} = (\mathbf{C}^T\mathbf{C})^{-1}\mathbf{C}^T \), the orthogonal projector into the null space of \(\mathbf{C} \). As \(\mathbf{C} \) is a 3 x 2 matrix, this projector can be decomposed as \(\mathbf{P}_C = \mathbf{u}_0\mathbf{u}_0^T \) [14, Result R17]. Therefore,

\[
\mathcal{L}(\mathbf{Y}; \hat{\mathbf{Z}}, \sigma^2, \mathbf{H}_k) = \beta e^{-\frac{1}{\sigma^2} \| \mathbf{P}_C\mathbf{Y} \|_F^2} = \beta e^{-\frac{1}{\sigma^2} \| \mathbf{u}_0^T\mathbf{Y} \|_F^2}
\]

where \(\mathbf{u}_0 = \mathbf{n} \) under assumption \(\mathbf{H}_0 \). Under assumption \(\mathbf{H}_1 \), \(\mathbf{u}_0 \) is given by \(\mathbf{u}_0 \) [41, Section 4.2]. As \(\| \mathbf{u}_0^T\mathbf{Y} \|_F^2 = \hat{\sigma}_0^2 \), Eq. (20) can be simplified as in Eq. (21).

APPENDIX B

DERIVATION OF \(\mathcal{T}_G(\mathbf{Y}, \sigma^2) \)

As \(w[u, v] \sim \mathcal{N}(0, \sigma^2) \), we obtain

\[
\mathcal{L}(\mathbf{Y}; \mathbf{X}, \sigma^2, \mathbf{H}_k) = \beta e^{-\frac{1}{\sigma^2} \| \mathbf{Y} - \mathbf{X} \|_F^2}.
\]

(33)

To evaluate the likelihood-function, \(\mathbf{X} \) must be replaced by its MLE. Two cases must be distinguished. Under \(\mathbf{H}_1 \), the MLE of \(\mathbf{X} \) is found by minimizing the Frobenius norm \(\| \mathbf{Y} - \hat{\mathbf{X}} \|_F^2 \) where \(\hat{\mathbf{X}} \) is a rank-2 matrix. The Eckart-Young theorem states that this norm is minimized for \(\hat{\mathbf{X}} = \mathbf{US}_T^T \) where

\[
\hat{\mathbf{S}}_1 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \hat{\sigma}_1 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
\]

(34)

Under \(\mathbf{H}_0 \), the MLE of \(\mathbf{X} \) is found by minimizing the Frobenius norm \(\| \mathbf{Y} - \mathbf{US}_0^T \|_F^2 = \| \mathbf{S} - \mathbf{S}_0 \|_F^2 \) with respect to \(\hat{\mathbf{S}} \). After some computations, we obtain \(\hat{\mathbf{S}} = \frac{1}{2}(\hat{\mathbf{S}}_1 + \hat{\mathbf{S}}_2) \).

By using these two results, Eq. (33) can be expressed as

\[
\mathcal{L}(\mathbf{Y}; \hat{\mathbf{X}}, \sigma^2, \mathbf{H}_k) = \beta e^{-\frac{1}{\sigma^2} \| \mathbf{Y} - \mathbf{US}_0^T \|_F^2} = \beta e^{-\frac{1}{\sigma^2} \| \mathbf{S} - \mathbf{S}_0 \|_F^2}.
\]

Then, by using the fact that \(\hat{\sigma} = \frac{1}{2}(\hat{\sigma}_1 + \hat{\sigma}_2) \), we obtain

\[
\mathcal{T}_G(\mathbf{Y}, \sigma^2) = \frac{1}{\sigma^2} \left(\| \mathbf{S} - \mathbf{S}_0 \|_F^2 - \| \mathbf{S} - \mathbf{S}_1 \|_F^2 \right) = \frac{1}{2\sigma^2} (\hat{\sigma}_2 - \hat{\sigma}_1)^2.
\]

APPENDIX C

EXPRESSION OF \(\hat{\mathbf{z}}[n] \)

The analytic signal \(\mathbf{z} \) is estimated from the 2 principal right-singular vectors \(\mathbf{V}_x = [\mathbf{v}_2, \mathbf{v}_1] \). These vectors can be computed as \(\mathbf{V}^T_x = \mathbf{S}^{-1}_x \mathbf{U}_x^T \mathbf{Y} \) where \(\mathbf{S}_x \) and \(\mathbf{U}_x \) correspond to the 2 largest singular values of \(\mathbf{Y} \) and their associated left singular vectors.
For large N and small σ^2, $G = \hat{U}_x S_x^\top C Q W$ where Q is an orthogonal matrix containing the SVD indeterminacies. By using this property, it follows that

$$\hat{V}_x = S_x^{-1} \hat{U}_x^\top W = S_x^{-1} \hat{U}_x^\top CZ^T + S_x^{-1} \hat{U}_x^\top W \approx Q^T Z + \hat{S}_x^{-1} \hat{U}_x^\top W.$$

As Q is an 2×2 orthogonal matrix, $Q \in \{Q_1, Q_2\}$ where

$$Q_1 \triangleq \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad Q_2 \triangleq \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{bmatrix}.$$

Then, the estimator of the analytic signal can be obtained as

$$\hat{z} \triangleq \Re \{\hat{V}_x\} \approx \begin{cases} e^{-j\theta} z + b & \text{if } Q = Q_1, \\ e^{j\theta} z^* + b & \text{if } Q = Q_2, \end{cases}$$

(36)

where b is an additive white complex noise. Finally, using the definition of z, Eq. (36) can be expressed as in Eq. (27).

REFERENCES

Vincent Choqueuse (S’08 - M’09) was born in Brest, France, in 1981. He received the Dipl.Ing. and M.Sc. degrees from the Troyes University of Technology, France, in 2004 and 2005, respectively, and the Ph.D. degree from the University of Brest, in 2008. From 2008 to 2018, he was an Associate professor at the Institut Universitaire de Technologie of Brest, University of Brest, and a member of the Institut de Recherche Dupuy de Lôme (UMR CNRS 6027). He is now with the Ecole Nationale des Ingénieurs de Brest (ENIB), Brest and a member of the Lab-STICC (UMR CNRS 6285).

His current research interests include signal processing and statistics for power systems monitoring, smart-grid, digital communication, and digital audio.

Pierre Granjon was born in 1971 in France. France in 2000. He joined the Laboratoire des Images et des Signaux (LIS) in 2002 and the Gipsa-lab at Grenoble-INP in 2007, where he holds a position as associate professor.

His research is mainly focused on signal processing methods for system monitoring and fault diagnosis. He developed several monitoring methods for electrical rotating machines and power networks based on the analysis of vibrations or electrical quantities. His current research is mainly focused on developing efficient methods to properly analyze three-component signals such as three-axis vibrations or three-phase electrical quantities.

François Auger (M’93 - SM’12) was born in Saint-Germain-en-Laye, France, in 1966. He received the Engineer degree and the D.E.A. in signal processing and automatic control from the Ecole Nationale Supérieure de Mécanique de Nantes in 1988, and the PhD from the Ecole Centrale de Nantes in 1991.

From 1993 to 2012, he was “Maître de Conférences” (assistant professor) at the IUT de Saint-Nazaire (Université de Nantes). He is now full professor at the same place.

His current research interests include automatic control and diagnosis of electrical power systems, spectral analysis and time-frequency representation of non stationary signals. Dr. Auger is a member of the GdR720 CNRS “Information, Signal, Images et ViSion”.

Mohamed Benbouzid (S’92 - M’95 - SM’98) was born in Batna, Algeria, in 1968. He received the B.Sc. degree in electrical engineering from the University of Batna, Batna, in 1990, the M.Sc. and Ph.D. degrees in electrical and computer engineering from the National Polytechnic Institute of Grenoble, Grenoble, France, in 1991 and 1994, respectively, and the Habilitation Diriger des Recherches degree in electrical engineering from the University of Picardie Jules Verne, Amiens, France, in 2000.

After receiving the Ph.D. degree, he joined the Professional Institute of Amiens, University of Picardie Jules Verne, where he was an Associate Professor of electrical and computer engineering. Since 2004, he has been with the Institut Universitaire de Technologie of Brest, University of Brest, Brest, France, where he is currently a Professor of electrical engineering. He is also a Distinguished Professor with Shanghai Maritime University, Shanghai, China.

His current research interests include analysis, design, and control of electric machines, variable-speed drives for traction, propulsion, and renewable energy applications, and fault diagnosis of electric machines.

Prof. Benbouzid is the Editor-in-Chief of the International Journal on Energy Conversion. He is also an Associate Editor of the IEEE Transactions on Energy Conversion, the IEEE Transactions on Industrial Electronics, the IEEE Transactions on Sustainable Energy, the IEEE Transactions on Vehicular Technology, and the IET Renewable Power Generation.

Adel Belouchrani (S’94 - M’96 - SM’14) was born in Algiers, Algeria, in 1967. He received the State Engineering degree from the Ecole Nationale Polytechnique (ENP), Algiers, Algeria, in 1991, the M.S. degree in signal processing from the Institut National Polytechnique de Grenoble, France, in 1992, and the Ph.D. degree in signal and image processing from Télécom Paris, France, in 1995. He was a Post-Doctoral Fellow with Electrical Engineering and Computer Sciences Department, the University of California, Berkeley, CA, USA, from 1995 to 1996. He was a Research Associate with the Department of Electrical and Computer Engineering, Villanova University, Villanova, PA, USA, from 1996 to 1997. From 1998 to 2005, he was an Associate Professor with the Electrical Engineering Department, ENP. Since 2006, he has been a Full Professor with ENP.

His research interests are in statistical signal processing, (blind) array signal processing, time-frequency analysis, and time-frequency array signal processing with applications in biomedical and communications. He is a founding member of the Algerian Academy of Science and Technology. He served as an Associate Editor of the IEEE Transactions on Signal Processing for two terms from 2013 to 2017. He is currently Senior Area Editor of the IEEE Transactions on Signal Processing.