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Abstract 
In this paper, we present recent developments on the HMM-
based acoustic-to-articulatory inversion approach that we 
develop for a “visual articulatory feedback” system. In this 
approach, multi-stream phoneme HMMs are trained jointly on 
synchronous streams of acoustic and articulatory data, 
acquired by electromagnetic articulography (EMA). Acoustic-
to-articulatory inversion is achieved in two steps. Phonetic and 
state decoding is first performed. Then articulatory trajectories 
are inferred from the decoded phone and state sequence using 
the maximum-likelihood parameter generation algorithm 
(MLPG). We introduce here a new procedure for the re-
estimation of the HMM parameters, based on the Minimum 
Generation Error criterion (MGE). We also investigate the use 
of model adaptation techniques based on maximum likelihood 
linear regression (MLLR), as a first step toward a multi-
speaker visual articulatory feedback system. 
Index Terms: Acoustic-articulatory inversion, 
ElectroMagnetic Articulography (EMA), Hidden Markov 
Model (HMM), Minimum Generation Error (MGE), Speaker 
adaptation, Maximum Likelihood Linear Regression (MLLR). 

1. Introduction 
Systems of visual articulatory feedback aim at providing the 
speaker with visual information about his/her own articulation. 
Several studies show that this kind of system can be useful for 
both speech therapy and Computer Aided Pronunciation 
Training (CAPT) [1]. The visual articulatory feedback system 
developed at GIPSA-lab is based on a 3D talking head used in 
an augmented speech scenario, i.e. it displays all speech 
articulators including usually non visible articulators such as 
the tongue. In this system, the talking head is animated 
automatically from the audio speech signal, using acoustic-to-
articulatory inversion. For this purpose, we developed 
different inversion methods based on the joint modeling of 
acoustic and articulatory data (acquired by electromagnetic 
articulography - EMA), using statistical models such as 
Gaussian Mixture Models (GMM) and Hidden Markov 
Models (HMM) [2].  

The use of supervised machine learning techniques for 
acoustic-to-articulatory inversion has already been proposed in 
the literature. HMMs trained on parallel acoustic and 
articulatory speech data segmented at the phonetic level, have 
been used in [3], [4], [5] and [2]. GMMs have been used in [2] 
and [6]. Artificial neural network (ANN) and Support Vector 
Machines (SVM) have been used respectively in [7] and [8] 
However, these studies do not allow to conclude on the 
optimal inversion method since data, speakers and languages 
are not comparable. 

Since our goal is to provide “any” speaker with visual 
articulatory feedback, the inversion system need to be robust 
and easy to adapt. With that in mind, we present here recent 
developments on our HMM-based inversion system that have 
lead to significant improvements. Among them, we introduce 
a new training procedure based on the optimization of the 

Minimum Generation criterion (MGE). We also present a first 
approach to address the speaker adaptation problem. Speaker 
adaptation can be done in both acoustic and articulatory 
domains. In the present work, we propose to adapt our 
multimodal HMM models in the acoustic domain by using 
maximum likelihood linear regression.  

This article is organized as follows. The HMM-based 
acoustic-to-articulatory inversion system is described in 
Section 2. The proposed speaker adaptation technique is 
presented in Section 3. The methodology used for evaluation 
and experimental results are presented in section 4. 
Conclusions and perspectives are presented in the last section. 

2. HMM-based speech inversion system 

2.1. Baseline system  
In the proposed HMM-based mapping approach (previously 
published by Ben Youssef et al. in [2]), the sequence of 
articulatory vectors, predicted from the given sequence of 
acoustic vectors x, is defined as1 { })(maxargˆ xypy

y
=  with 

p(y | x) = p(y | λ, q)P(λ, q | x)  (1)

where λ represents the parameters set of the HMM and q the 
HMM state sequence. By applying the Bayes rule, we obtain 

p(y | x) = p(y | λ, q) p(x | λ, q)P(λ )   (2) 

As shown in Equation 2, the HMM-based mapping can be 
achieved by a recognition stage followed by a synthesis stage, 
which means: (1) finding the most likely phonetic and state 
sequence for a given source vector (and a set of a priori 
information provided by a statistical language model), and (2) 
inferring the target vector from the decoded state sequence.  

In the training stage, a left-to-right, 3-state multi-stream 
HMM is trained on articulatory-acoustic data for each 
phonetic class. The first stream is dedicated to the modeling of 
acoustic feature; the second stream is used to model the 
articulatory features. For each stream, the emission probability 
density of each state is modeled by a GMM with diagonal 
covariance matrix. HMM were initialised and trained by the 
Baum Welch algorithm based on the Maximum Likelihood 
(ML) criterion.  

Due to coarticulatory effects, it is unlikely that a single 
context-independent HMM could optimally represent any 
given allophone. Contexts were therefore grouped in context 
classes for both vowels and consonants separately. Based on 
the matrix of Mahalanobis distances of the coils coordinates 
between the centre frame of each pair of phoneme means, 
hierarchical clustering generated six coherent classes for 
vowels (/������������	�	� ����
����������� �����������������), and 
ten coherent classes for consonants (/���������������������������

���� ��� ���� /�� ���� ����� � ��� /j !/, and /w/). Context-dependent 
                                                                
1 The notations “P” and “p” are used for discrete and 
continuous probability distributions, respectively.
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HMMs were then trained, using various contextual schemes: 
phonemes without context (no-ctx), with left (L-ctx) or right 
context (ctx-R), and with both left and right contexts (L-ctx-
R). A tree-based state-tying strategy based on the Minimum 
Description Length (MDL) criterion, was adopted to address 
the problem of data sparsity (biphones or triphones having 
only a few occurrences in the training dataset).  

Each resulting multi-stream HMM were then split into two 
distinct HMMs: an “acoustic HMM” and an “articulatory 
HMM”. Acoustic HMMs were finally refined by increasing 
incrementally the number of Gaussian mixture components.  

The prediction of the sequence of articulatory feature 
vectors, for a given test sequence of acoustic feature vectors,
was achieved in two stages. First, phonetic and state decoding 
was performed by the Viterbi algorithm using the acoustic 
HMMs. A bigram phonetic language model trained on one 
year of the newspaper “Le Monde” (year 2003) was used 
(thus, the recognised phoneme sequences respect French 
phonotactics). Second, given the predicted sequence of phones 
and the decoded HMM state sequence, the target vector 
sequence was inferred by the maximum-likelihood parameter 
generation algorithm (MLPG) [9], using the articulatory 
HMMs.  

2.2. Minimum Generation Error (MGE) criterion 
In this paper, we introduce a new training procedure, based on 
the MGE approach (Minimum Generation Error) initially 
proposed by Wu et al. in [10] for HMM-based text-to-speech 
synthesis. We propose to adapt this technique to the acoustic-
to-articulatory mapping problem. The training procedure is 
performed as follows. The parameters of single Gaussian 
articulatory HMMs are first estimated by maximising the 
likelihood of the model given the training data (using the 
standard Baum-Welch algorithm). Then, the articulatory 
trajectories which maximize the likelihood of the current set of 
articulatory HMMs are generated using the MLPG algorithm. 
The state sequence used to drive this intermediate synthesis 
stage is obtained by forced-alignment of the acoustic data at 
the phonetic level. The generation error is defined as the 
Euclidean distance between the generated and the measured 
articulatory trajectories. Given this error, the parameter of the 
articulatory HMMs (mean and variance) are finally updated 
using the equations detailed in [10]. In our implementation, 
this procedure is iterated 5 times.   

3. Speaker adaptation 
Compared to other approaches (based on ANNs or GMMs for 
instance), the mapping between acoustic and articulatory 
modalities is not performed at the feature level, but at the 
phonetic level. Based on this consideration, we investigated 
the possibility to perform the inversion by directly decoding 
the new speaker’s speech at this level. Because the accuracy of 
the inversion process depends strongly on the performance of 
this decoding stage, it is crucial to adapt the reference speaker 
models (i.e. the speaker used to build the original speech 
inversion system). This additional stage makes the models of 
the reference speaker compatible with the new speaker’s 
voice, but also with a different acoustic environment.  

To build the adaptation database, the new speaker is asked 
to utter a corpus of adaptation sentences. The adaptation 
procedure is performed as follows. First, the speech signal is 
automatically segmented at the phonetic level using forced-
alignment and the acoustic models trained on the reference 
subject. Second, Maximum Likelihood Linear Regression 
(MLLR) technique is used to adapt each acoustic HMMs.  

MLLR estimates linear transformations for models parameters 
to maximise the likelihood of the adaptation data [11].  

4. Evaluation  

4.1. Databases 
The database used in this study (and also in our previous study 
[5]) consists of two repetitions of 224 VCVs (where C is one 
of the 16 French consonants and V is one of 14 French oral 
and nasal vowels), two repetitions of 109 pairs of CVC real 
French words, and 88 sentences, uttered by a male native 
French speaker (referred to as the reference speaker PB) 
(approximately 5100 phones). Articulatory movements were 
recorded synchronously with the audio signal using the 
Carstens 2D EMA system (AG200). Six coils were used to 
measure articulators kinetics: a jaw coil was attached to the 
lower incisors, whereas three coils were attached to the tongue 
tip, the tongue middle, and the tongue back; upper and lower 
lip coils were attached to the boundaries between the 
vermilion and the skin in the midsagittal plane. Two coils were 
used for head alignment. The audio-speech signal was 
recorded at a sampling frequency of 22 kHz and was 
parameterized by 13 MFCC (Blackman window, 25 ms frame 
length, 10 ms frame shift). EMA coordinates were recorded at 
500 Hz, low-pass filtered at 20 Hz in order to reduce noise, 
and down sampled to 100 Hz to fit the analysis rate of the 
acoustic signal. The database, which consists of approximately 
17 minutes of speech, long pauses being excluded, was 
labelled at the phonetic level (using a force-alignement 
procedure and a manual check).  

In order to evaluate the proposed speaker adaptation 
technique, audio database were recorded from three native 
French speakers: male speaker TH recorded the same speech 
material as the reference speaker PB; another male speaker GB 
and female speaker AC recorded a different corpus, consisting 
of 240 sentences initially designed for speech synthesis 
purpose. 

4.2. Evaluation 
The accuracy of the inversion was measured in different ways. 
First, we calculated the root mean square (RMS) error between 
the measured and the estimated EMA parameters, such as: 

( )��
= =

−=
D

d

T

t
tdtd yy

TD
RMS

1 1

2
,,ˆ11  (3)   

where T is the number of frames in the test set, D is the 
number of EMA parameters (12 in this study), ŷ

t
 and y

t
 are 

respectively the estimated and the measured position of the dth

EMA parameters at time t. A different formulation of the RMS 
error, in which the RMS is averaged over all the features, can 
be found in the literature (as in [3], [4], [5] or [6]). This RMS 
is called here �RMS and is defined as: 
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We also calculated the “Pearson Product-Moment Correlation 
Coefficient” (PMCC) which measures the level of amplitude 
similarity and synchrony of the trajectories. Finally, we 
calculated the “recognition accuracy” to assess specifically the 
phonetic decoding stage. 

A 5-fold cross-validation procedure was used for the 
evaluation: the database was split into 5 partitions 
approximately homogeneous from the point of view of phone 
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distribution. Each partition was used once as the test set while 
the other 4 partitions composed the training set. RMS, �RMS 
PMCC, and recognition rates were averaged over the five test 
partitions. 

In order to estimate the contribution of the new MGE-
based training procedure, it is needed to evaluate the synthesis 
stage independently from the recognition stage. In that 
purpose, we simulated a “perfect recognition” by aligning the 
original phonetic labels on the acoustic waveform. Table 1a 
shows that using MGE decreases the RMSE by an amount
between 0.08 mm and 0.26 mm, depending on the context 
type.  

Table 1.b displays the performances of the inversion from 
audio signal alone. Best results were obtained with context-
dependant models including information about the right 
phonetic context (ctx-R). In this case, μRMSE was found to be 
1.48 mm (RMSE = 1.53 mm, PMCC = 0.93, recognition 
accuracy = 86.20%). 

4.3. Articulatory recognition 
Since no articulatory data were acquired for 3 of the 4 
speakers used in this study, it is impossible to determine the 
RMSE between the measured and the predicted articulatory 
trajectories. Therefore, we have based the evaluation on the 
automatic “articulatory recognition” of the predicted 
trajectories. In that purpose, we have trained an HMM-based 
phonetic decoder on the articulatory data of the reference 
speaker PB.    

Contrarily to the acoustic recognition stage which 
determines phonemes, this articulatory recognition procedure 
was designed to recognise phoneme classes (groups of 
phonemes). As the context classes, described in section 2.1, 
were established based on articulatory distances, they take 
naturally into account the fact that all features are not 
exhaustively present in the EMA data (voicing cannot be 
measured; no velum coil was available in our recording setup). 
Therefore, these 16 context classes have been used as 
phoneme classes for the articulatory recognition. Note that 
phonemes differing only by voicing or velum position are 
grouped in the same classes (e.g. /p b m/, /t d n/, /k g/, etc.). In 
addition, two extra phoneme classes were used: one for the 
schwa and the short pause, and the other for the long pause at 
the boundaries of sentences. Finally, these 18 articulatory 
phoneme classes were used to train and to recognize the 
articulatory trajectories.  

The HMM-based articulatory recognition system was built 
using a procedure similar to the one described in section 2.1. 
The performance of this system was evaluated on the 
articulatory data of the reference speaker PB, using the same 
5-fold cross-validation procedure that the one described 
previously. Best performance was obtained using context 
dependent model (with right context) and 8 Gaussians per 
state. In this case, the recognition accuracy was found to be 
84.84 %. These articulatory HMMs are used to evaluate the 

articulatory trajectories generated from the acoustic signal of 
any new speaker. 

4.3.1. Evaluation of the predicted articulatory 
trajectories of the reference speaker 

In order to establish a baseline for the assessment of inversion 
of new speakers by automatic articulatory recognition, we 
have computed the articulatory recognition rates for the 
original speaker. It was also deemed important to decide 
which data should be used for training this reference 
articulatory recognition system: (1) original articulatory 
trajectories, (2) articulatory trajectories recovered by inversion 
from the audio signal alone, or (3) articulatory trajectories 
recovered by inversion from both audio signal and labels 
(perfect acoustic recognition). All combinations were finally 
evaluated, for cxt-R contexts, using 5-fold cross validation for 
each combination, as can be seen in Table 2. Interestingly, we 
observed that recognition rate were always higher for 
synthesised trajectories than for measured ones, whatever the 
training corpus: this might be ascribed to the fact that 
synthesised articulatory trajectories are more lawful or regular 
than measured ones, since they are produced by models that 
constitute simplified representations of data, good though they 
can be. We observe also that rates are higher for models 
trained on measured data (except in the case of testing and 
training with data obtained by perfect recognition). It was 
therefore decided to use models trained on measured data. 

Table 2. “Phoneme class” articulatory recognition 
accuracy (with 5-fold cross-validation) for speaker PB 
using ctx-R; measured EMA (1), EMA synthesized 
from audio only (2), and from both audio and labels
(perfect recognition) (3). 

(1) (2) (3)
(1) 84.84 84.56 88.39 
(2) 58.12 79.25 83.78
(3) 57.06 84.44 90.04

Context  « ctx-R » Test

T
ra

in

4.3.2. Evaluation of the predicted articulatory 
trajectories of new speakers 

The acoustic adaptation technique described at section 3 was 
applied to the acoustic HMMs trained on 4/5 of the original 
speaker’s corpus using 4/5 of the new speaker’s corpus; the 
remaining 1/5 of the new speaker’s corpus was used to test 
both acoustic recognition and articulatory recognition. Note 
that in order to avoid the complexity and possible overtraining 
that may occur when using 5-fold cross-validation for both the 
reference articulatory training and the new speaker adaptation, 
all the test have been applied using the first 4/5 of the corpus 
for training or adaptation and the last 1/5 for testing. For 
subject TH, the sentences used for the adaptation were the 

Table 1. μRMSE, RMSE (mm) and PMCC for the HMM-based inversion: (a) inversion from audio and labels input (perfect 
recognition); (b) inversion from audio only. 

μRMSE RMSE PMCC μRMSE RMSE PMCC μRMSE RMSE PMCC μRMSE RMSE PMCC
MLE 1,80 1,87 0,89 1,49 1,54 0,93 1,50 1,55 0,93 1,39 1,44 0,94
MGE 1,55 1,61 0,92 1,34 1,38 0,94 1,35 1,39 0,94 1,31 1,34 0,94
MLE 1,88 1,96 0,78 1,64 1,70 0,91 1,59 1,65 0,92 1,63 1,69 0,91
MGE 1,71 1,78 0,90 1,54 1,60 0,92 1,48 1,53 0,93 1,57 1,63 0,92

no-ctx L-ctx ctx-R

(b)

(a)

L-ctx-R
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same as those used for training the initial acoustic HMMs on 
PB.  

Table 3 shows the various acoustic recognition rates and 
articulatory recognition rates of the inversed trajectories. We 
observe that subject TH has performances very close to those 
of reference PB; this could be explained by the fact that his 
corpus was recorded in an imitation mode: he imitated each 
sentence after being prompted by the audio recording from 
PB, which would favour similar dynamics. Oppositely, the 
worst performances are obtained for female speaker AC, both 
at acoustic and articulatory levels, which may be ascribed to 
the sex difference, and the difference in size and content of the 
corpus – allowing only 192 adaptation sentences. Intermediary 
results are obtained for speaker GB, with the intriguing 
degradation of the articulatory score compared to the fairly 
good acoustic one. However, a more thorough analysis of the 
acoustic recognition has shown that the accuracy rates for the 
set of 631 allophones in right context (ctx-R) were much lower 
than for the 36 French phonemes for this speaker (see Table 
3). This was confirmed by the observation of the detailed 
recognition rates for vowels which showed some confusion 
between different contexts. 

Table 3. Acoustic and articulatory recognition 
accuracy for all the speakers, using 1/5 of the corpus 
for testing. 

Accuracy PB TH GB AC
Acoust. Phonemes 85.92 83.77 79.12 62.81

Articulation 83.70 82.23 69.46 56.77
Acoust. Allophones 79.88 76.53 66.77 48.01

5. Conclusions and perspectives 
This paper presents latest developments on our HMM-based 
acoustic-to-articulatory inversion system that we develop for a 
“visual articulatory feedback” system. The introduction of a 
new training procedure based on the optimization of the 
Minimum Generation Error (MGE) criterion has lead to 
significant improvements (about 10%). As a first step toward a 
multi-speaker system, we also investigated the use of a MLLR 
model adaptation technique. The quality of the articulatory 
trajectories was evaluated by measuring the performance of an 
“articulatory HMM-based phonetic decoder”. Recognition 
accuracies range between 56.8 % and 82.2 % for three 
speakers, compared to 83.7 % for the original speaker, 
demonstrating the interest of the method. 

The next step of our development will be to test more 
speakers, and to study more explicitly the influence of the 
nature and size of the adaptation corpus. It will also be of great 
importance to investigate adaptation methods in the case of 
non-native speaker adaptation (e.g. [12]). 

Finally, in the framework of Computer Aided 
Pronunciation Training (CAPT), we aim to use this speaker 
adaptation approach in our visual articulatory feedback 
system, based on acoustic-to-articulatory speech inversion. 
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