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ABSTRACT

Variational autoencoders (VAEs) are powerful (deep) generative
artificial neural networks. They have been recently used in several
papers for speech and audio processing, in particular for the mod-
eling of speech/audio spectrograms. In these papers, very poor the-
oretical support is given to justify the chosen data representation
and decoder likelihood function or the corresponding cost function
used for training the VAE. Yet, a nice theoretical statistical frame-
work exists and has been extensively presented and discussed in
papers dealing with nonnegative matrix factorization (NMF) of au-
dio spectrograms and its application to audio source separation. In
the present paper, we show how this statistical framework applies
to VAE-based speech/audio spectrogram modeling. This provides
the latter insights on the choice and interpretability of data repre-
sentation and model parameterization.

1. INTRODUCTION

Autoencoders (AEs) are a specific type of deep neural networks
(DNNs) that can learn from data a non-linear projection of the
signal space into a low-dimensional latent space (encoding step),
followed by inverse non-linear transformation of the latent coeffi-
cients into the original signal space (decoding step) [1]. AEs have
been essentially used as an unsupervised technique for data dimen-
sion reduction. More recently, variational autoencoders (VAEs)
were proposed as a probabilistic/generative extension of AEs [2]:
Instead of deterministically mapping the input vector x into a unique
vector of latent coefficients z, as done in AEs, the VAE encoder
network maps x into the parameters of a conditional distribution
qφ(z|x) of z. Similarly, the decoder network maps a vector of la-
tent coefficient z into the parameters of a conditional distribution
pθ(x|z) of x. A VAE decoder is thus intrinsically a (non-linear and
deep) generative model of x, conditioned on the latent variable z
(which is itself conditioned on the input when decoding follows
encoding). VAEs thus combine the modeling power of DNNs with
the flexibility of generative models.

VAEs have recently received a strong interest for speech and
audio processing, more specifically for modeling, transformation
and synthesis of speech signals [3, 4, 5, 6], for music sound synthe-
sis [7, 8], and for single-channel [9, 10, 11, 12] and multi-channel
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[13, 14, 15] speech enhancement and separation. In all those pa-
pers, VAEs are used to process a sequence of vectors encoding the
short-time Fourier transform (STFT) spectrogram extracted from
speech or music signals. For synthesis/transformation applica-
tions, the output audio signal is reconstructed using the decoded
magnitude spectrogram, after possible modification of the latent
coefficients, and either the phase of the original signal or some
reconstructed phase more coherent with the decoded magnitude
spectrogram. For speech enhancement application, the decoder of
the VAE is used as a supervised generative model of the speech
signal in the STFT domain, which is exploited in a probabilistic
enhancement/separation method.

A keypoint is that in most of these papers, very few justifi-
cation is given about the precise choice of the encoder and de-
coder conditional distributions, or the corresponding cost function
used for VAE training. These distributions are generally chosen
as Gaussian for convenience, but the choice for their parameters
is not clearly justified. The same about the related issue of data
representation: It is chosen a bit arbitrarily, without clear theoreti-
cal support, possibly more considering DNN training issues rather
than fundamental signal processing ones.

Yet, this theoretical framework exists. In fact, it has been ex-
tensively presented and discussed in the seminal papers [16] and
[17]. Those papers describe the statistical framework underlying
the decomposition of audio magnitude/power spectrograms using
Nonnegative Matrix Factorization (NMF) [18]. These develop-
ments have then been extensively used for audio source separa-
tion, see e.g. among many others [19, 20, 21, 22, 23, 24, 25]. In
the present paper, we show how this theoretical statistical frame-
work applies to the VAE model. Based on [16, 17], we describe
the three main cases encountered in practice, with three model-
ing cost functions corresponding to three signal statistical mod-
els. We show how this provides interesting insights on the choice
and interpretability of data representation and loss function for
speech/audio spectrogram modeling with VAEs.

The remainder of this paper is organized as follows. Sec-
tion 2 presents the VAE framework. In Section 3, we discuss the
way VAEs are currently used to model speech/audio signals in the
literature, and raise a set of related questions. In Section 4 we
present the nonnegative representation and underlying signal sta-
tistical models as a general framework, of which NMF is a partic-
ular case, and we show how this framework also applies to VAE-
based spectrogram modeling. Section 5 illustrates this discussion
with some experiments on speech/audio analysis-synthesis with
VAEs. Section 6 draws a series of conclusions and perspectives.
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2. VARIATIONAL AUTOENCODERS

As mentioned in the introduction, a VAE can be seen as a prob-
abilistic autoencoder. In the original formulation of the seminal
paper [2], a VAE delivers a parametric model of data distribution:

pθ(x, z) = pθ(x|z)pθ(z), (1)

where x ∈ RF is a vector of observed data, z ∈ RL is a corre-
sponding vector of latent data, with L � F , and θ denotes the
set of distribution parameters. The likelihood function pθ(x|z)
plays the role of a probabilistic decoder which models how the
generation of observed data x is conditioned on the latent data z.
The prior distribution pθ(z) is used to structure (or regularize) the
latent space. Typically a standard Gaussian distribution is used:
pθ(z) = N (z;0, IL), where IL is the identity matrix of size L.
This encourages the latent coefficients to be orthogonal and with
similar range. Note that this prior actually lacks parameters. The
likelihood pθ(x|z) is usually defined as Gaussian:

pθ(x|z) = N (x;µθ(z),σ2
θ(z)), (2)

where N (x;µ,σ2) denotes the probability density function (pdf)
of the multivariate Gaussian distribution which is defined in the
Appendix, and µθ(z) ∈ RF and σ2

θ(z) ∈ RF+ are the outputs
of the decoder network. The parameter set θ is composed of the
weights of this decoder network. Note that the entries of x are
assumed independent as common in VAEs, so the vector σ2

θ(z)
contains the diagonal coefficients of a diagonal covariance matrix.

The exact posterior distribution pθ(z|x) corresponding to the
above model is intractable. It is approximated with a tractable
parametric model qφ(z|x) that plays the role of the corresponding
probabilistic encoder. This model generally has a form similar to
the decoder:

qφ(z|x) = N (z; µ̃φ(x), σ̃2
φ(x)), (3)

where µ̃φ(x) ∈ RL and σ̃2
φ(x) ∈ RL+ are the outputs of the en-

coder network. The parameter set φ is composed of the weights of
this encoder network. As before, σ̃2

φ(x) is a vector containing the
diagonal entries of a diagonal covariance matrix.

Training of the VAE model, i.e. estimation of θ and φ, is
made by optimizing a lower-bound of the marginal log-likelihood
log pθ(x) computed from a large training dataset of vectors x. It
is shown in [2] that the marginal log-likelihood for an individual
vector x writes:

log pθ(x) = dKL(qφ(z|x)|pθ(z|x)) + L(φ, θ,x), (4)

where dKL ≥ 0 denotes the Kullback-Leibler (KL) divergence and
L(φ, θ,x) is the variational lower bound (VLB) given by:

L(φ, θ,x) = Eqφ(z|x)[log pθ(x|z)]︸ ︷︷ ︸
reconstruction accuracy

−dKL(qφ(z|x)|pθ(z))︸ ︷︷ ︸
regularization

. (5)

We can see that the VLB is the sum of two terms. The first term
represents the average reconstruction accuracy. The second term
acts as a regularizer encouraging the approximate posterior qφ(z|x)
to be close to the prior pθ(z). Since the expectation taken with
respect to qφ(z|x) in the reconstruction accuracy term is analyti-
cally intractable, it is approximated using a Monte Carlo estimate

with R samples z(r) independently and identically drawn from
qφ(z|x):

Eqφ(z|x)[log pθ(x|z)] ≈ 1

R

R∑
r=1

log pθ(x|z(r)). (6)

In practice a training dataset X = {xn}Ntrn=1 is used for the training
of the VAE. Under the hypothesis of independent and identically
distributed (i.i.d.) training vectors, the VAE training is done by
maximizing the total VLB, which is the sum of individual VLBs
over the training vectors. If we consider only one Monte Carlo
sample per training vector (which is common practice provided
that the batch size is sufficiently large [2]), or if we consider several
Monte Carlo samples as additional training data, we can write the
total VLB as:

L(φ, θ,X) =

Ntr∑
n=1

log pθ(xn|zn)

−
Ntr∑
n=1

dKL(qφ(zn|xn)|pθ(zn)). (7)

For the present case of Gaussian likelihood (2) and Gaussian en-
coding distribution (3), the VLB in (7) becomes:

L(φ, θ,X) = −
Ntr∑
n=1

F−1∑
f=0

(
log σ2

θ,f (zn) +
(xfn − µθ,f (zn))2

2σ2
θ,f (zn)

)

+
1

2

Ntr∑
n=1

L∑
l=1

(
log σ̃2

φ,l(xn)− µ̃φ,l(xn)2 − σ̃2
φ,l(xn)

)
(8)

where the subscript f or l denotes the f -th or l-th entry of a vector.
Maximization of the total VLB is done by using the usual back-
propagation technique and gradient-based optimization, which are
not detailed in this paper. For more technical details that are not
relevant here, the reader is referred to [2].

3. VAES FOR SPECTROGRAM MODELING:
FACTS AND QUESTIONS

In this section, we analyze how VAEs are generally used for speech
and audio spectrogram modeling in the recent literature. Although
some of the points discussed below may seem trivial, they rise a
series of fundamental questions that are poorly discussed in these
papers and that we will address in the following.

3.1. Audio signal representation in the STFT domain

As shortly stated in the introduction, the processing is generally
carried out in the STFT domain. Let S = [sfn]F−1,N

f=0,n=1 ∈ CF×N
denote the STFT of a speech/audio signal, where f is the frequency
bin index and n is the time frame index. Let X = [xfn]F−1,N

f=0,n=1 ∈
RF×N+ denote the corresponding real-valued and nonnegative mag-
nitude or power spectrogram, i.e. X = |S| or X = |S|2, where
|.| and .2 are to be understood as entry-wise operators. Note that
we use the same notation as in the previous section on purpose,
since the VAE modeling will precisely be applied on speech/audio
spectrograms. Note also that X = |S|2 is a sampled power spec-
trogram, aka a periodogram, i.e. an estimate of the power spectral
density (PSD) E[|S|2] built from a single observation of the data
in each time-frequency bin (and the same for the magnitude spec-
trogram).
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3.2. Data representation, pre-processing and normalization

A VAE considers vectors as input and output. Hence an STFT
spectrogram is processed as a sequence of successive spectral vec-
tors xn = [xfn]F−1

f=0 ∈ RF+, each vector representing an STFT
frame. Note that all xfn are assumed independent across fre-
quency bins and time frames, which is not to be confused with
possible time-frequency structuration of the distribution parame-
ters. An important practical question in VAEs is the choice of the
audio STFT data representation. We did not observe any consen-
sus in the literature.

For synthesis and transformation applications, e.g. [6], the
observed/generated vector at time frame n generally corresponds
to the short-term magnitude or power spectrum. There may be
two explanations for that: (i) the original VAE formulation of [2]
(i.e. the Gaussian models in (2) and (3)) considers real-valued and
not complex-valued vectors, but in that case what about the non-
negativity? and (ii) the magnitude or power spectrogram is the
primary information used in the synthesis/transformation applica-
tions considered in the referenced papers (the phase spectrogram
being processed separately).

For speech enhancement applications, the VAE speech model
is generally plugged in a more general statistical framework in-
cluding a noise model and a speech + noise mixture model, e.g.
[9, 10]. In this framework, the original (real-valued) formulation
of the VAE has been extended to model the complex-valued STFT
vector sn = [sfn]F−1

f=0 ∈ CF . This has been done by replacing
the Gaussian distribution over real-valued vectors in (2) with the
circularly symmetric complex Gaussian distribution that is widely
used in speech enhancement and source separation probabilisitic
methods [26, 27]. This important point is poorly commented in the
referenced papers. Moreover, although sn is here modeled by the
VAE decoder, xn as a short-term magnitude or power spectrum
is still considered at the input of the encoder during VAE train-
ing.1 The possible consequences (or absence of consequences) of
this input/output mismatch are not discussed either. Note that here
also, all sfn are assumed independent across frequency bins and
time frames, as is usually done in the speech enhancement and
source separation literature.

It is important to note that in practice, the encoder input vector
can contain magnitudes or squared magnitudes as discussed above,
but also log-magnitudes as in [4], or actually any vector encoding
a magnitude spectrum, possibly pre-processed and normalized in
different manners. Normalization is a typical example of DNN-
driven process, it has no theoretical justification from the signal
processing point-of-view but it is known as helping a DNN train-
ing in general. So it is applied very frequently, and actually on
purpose in VAEs. Also, the encoder input vector can be of differ-
ent nature than the VAE decoder output vector, which is composed
of probability distribution parameters; not to be confused with the
output of the VAE as a generative model. Some of the output pa-
rameters may be homogeneous to the input data, e.g. mean vectors,
and some others may not be, e.g. variance parameters. Moreover,
data normalization can also be applied to output data, and the nor-
malization/denormalization can be conducted in different manners
at the input and at the output. Then, does data representation, pre-
processing and normalization have any consequence on the theo-
retical foundations of the model?

1For speech enhancement applications, the encoder is only used for
VAE training. During the speech signal inference process, only the decoder
is used.

3.3. Statistical modeling and implications for VAE training

The choice of the reconstruction term of the loss function for the
VAE training is often poorly discussed in papers dealing with VAE-
based spectrogram modeling. A typical yet poorly justified ap-
proach could be: Let us choose a data representation that is ap-
propriate for the considered application, for example a magnitude
spectrum vector xn, and let us apply some normalization that is
appropriate for DNNs. Then systematic application of the Gaus-
sian model (2) is the easy way, leading to the weighted squared
error form in the reconstruction term of (8). If we further set the
variance parameters σ2

θ,f (zn) to an arbitrarily fixed value σ2 (i.e.
we consider only the mean parameters µθ,f (zn) as the free VAE
outputs), then (8) becomes (up to an additive constant factor):

L(φ, θ,X) = − 1

σ2

Ntr∑
n=1

F−1∑
f=0

1

2

(
xfn − µθ,f (zn)

)2
+

1

2

Ntr∑
n=1

L∑
l=1

(
log σ̃2

φ,l(xn)− µ̃φ,l(xn)2 − σ̃2
φ,l(xn)

)
(9)

This means that using the basic mean squared error (MSE) as the
reconstruction term of the VAE loss function amounts to max-
imize the likelihood function under the present “fixed-variance
free-mean” Gaussian model, hence providing some nice theoret-
ical interpretation of the process. Yet this interpretation is poorly
discussed in the papers. Does this approach have limitations? Does
it make sense to model normalized magnitude vectors with a Gaus-
sian distribution? Do other strategies exist? And what is the link
with the problem of data representation?

As briefly mentioned in the introduction, a consistent theoret-
ical framework exists that enables one to justify and interpret the
choice of data representation, likelihood function and reconstruc-
tion term of the loss function, and how those points are related.
This is what we present in the next section.

4. LINKING NMF AND VAE

In this section, we build on the existing statistical framework re-
lated to nonnegative representations, in particular Nonnegative Ma-
trix Factorization (NMF), and its application to the modeling of
speech/audio spectrograms. Most of the technical material pre-
sented here is extracted from [16] and [17]. We first shortly present
the principle of NMF decomposition, then we go to the major
point of this section which is to show that the underlying statisti-
cal framework directly applies to the VAE model, and can thus be
used to give a solid theoretical interpretation of VAE-based mod-
eling of speech/audio spectrograms. We finally report the three
major NMF-based generative models considered in [16] and [17]
and give their VAE counterparts.

4.1. The NMF model

NMF consists in modeling a matrix V = [vfn]f,n ∈ RF×N+ of
nonnegative entries as the product of two nonnegative matrices
W = [wfk]f,k ∈ RF×K+ and H = [hkn]k,n ∈ RK×N+ . In
other words we have V ≈ V̂ = WH, or equivalently v̂fn =

(WH)fn =
∑K
k=1 wfkhkn. A low-rank approximation of V,

represented with a reduced number of parameters, is obtained by
setting K such that K(F +N)� FN . In the speech/audio pro-
cessing literature, V̂ is typically used to model the signal (“true” or

DAFX-3



Proceedings of the 22nd International Conference on Digital Audio Effects (DAFx-19), Birmingham, UK, September 2–6, 2019

“theoretical”) PSD E[|S|2] based on the observed power spectro-
gram X = |S|2 (or the same for the “true” magnitude spectrogram
based on the observed magnitude spectrogram X = |S|). The in-
terest of this approach is thus to provide a model of the signal PSD
in each time-frequency bin with a very reasonable number of pa-
rameters (if K is chosen properly).

Calculating V̂ from a given observed nonnegative matrix X
is done by minimizing over W and H the following error under a
non-negativity constraint:

D(X|V̂) =

N∑
n=1

F−1∑
f=0

d(xfn|v̂fn), (10)

where d(·|·) is a scalar divergence. The three most popular cost
functions are the squared Euclidian distance dEUC(x|y) = 0.5(x−
y)2, the generalized Kullback-Leibler (KL) divergence dKL(x|y) =
x log(x/y)−x+y, and the Itakura-Saito (IS) divergence dIS(x|y) =
x/y − log(x/y) − 1. For each of them, a set of algorithms have
been proposed to solve the above minimization problem. Their
presentation is out of the scope of this paper, where we focus on
the link with the VAE and the underlying statistical models. For
the same reason, we do not deal with the interpretation of NMF as
a model of composite signals [16, 17], which is of primary impor-
tance in the source separation literature.

4.2. Linking NMF- and VAE-based spectrogram modeling

Now the major point of the present paper is the following: The
minimization of the global cost function (10), the choice of the
scalar cost function in (10), the choice of data representation, and
the interpretation in terms of underlying statistical model are prob-
lems that are all common to NMF and VAE. In other words, a
common framework exists where V̂ may as well be an NMF model
V̂ = WH or the concatenation of successive (nonnegative) out-
put vectors of a VAE, e.g. V̂ = [σ2

θ(z1),σ2
θ(z2), · · · ,σ2

θ(zN )],
which is the case for VAE-based spectrogram modeling. Indeed,
as will be detailed below, for both NMF and VAE models, (10) is
nothing but a reformulation of the negative log-likelihood function
of the underlying generative model. More specifically, if V̂ is the
output of a VAE, the reconstruction accuracy in (7) and the cost
function (10) are identical up to a constant multiplicative positive
factor α, sign, and a constant additive factor. In short, (7) can be
rewritten as:

L(φ, θ,X) = −α
Ntr∑
n=1

F−1∑
f=0

d(xfn|v̂fn)

−
Ntr∑
n=1

dKL(qφ(zn|xn)|pθ(zn)). (11)

In the VAE model framework, minimization of (10) thus amounts
to optimal estimation of the VAE parameters in the maximum-
likelihood (ML) sense. Let us temper a bit: (10) only concerns
the VAE decoder, and the complete VAE is actually optimized by
maximizing (7) (or (11)), i.e. the combination of (10) with the
VLB regularization term. This latter is important to differentiate a
VAE from a deterministic AE. Let us note that in the VAE frame-
work, ML estimation of V̂ is to be understood as a shortcut for ML
estimation of θ, the decoder parameters, which requires the joint
estimation of the encoder parameters φ during the VAE training.
Finally, let us also note that α plays the role of balancing factor

between reconstruction and regularization, and quite interestingly,
it is very similar to the β factor of the β-VAE model proposed in
[28] in an ad-hoc manner, for the same aim (though β is applied to
the regularization term instead of the reconstruction term).

Although all these points may sound trivial to readers familiar
with the statistical interpretation of NMF spectrogram modeling,
to our knowledge they have never been pointed out in the litera-
ture on VAE-based speech/audio processing. One reasonable ex-
planation for this may be that NMF studies often start with the
cost function formulated as (10), and the interpretation in terms
of underlying generative model comes in second (when it comes),
whereas VAE studies start with a generative model then go to the
cost function formulated as (7).

4.3. Practical cases

We now apply the above considerations to the three major cases
considered in [16] and [17], which correspond to different diver-
gences d(·|·) in (10) and (11).

Euclidian distance case In the NMF context, it has been shown
in [16, 17] that choosing and minimizing the squared Euclidian
distance between X and V̂ = WH corresponds to ML estimation
of W and H under the assumption of the Gaussian model

xfn ∼ N (xfn; v̂fn, σ
2), (12)

with v̂fn = (WH)fn =
∑K
k=1 wfkhkn. Similarly, in the VAE

case, choosing and minimizing the squared Euclidian distance be-
tween xfn and v̂fn in (11), with v̂fn = µθ,f (zn), corresponds to
ML estimation of v̂fn under the assumption of the Gaussian model
(2), with a fixed variance σ2

θ,f (zn) = σ2, ∀(f, n). Actually this
is what we have already done at the end of Section 3, and formal-
ized in (9). In both NMF and VAE cases, we have the following
underlying model:

xfn = v̂fn + efn, (13)

where efn is an i.i.d. additive white Gaussian noise, i.e. efn
i.i.d.∼

N (0, σ2). Moreover, identifying (11) and (9) leads to α = 1/σ2,
hence σ2 plays the role of balancing factor between reconstruction
and regularization.

A Gaussian model is often favored because of its generality
and its nice features in mathematical derivations. For instance,
it has been used for VAE-based speech spectrogram modeling in
[4, 6, 11, 29]. However, although this approach could work quite
well in many settings, it suffers from what is referred to as an inter-
pretation ambiguity in [16]: Although xfn represents a magnitude
or power spectrum, N (xfn;µθ,f (zn), σ2) may produce negative
data (even if we somehow enforce µθ,f (zn) ≥ 0). This problem
may be partly fixed by appropriate data normalization (e.g. min-
max rescaling within [−1, 1]) and/or with log-scaling. However, it
is subject to discussion if the distribution of log-magnitude spectra
of real-world speech and audio signals has a Gaussian shape or not.

Itakura-Saito divergence case Alternately, it was shown and
largely discussed in [17] that using the IS divergence in (10) cor-
responds to maximizing the log-likelihood function under the as-
sumption of a Gamma distribution for xfn. More precisely, the
statistical model is:

xfn ∼ G(xfn;α, α/v̂fn), (14)
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where G(.; a, b) is the Gamma distribution with shape parameter
a > 0 and rate parameter b > 0, and whose pdf is defined in the
Appendix. In the NMF framework we have v̂fn = (WH)fn =∑K
k=1 wfkhkn, but this result is still valid in the VAE framework

where we now have v̂fn = σ2
θ,f (zn). In both NMF and VAE

cases, we have the following underlying model:

xfn = v̂fnefn, (15)

where efn is an i.i.d. multiplicative Gamma noise, i.e. efn
i.i.d.∼

G(efn;α, α).
Importantly, it was also shown in [17] that if xfn corresponds

to a linear-scale squared magnitude, minimizing the IS divergence
corresponds to ML estimation of v̂fn under a circularly symmet-
ric complex Gaussian model for the STFT coefficients sfn ∈ C
corresponding to xfn = |sfn|2 ∈ R+, with a variance E[|sfn|2]
equal to v̂fn. In short, sfn ∼ Nc(sfn; 0, v̂fn), where the pdf
of the complex Gaussian distribution Nc is defined in the Ap-
pendix. This interpretation is quite important since this model
and associated ML fitting procedure have been used extensively in
speech enhancement and speech/audio source separation, in com-
bination with NMF, e.g. [19, 21, 23], or not, e.g. [26, 20, 30].
Indeed, in such applications, we are interested in inferring the
complex-valued source STFT coefficients sfn from corrupted ob-
servations. Again, this result is valid for both NMF and VAE
frameworks: In IS-based NMF, we have E[|sfn|2] = E[xfn] =

v̂fn =
∑K
k=1 wfkhkn. In IS-based VAE, we have E[|sfn|2] =

E[xfn] = v̂fn = σ2
θ,f (zn) and the mean parameters µθ,f (zn) are

simply disregarded since (2) is implicitly replaced with the above
Gamma model of xfn. Note that IS-VAE was shown to outper-
form IS-NMF for speech enhancement in [10].

Generalized Kullback-Leibler divergence case Finally, mini-
mizing the KL divergence between xfn and v̂fn corresponds to
ML estimation of v̂fn under the assumption of a Poisson distribu-
tion for xfn:

xfn ∼ P(xfn; v̂fn), (16)

where P(.;λ) is the Poisson distribution with scale parameter λ >
0 and whose pdf is defined in the Appendix. Note that there is
here no equivalent model in terms of additive or multiplicative
noise. In theory, the Poisson distribution is defined for nonnega-
tive integer-valued random variables, but this issue can be fixed by
considering high-resolution fixed-point quantization of the spec-
trograms. As above, this result is valid for both NMF and VAE
models. Here, v̂fn plays the role of a scale parameter, hence in
principle the output of a KL-based VAE is a vector of scale param-
eters v̂fn = σθ,f (zn) for f = 0, ..., F − 1. Although, as stated
above, arbitrary normalization and corresponding denormalization
can be applied. Historically, KL-based NMF has been applied on
(linear-scale) magnitude spectra instead of power spectra, see the
seminal papers [31, 32], but in fact there is no underlying model
on the complex-valued STFT coefficients sfn to support this prin-
ciple. In other words, in most papers on KL-based NMF, v̂fn is
a scale parameter over magnitude spectra, because xfn is a mag-
nitude spectra, but it could as well be a scale parameter over a
different representation. Of course, the same remark applies to a
KL-based VAE.

In summary, in the speech/audio spectrogram NMF modeling
framework, we had:

• EUC-NMF: pθ(X|Z) =
∏
f,nN (xfn; (WH)fn, σ

2);

• IS-NMF: pθ(X|Z) =
∏
f,n G(xfn;α, α/(WH)fn)

and pθ(S|Z) =
∏
f,nNc(sfn; 0, (WH)fn) with xfn = |sfn|2;

• KL-NMF: pθ(X|Z) =
∏
f,n P(xfn; (WH)fn).

In the VAE framework we have:

• EUC-VAE: pθ(X|Z) =
∏
f,nN (xfn;µθ,f (zn), σ2);

• IS-VAE: pθ(X|Z) =
∏
f,n G(xfn;α, α/σ2

θ,f (zn))

and pθ(S|Z) =
∏
f,nNc(sfn; 0, σ2

θ,f (zn)) with xfn = |sfn|2;

• KL-VAE: pθ(X|Z) =
∏
f,n P(xfn;σθ,f (zn)).

4.4. A practical note on the implementation of the VAE loss
function

The above considerations have a practical consequence in the cod-
ing of the loss function when implementing a VAE with a deep
learning library. Indeed, in practice, as stated above, input/output
data are often pre-processed (e.g. log-scaled) and/or normalized to
facilitate the VAE training. For the statistical interpretation con-
sidered in this paper to hold, the reconstruction term of the VAE
loss function, as implemented in a deep learning toolkit, must have
the form of the log-likelihood function log pθ(x|z), and the data
used in this loss function must be consistent with the model, i.e.
if they have been previously normalized, then they must be denor-
malized. Using the normalized data would break the consistency
of the underlying statistical model.

Let us give an example, by considering the Gamma model in
(14) for the squared STFT magnitudes xfn = |sfn|2. This model
implies that we have to use the IS divergence in the reconstruction
term of the loss function in (11). At training time, the VAE is fed
with pre-processed/normalized data xnorm

fn = g(xfn) and it pro-
vides pre-processed/normalized scale parameters v̂ norm

fn = g̃(v̂fn).
Note that the pre-processing/normalization of data and parameters
may be different, as denoted by the different g(·) and g̃(·) func-
tions. Then the implementation of the reconstruction term of the
loss function based on the IS divergence and “applied to” xnorm

fn and
v̂ norm
fn should be of the form:

g−1(xnorm
fn )

g̃−1(v̂ norm
fn )

− log
g−1(xnorm

fn )

g̃−1(v̂ norm
fn )

− 1 = dIS(xfn|v̂fn). (17)

The denormalized outputs v̂fn = g̃−1(v̂norm
fn ) are then “automat-

ically” homogeneous to scale parameters. In contrast, using di-
rectly the normalized values in the above reconstruction term (i.e.
calculating dIS(xnorm

fn |v̂ norm
fn )) or using another distance (e.g. the

MSE) on either the normalized or denormalized data would not be
consistent with the Gamma model considered in this example.

5. EXPERIMENTS

In this section, we briefly present the results of experiments that
were conducted to illustrate our discussion. We processed VAE-
based analysis-synthesis of sound spectrograms for the three cases
described in Section 4. Waveform resynthesis was done by com-
bining the output magnitude spectrogram with the phase spectro-
gram of the original signal. We applied this on speech signals
(TIMIT dataset [33], 10 utterances × 462 speakers in the training
set, for a total of about 4h, and 10 different utterances × 168 dif-
ferent speakers in the test set, for a total of about 1.5h) and music
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Figure 1: Audio quality as a function of the regularization term of
(5).

signals (a subset of the large NSynth dataset [34], 88 notes with 4
different velocities from 17 instruments for the training set and 3
instruments for the test set all from the acoustic keyboards family,
for a total of 9h of signals) at a 16 kHz sampling rate. The STFT
was computed using a 64-ms sine window (F = 513) and a 75%
overlap.

The VAE decoder network contains three layers of size [64,
128, 513] and the encoder network is the symmetric. Both net-
works use tanh and identity activation functions for the hidden
and output layers respectively. The output of the encoder and de-
coder networks are thus real-valued, and as proposed in the origi-
nal paper on VAEs [2], we output the logarithm of variance/scale
parameters for the IS-VAE and KL-VAE cases. At the input of the
encoder, we provide either magnitude spectrograms (KL-VAE and
EUC-VAE) or power spectrograms (IS-VAE).

The results are plotted in Fig. 1. In order to measure the quality
of the reconstructed signal independently of the nature of the cost
function, PESQ scores [35] (for speech) and PEMO-Q scores [36]
(for music) were calculated on the resynthesized signals in the test
set. These scores are plotted in Fig. 1 as a function of the regular-
ization term of (5). Each point represents either a utterance (left)
or a music note (right) from the dataset. We set α = 0.1 in (7)
for the IS-VAE, and α = 1 for both EUC-VAE and KL-VAE. This
was to ensure (i) to keep a sufficiently small regularization term
in the loss function so that VAEs are not turning into a determinis-
tic autoencoders, and (ii) to obtain the same range of regularization
term values for the 3 cost functions, so that the performance can be
fairly compared in terms of reconstruction quality. We can see in
Fig. 1 that for music signals (PEMO-Q scores) KL-VAE globally
performs the best, followed by IS-VAE (with an overlapping zone
of equal performance). For speech signals (PESQ scores), KL-
VAE and IS-VAE are providing similar results. EUC-VAE gener-
ally provides lower scores.

6. CONCLUSION

We can now draw the following conclusions:

• The three presented cost functions usable for NMF or VAE mod-
eling all correspond to an underlying statistical model of pro-
cessed spectrogram X = [xn]Nn=1. For all three cases, training
the VAE with data X corresponds to ML estimation of VAE de-

coder parameters under the corresponding statistical model of
X.

• Among these three cases, only one (IS-case) has an underly-
ing statistical model of the speech/audio signal STFT coeffi-
cient sfn (circularly symmetric complex Gaussian), which has
proven to be of great interest for speech enhancement and source
separation applications.

• The reconstruction accuracy and regularization of the VAE can
be weighted using the α factor in (11). For EUC-VAE and IS-
VAE this factor is naturally emerging as a parameter of the un-
derlying statistical model, which provides a nice alternative (or
interpretation) to the ad-hoc definition of the similar β factor
introduced in [28]. This is not the case for KL-VAE, where
α = 1. For the interpretation of IS-VAE in terms of complex
Gaussian model on sfn to hold, we must also have α = 1.

• In our experiments, KL-VAE and IS-VAE perform better than
EUC-VAE according to perceptually-motivated objective mea-
sures.

• Although we necessarily presented this extension in the context
of nonnegative representations, VAEs are not limited to nonneg-
ative data. They can be applied to any real-valued data. This is
what is done when processing log-scale spectrograms such as
in [4]. The IS and KL divergences and associated Gamma and
Poisson models are limited to nonnegative data, but the Euclid-
ian distance and associated Gaussian model are not.

• In practice, input/output data are often pre-processed and/or nor-
malized. If the pre-processed/normalized data are used in the
VAE practical implementation, then the loss function should in-
clude denormalization and inverse pre-processing.

• All the points considered in this paper are valid for recurrent
VAEs [37], which are likely to become popular in speech/audio
processing as well. Also, generalization of NMF to more gen-
eral divergences and corresponding statistical interpretation ex-
ist, e.g. [38, 39]. It is likely to be relevant for VAEs.

We spent time and effort to understand the correct form that
a VAE loss function should have in a deep learning library to be
consistent with a sounded signal statistical model. We believe that
sharing the content of this paper (and code if the paper is accepted)
with the speech/audio processing community can help colleagues
to take VAEs into hand faster and in a principled manner. Also,
we believe that the bridge we built in this paper can benefit to both
the speech enhancement / source separation community and the
musical sound processing community.

A. PROBABILITY DISTRIBUTIONS

A.1. Gaussian distributions

Let N (x;µ, σ2) denote the Gaussian distribution for a random
variable x ∈ R with mean µ ∈ R and variance σ2 ∈ R+. Its
probability density function (pdf) is defined by:

N (x;µ, σ2) =
1√

2πσ2
exp

(
− (x− µ)2

2σ2

)
. (18)

Note that for simplicity we use the same notation to denote a prob-
ability distribution and its pdf.

LetN (x;µ,σ2) denote the multivariate Gaussian distribution
for a real-valued random vector x ∈ RF of mean vector µ ∈ RF ,
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and with statistically independent entries such that σ2 ∈ RF+ is the
vector of variances (covariance terms are zero and thus omitted in
the parametrization for simplicity). Its pdf is therefore equal to the
product of univariate Gaussian pdfs:

N (x;µ,σ2) =

F−1∏
f=0

N (xf ;µf , σ
2
f ), (19)

where vf denotes the f -th entry of a vector v.
Let Nc(x;µ, σ2) denote the proper complex Gaussian distri-

bution for a random variable x ∈ C with mean µ ∈ C and variance
σ2 ∈ R+. Its pdf is defined by:

Nc(x;µ, σ2) =
1

πσ2
exp

(
−|x− µ|

2

σ2

)
. (20)

This distribution is circularly symmetric (i.e. invariant to a phase
shift for x) if µ = 0

A.2. Gamma distribution

Let G(x; a, b) denote the Gamma distribution for a random vari-
able x ∈ R+ with shape and rate parameters a > 0 and b > 0
respectively. Its pdf is defined by:

G(x; a, b) =
ba

Γ(a)
xa−1 exp(−bx), (21)

where Γ(·) is the Gamma function.

A.3. Poisson distribution

Let P(x;λ) denote the Poisson distribution for a random variable
x ∈ N with rate parameter λ > 0. Its pdf is defined by:

P(x;λ) = exp(−λ)
λx

x!
. (22)
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