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Abstract 
This paper presents a method for automatically animating the 
articulatory tongue model of a reference speaker from 
ultrasound images of the tongue of another speaker. This work 
is developed in the context of speech therapy based on visual 
biofeedback, where a speaker is provided with visual 
information about his/her own articulation. In our approach, 
the feedback is delivered via an articulatory talking head, 
which displays the tongue during speech production using 
augmented reality (e.g. transparent skin). The user’s tongue 
movements are captured using ultrasound imaging and 
parameterized using the PCA-based EigenTongue technique. 
Extracted features are then converted into control parameters 
of the articulatory tongue model using Gaussian Mixture 
Regression. This procedure was evaluated by decoding the 
converted tongue movements at the phonetic level using an 
HMM-based decoder trained on the reference speaker's 
articulatory data. Decoding errors were then manually re-
assessed in order to take into account possible phonetic 
idiosyncrasies (i.e. speaker / phoneme specific articulatory 
strategies). With a system trained on a limited set of 88 VCV 
sequences, the recognition accuracy at the phonetic level was 
found to be approximately 70%. 
Index Terms: articulatory tongue model, articulatory talking 
head, ultrasound imaging, GMM, speech therapy 

1. Introduction 
In order to treat articulation disorders, it could potentially be 
helpful for both the patient and the therapist to display the 
position and shape of the tongue in the vocal tract. Besides, 
several studies have shown that providing a speaker with a 
visual feedback of his/her own articulation could improve the 
rehabilitation process (cf. [1] for an overview). One of the 
most widely used techniques is Electropalatography (EPG), 
which measures timing and location of tongue contact with the 
hard palate during speech. The use of EPG patterns as a visual 
feedback tool has been investigated for treating different kinds 
of articulation disorders, such as those associated with 
deafness [2] or cleft palate [3]. The use of ultrasound imaging 

for biofeedback has also been investigated for speech 
rehabilitation [4] [5]. This non-invasive and clinically safe 
technique provides a partial view of the tongue during speech 
and its use in therapy is very promising. However, ultrasound 
images might prove difficult to interpret for an inexperienced 
user. Indeed, it is plagued by a typical noise called speckle. 
Besides, it does not show the limits of the oral cavities, i.e. 
neither the palate nor the pharyngeal wall. 
Another possible approach to display a target articulatory 
gesture is to use a so-called articulatory talking head (ATH), 
i.e. a virtual head able to display the internal articulators 
(tongue, velum) using augmented reality (e.g. a transparent 
skin). Contrary to ultrasound images, an ATH makes the 
display very intuitive, since it displays all the internal 
structures of the vocal tract. Several approaches to use an ATH 
as a feedback tool have been proposed in the context of second 
language learning. In [6] for instance, pre-recorded animations 
of an ATH were used to teach Swedish phonemes to French 
learners. The most appropriate animations were chosen by the 
experimenter, i.e. a phonetically-trained and native speaker of 
Swedish, who listened to learners’ production and selected in 
response the closest articulatory gesture from a database 
containing typical errors made by French learners of Swedish.  
In our previous work [7, 8], we proposed a system in which 
the visual feedback was calculated automatically from the 
user’s voice. Different statistical mapping techniques (based 
on GMM and HMM) were proposed to estimate the most 
likely articulatory trajectories from the user’s acoustics and 
represent them in the geometrical space of the ATH. This 
approach gave encouraging results on non-pathological 
speakers. However, though we have not yet explicitly 
evaluated it, we assume in the present work that such an 
approach would be difficult for pathological speakers, since it 
relies on the speech acoustics only.   
Based on these considerations, we developed a system which 
combines 1) ultrasound imaging in order to capture directly 
the user’s tongue movements rather than estimating it from the 
acoustics, and 2) an ATH aimed to provide the most intuitive 
display. As illustrated in Figure 1, Gaussian Mixture 
Regression is used to convert the visual features extracted 
from the recorded ultrasound data into a sequence of control 

 

Figure 1. Proposed system of visual feedback based on the automatic animation of an articulatory talking head from 
ultrasound imaging. 
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parameters of the ATH. This article presents the technical 
details of this new technique, by focusing on the animation of 
the tongue model of the ATH only (the animation of lips, 
velum and jaw model will be addressed in future work). The 
proposed technique is evaluated using both automatic and 
expert-based approaches. In order to discuss how far the 
proposed system is from a practical clinical application, a 
special focus is put on the amount of training data that is 
needed to reach acceptable performance.  
Section 2 describes the different steps of the proposed system 
and details the acquisition and the processing of ultrasound 
data, the ATH, and finally the GMM-based mapping. 
Experimental protocol and evaluation procedures are 
presented in Section 3. Results are finally presented and 
discussed in the last section.  

2. Methodology 

2.1. Ultrasound data acquisition and processing 

In the proposed approach, tongue movements of the user, 
referred to as the source speaker, are captured using an 
ultrasound scanner with the probe placed beneath the chin 
(Figure 1). This probe is positioned in order to obtained tongue 
images in midsagittal plane and is maintained stationary in 
relation to the skull using a specific helmet (manufactured by 
Articulate Instruments ©). The recording of ultrasound images 
synchronously with the audio signal is achieved using the 
Ultraspeech system [9] (www.ultraspeech.com). Ultrasound 
images are recorded at 60 Hz with a resolution of 320x240 
pixels, and are then post-filtered using the anisotropic filtering 
technique [10]. Tongue movements are then encoded using the 
EigenTongue feature extraction technique [11]. This technique 
consists in 1) finding the direction of maximum variance in the 
pixel domain (i.e. the EigenTongues) by performing a 
principal component analysis on a subset of (carefully chosen) 
training frames – and 2) encoding each image by its N-first 
projections onto these directions. In this study, we chose to 
keep 20 visual features (i.e. N=20), which represent 85% of 
the variance observed in the training set.  
The spectral content of the audio signal is parameterized by 25 
mel-cepstral coefficients (Blackman window, 25ms frame 
length, 10ms frame shift).  

2.2. Articulatory talking head driven by EMA data 

The proposed system of visual feedback is based on the 
articulatory talking head (ATH) developed at GIPSA-lab [12]. 
This talking head consists of a set of static 3D models of all 
the speech articulators (i.e. lips, tongue, velum, jaw, face) 
derived from MRI and stereoscopic video images of a speaker 
referred here to as the reference speaker. In [10], we showed 
that this ATH can be animated from dynamic articulatory data 
recorded on the same reference speaker using Electromagnetic 
Articulography (EMA). In the present work, we focused on the 
animation of the 3D model of the tongue, which corresponds 
to 6 parameters, i.e. the x and y coordinates of 3 EMA sensors, 
describing respectively the position of the tip, the dorsum and 
the back of the tongue. We used a large database of 
EMA+audio data of the reference speaker, originally described 
in [13], which consists of two repetitions of 224 VCVs (Vowel 
Consonant Vowel sequences), two repetitions of 109 pairs of 
CVC real French words, and 88 sentences (approximately 17 
minutes of speech, long pauses being excluded).  

2.3. GMM-based mapping between ultrasound 
images and EMA articulatory data  

In the training stage, the source speaker was asked to 
pronounce a subset of the corpus recorded by the reference 
speaker. In order to synchronize these movements with those 
of the reference speaker, the audio signal of source and 
reference speakers were time-aligned using DTW (Dynamic 
Time Warping), as schematized in Figure 2.  
 

 
Figure 2. Time-alignment of ultrasound/EMA 
articulatory data of the tongue recorded on the 

source/reference speaker using DTW  

Finally, the joint probability density function (pdf) of source 
and reference articulatory features (derived respectively from 
ultrasound and EMA) was modeled by a Gaussian Mixture 
Model (GMM), such as:  
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where 𝐱 is a vector of eigentongue coefficients, 𝐲 is a vector of 
EMA coordinates, Θ is the parameter set of the model, 
𝑁(. , 𝜇!, Σ!)  is a normal distribution with mean 𝜇 and 
covariance matrix Σ, M is the number of mixture components, 
and αm is the weight associated with the mth mixture 
component (prior probability). Given a training dataset of 
source and target feature vectors, the Maximum Likelihood 
estimation (ML-estimation) of the GMM parameters ΘML is 
determined using the expectation-maximization algorithm 
(EM) (K-means algorithm is used to obtain an initial clustering 
of the training set). 
In the mapping stage, the target EMA coordinates of the 
tongue ŷt  are derived from the ultrasound visual features xt  
such as:  
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Finally, the estimated EMA coordinates are used to animate 
the ATH. Note that we used the MSE estimator and not the 
MLE estimator (trajectory GMM) [14], which did not bring 
any improvement.  

2.4. Experimental protocol 

The proposed technique was evaluated on a French female 
source speaker, with no articulation disorders. She was asked 
to pronounce a set 110 symmetrical VCV sequences, where V 
was selected from the French vowels [a ɛ e i y u o ɔ œ ø] and 
C from the French consonants [t d n ʁ ʃ k ɡ s z l ʒ ]. Her 
tongue movements were recorded using ultrasound imaging, 
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synchronously with the audio speech signal, and 
parameterized as described in section 2.1. Note that this corpus 
is a subset of the EMA+audio corpus recorded by the 
reference speaker (a French male speaker). 
Several partitions of the database were considered in order to 
study how the performance was affected by the size of the 
training set. This aspect is potentially critical for a clinical use 
since the amount of required training data has to remain as 
limited as possible. For that purpose, the database was first 
randomly divided into 5 parts of equal length. Three 
evaluation experiments were then conducted. These 
experiments (referred to as E1, E2, and E3) differ in the 
amount of data used for training. For each experiment, a cross 
validation procedure is used as follows: 

• Experiment E1: 4/5 of the database were used for 
training (i.e. 88 VCV) and 1/5 for test. (5 possible 
combinations of training/test sets). 

• Experiment E2: 3/5 of the database were used for 
training (i.e. 66 VCV) and 1/5 was used for test (20 
possible combinations of training/test sets).  

• Experiment E3: 2/5 of the database were used for 
training (i.e. 44 VCV) and 1/5 was used for test (30 
possible combinations of training/test sets) 

For each experiment, some sequences of the training set were 
used to estimate the optimal number of mixture components of 
the GMM, which was found to be 14 for E1 and 12 for both 
E2 and E3.  
Since the source and reference speakers do not have the same 
vocal tract, it is not possible to calculate directly distances 
between estimated and measured articulatory tongue 
movements. Thus, the performances were evaluated using an 
articulatory recognition paradigm, similar to the one used in 
[8]. An HMM-based phonetic decoder was used to measure 
the accuracy of the estimated articulatory trajectories at the 
phonetic level. The decoder was trained on the large database 
of articulatory data recorded on the reference speaker 
(described in section 2.2), using a standard training procedure 
(context-dependent triphone tied-state HMMs). The 
recognition accuracy defined as Accart = (N−D−S−I)/N (where 
N is the total number of phones in the test set, S, D and I are 
respectively the number of substitution, deletion, and insertion 
errors) was considered as a measure of the accuracy of the 
synthetic articulatory trajectory. In order to alleviate the 
problem of insertion/deletion errors due to the absence of a 
language model, and to focus on lingual articulations, the 
decoder was forced to decode either isolated vowels or VCV 
sequences with C = [t d n ʁ ʃ k ɡ s z l ʒ ]. Quite naturally, 
substitution errors within the following groups: {t d n}, {s z}, 

{ʃ ʒ}, {k ɡ}, were not considered as errors, as these sets share 
nearly the same places of articulation.  
Since the HMM-based phonetic decoder was trained only on 
the reference speaker’s data, it is a priori not able to deal with 
phonetic idiosyncrasy, i.e. differences in terms of articulatory 
strategies between source and reference speaker. Therefore, 
we supplemented the automatic evaluation with a post re-
assessment of the converted tongue movements by expert 
phoneticians. This procedure can be summarized as follows. 
Three external experts (speech scientists specialized in speech 
production) were asked to watch a series of videos showing 
simultaneously the original ultrasound image sequence of the 
tongue, and the resulting animation the ATH’s tongue model 
(as shown in Figure 3). In order to help the experts to better 
interpret the original tongue movement, ultrasound images 
were supplemented by the contours of the hard palate, upper 
incisors and pharyngeal wall extracted from an MRI 
anatomical midsagittal scan of the source speaker’s vocal tract. 
Ultrasound images were then transformed in order to be 
compatible with the MRI coordinate systems. The rigid 
transformation parameters (rotation, translation and rescaling) 
were determined manually by fitting the tongue contours 
derived from both modalities for the extreme vowels [i] [a] 
and [u]. The video showing both original and converted 
tongue movements was finally synchronized with the original 
audio speech signal.  
The experts were asked to evaluate the converted tongue 
gesture as a whole, with a special focus on the place of 
articulation of the central consonants, which remains the most 
challenging issue. In order to limit the length of the test, we 
asked the expert to re-assess only the sequences for which the 
central consonant was considered as incorrect by the HMM-
based phonetic decoder, for the experiment E1 only. Experts 
were allowed to watch the videos as many times as they 
wished, frame-by-frame; they could label the consistency of 
each consonant between the original and the converted tongue 
gesture as clearly acceptable, clearly incorrect, or uncertain. 
Finally, only the tongue movements considered as acceptable 
by 2 or more experts were re-labeled as “correctly converted”.  

3. Results and discussion 
Table 1 summarizes the recognition accuracies generated by 
the HMM-based phonetic decoder in experiments E1, E2 and 
E3. With an accuracy of almost 70% (E1), the proposed 
method is most of the time able to map correctly the tongue 
movements of the source speaker into the articulatory space of 
the ATH (in order to quantify the maximum performance that 

a)  b)  c)  
[ɔ z ɔ] [e t e] [o n o] 

HMM-based 
evaluation:  ✕ Expert 

evaluation  
✕ HMM-based 

evaluation ✕ Expert 
evaluation ✓ HMM-based 

evaluation ✓ Expert 
evaluation ✓ 

V= ɔ; C={tdn}  V= e; C={kg} V= o; C={tdn} 

Figure 3. Illustration of 3 VCV sequences: one labeled as incorrect by both the phonetic decoder and the experts (a), one 
labeled as incorrect by the phonetic decoder but correct by the experts (b) and one labeled as correct by both the decoder 

and the experts (c) (the corresponding video sequences are available in 934_ultrasound_ATH.wmv) 
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could have been expected, we also evaluated the performance 
of the HMM decoder directly on the original articulatory data 
of the reference speaker and obtained an accuracy of 87 %).   
  

 Total Vowels Consonants 

E1 69,1 ± 9,9%	 71,2 ± 11,9% 63,6 ± 17,7% 

E2 68,6 ± 5,0 % 79,1 ± 5,4% 60,3 ± 6,5% 

E3 62,4 ± 4,3 % 77,3 ± 4,5 % 48,2 ± 7,6% 

Table 1. Articulatory recognition accuracy (with 95% 
confidence interval) for experiments E1 E2 and E3 
(with a training set respectively composed of 88, 66 

and 44 VCV sequences).  

As shown in Table 1, the performance is almost identical for 
the two largest training sets, and remains acceptable even with 
a very limited amount of training data (62.4% in E3 with only 
44 VCVs used for training). The sequences labelled as 
incorrect by the HMM decoder in experiment E1 were then re-
assessed by expert phoneticians, following the procedure 
described in section 2. Figure 3 illustrates the 3 possible 
situations: the central consonant of a VCV sequence is in 3a) 
labeled as incorrect by both the phonetic decoder and the pool 
of experts, in 3c) labeled as correct by both the decoder and 
the experts. Figure 3b) illustrated the case were the pool of 
experts re-labeled as correct a sequence considered as 
incorrect by the decoder: here, the estimated articulatory 
trajectory for VCV [ete] was decoded as [eke], possibly due to 
a position of the tongue dorsum too close to the palate during 
the initial vowel [e]. It was then re-labeled as [ete] by the 
experts since the place of articulation of the central consonant 
was compatible with a [t]. After manual re-assessments of the 
error made on the central consonants, the performance of the 
proposed approach increases up to 75.1%. In order to analyze 
these results in greater detail, we present in Table 2 the 
confusion matrix obtained for lingual consonants in 
experiment E1 from the HMM decoder, and the matrix 
obtained when taking into account the manual re-assessment 
of the errors by the experts.  

Table 2. Confusion matrix for lingual consonants 
generated by the HMM-based phonetic decoder (top); 

confusion matrix obtained after the manual re-
assessment by the experts (bottom) (experiment E1, 

%c: percentage of correct results, del: deletion) 

E1 [tdn] [sz] [ʃʒ] [ɡk] [ʁ] [l] del %c 
[tdn] 14 4 3 2 3 4 0 46,7 
[sz] 6 10 0 1 0 2 1 50,0 
[ʃʒ] 0 0 16 1 0 3 0 80,0 
[ɡk] 0 0 0 19 1 0 0 95,0 
[ʁ] 0 0 0 3 6 1 0 60,0 
[l] 1 0 4 0 0 5 0 50,0 

 
E1 [tdn] [sz] [ʃʒ] [ɡk] [ʁ] [l] del %c 

[tdn] 26 2 1 0 0 1 0 86,7 
[sz] 2 15 0 1 0 1 1 75,0 
[ʃʒ] 0 0 18 0 0 2 0 90,0 
[ɡk] 0 0 0 19 1 0 0 95,0 
[ʁ] 0 0 0 2 7 1 0 70,0 
[l] 1 0 2 0 0 7 0 70,0 

Before the manual re-assessment, most of the substitution 
errors were found for consonants articulated in the alveolar 
region as [tdn] and [sz]. This might be due to the lack of 
information on the tongue tip in ultrasound images, as it is 
often hidden by the acoustic shadow of the mandible. Many of 
these errors were re-labeled as correct by the experts (46.7% 
à 86.7% for [tdn] and 50% à 75% for [sz]). However, these 
results have to be taken cautiously since it is difficult for the 
experts to evaluate the tiny differences between [tdn] and [sz] 
in term of place of articulation (for instance between [iti] and 
[isi]) in either the ultrasound image or the ATH. In that case, 
they might have relied more on the audio than of the visual 
modalities (ultrasound and ATH).   
Some of the decoding errors re-labeled as “correct” by the 
experts were also due to phonetic idiosyncrasies of source and 
reference speakers. This happened in particular for the French 
fricative consonant [ʁ] which seems to be articulated more 
backward by the source speaker than by the reference speaker. 

4. Conclusions and perspectives 
This paper presents a method for automatically animating the 
tongue model of an articulatory talking head from ultrasound 
images. Gaussian mixture regression was used to convert 
visual features extracted from ultrasound images into control 
parameters of the tongue articulatory model.  The accuracy of 
the estimated movements at the phonetic level was evaluated 
using an HMM-based articulatory recognizer. Sequences with 
decoding errors were then manually re-assessed by expert 
phoneticians in order to take into account possible phonetic 
idiosyncrasies. With a system trained on a limited set of 
88 VCV sequences, the recognition accuracy at the phonetic 
level was found to be approximately 70% (and even 75% after 
manual re-assessment). In addition, we found that the 
performance remained relatively stable when the system was 
trained with less data.  
Future work will focus on the evaluation of the proposed 
technique on pathological speakers. The most challenging 
issue will be to deal with mispronunciations during the 
recording of the training data, which might introduce 
inconsistency in the model and thus may degrade the general 
performance. In that context, the use of more advanced 
mapping techniques, such as Deep Neural Networks (DNN) 
will be envisioned. In addition, we aim to combine this 
technique with our previous work on acoustic-to-articulatory 
inversion by supplementing the ultrasound tongue image with 
the speech acoustics as input to our system of visual 
biofeedback.  
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