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Abstract 
This paper describes a machine learning approach for 
extracting automatically the tongue contour in ultrasound 
images. This method is developed in the context of visual 
articulatory biofeedback for speech therapy. The goal is to 
provide a speaker with an intuitive visualization of his/her 
tongue movement, in real-time, and with minimum human 
intervention. Contrary to most widely used techniques based 
on active contours, the proposed method aims at exploiting the 
information of all image pixels to infer the tongue contour. For 
that purpose, a compact representation of each image is 
extracted using a PCA-based decomposition technique (named 
EigenTongue). Artificial neural networks are then used to 
convert the extracted visual features into control parameters of 
a PCA-based tongue contour model. The proposed method is 
evaluated on 9 speakers, using data recorded with the 
ultrasound probe hold manually (as in the targeted 
application). Speaker-dependent experiments demonstrated the 
effectiveness of the proposed method (with an average error of 
~1.3 mm when training from 80 manually annotated images), 
even when the tongue contour is poorly imaged. The 
performance was significantly lower in speaker-independent 
experiments (i.e. when estimating contours on an unknown 
speaker), likely due to anatomical differences across speakers. 
Index Terms: ultrasound imaging, biofeedback, tongue, 
speech therapy, ANN, segmentation, speech production. 

1. Introduction 
Rehabilitating an articulation or swallowing disorder may 
require correcting the placement of the tongue. In that context, 
a visual biofeedback system can help a patient to better 
understand the origin of the trouble by displaying his/her 
‘own’ tongue movements. Medical ultrasonography (i.e. 2D 
ultrasound imaging) is a clinically-safe and a non-invasive 
way ([1]) of imaging the tongue either in the midsagittal or in 
the coronal plane (the probe is placed beneath the speaker’s 
chin), with both good spatial (~0.5 mm) and temporal 
resolution (~80 fps). Several studies showed the benefit of 
ultrasound biofeedback for treating different speech disorders 
[2] [3] [4]. However, one of the main issues of ultrasound 
biofeedback is the difficulty for the patient to ‘read’ (and thus 
to interpret) the images. This can be explained by several 
reasons [5]: (1) ultrasound image of the tongue does not show 
the limits of the oral cavities (such as the palate or the 
pharyngeal wall), and (2) some parts of the upper surface of 
the tongue can be very poorly imaged when they are not 
oriented orthogonally to the ultrasound beam. In a preliminary 

version of one of our biofeedback systems [6], we addressed 
the first issue by superimposing a generic vocal tract template 
to the live image stream (this template was rescaled manually 
to fit approximately the patient’s morphology). In this study, 
we addressed the other issue. Our goal is to augment the 
ultrasound image by highlighting the tongue contour. 
Therefore, an automatic segmentation of the tongue contour 
procedure is required. In order to be used in a practical speech 
therapy context, this procedure should ideally: be robust to 
low-quality images (i.e. with badly imaged tongues) and probe 
displacements (in case it is hold manually), run in real-time, 
and involve minimal human intervention for adapting the 
system to a new patient.   
Several approaches for extracting the tongue contour in 
ultrasound images have been proposed in the literature.  One 
of the most widely used technique in phonetic research is an 
adaptation of active contours (snakes) to the problem of 
tongue segmentation [5] (by introducing specific shape 
constrains in the internal energy term). Manual intervention is 
required for initializing the active contours on the first frame 
of a sequence; the rest of the tracking remains automatic. This 
approach provides good results, as long as the tongue contour 
is clearly visible. However, the performance decreases 
drastically when part of the contour disappears (as mentioned 
in [7]). Other studies proposed to use an external model of the 
tongue to regularize the segmentation process. In [7], Roussos 
et al. proposed an approach based on an Active Appearance 
Model (AAM) for which the shape model was pre-trained on a 
set of 700 X-ray images, annotated manually (texture 
parameters of the AAM were derived from a filtered version 
of the ultrasound image). One advantage of this technique is 
its ability to extrapolate the tongue contour in the front and 
back regions of the vocal tract. Those regions are usually 
hidden in ultrasound by the acoustic shadows of hyoid bone 
and jaw. In [8], Loosvelt et al. proposed to use a 
biomechanical model of the tongue to constrain the 
displacement of contour points over time. Both approaches 
([9]  and [8]) seem to outperform the state-of-the-art (snake-
based) technique [5]. However, the first one does not seem to 
be well adapted to a speech therapy context since it requires 
X-ray data of the patient. For the second one, it is not 
mentioned in [8] if evaluation was carried out on several 
speakers.  
Statistical machine learning can also be used to address the 
problem of tongue segmentation in ultrasound images. In [10], 
Fasel & Berry proposed to model the relationships between 
the intensity of all image pixels and the position of the tongue 
contour, using a translational Deep Belief Network (tDBN). 
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This work seems to rely on the following hypothesis: the 
deformation of other visible structures (muscle, fat, as well as 
the speckle’s patterns) can help recovering missing 
information about the tongue contour. This technique was 
evaluated on a multi-speaker database (7 speakers, corpus of 
words with the letter /l/ in frame sentences) and outperformed 
clearly snake-based technique (with an average error of 
0.75 mm). However, as common in deep learning, a large 
amount of data was needed to train the model efficiently. In 
[10], more than 8000 annotated images were necessary to train 
a DBN with 646 inputs (which corresponds to all the pixels of 
the original image resized to 19x34), and 5514 neurons 
dispatched on 3 hidden layers.  
The tongue segmentation method proposed in the present 
study is in line with Fasel & Berry’s work. As detailed in 
Section 2, it models the statistical relationships between 
pixels’ intensity over the entire ultrasound image and the 
tongue contour, using an artificial neural network (ANN). 
However, in order to use this system for practical biofeedback 
therapy, we aimed at reducing the amount of data needed to 
train the network (which requires human manual intervention). 
For that purpose, in order to alleviate the complexity of the 
network, we investigate the use of a more compact 
representation than the raw pixels, using the PCA-based 
decomposition technique EigenTongue, originally described in 
[11] (in the context of silent speech interface). As described in 
Section 3, the proposed method was evaluated on 9 speakers. 
The performance of the proposed method was evaluated using 
both a speaker-dependent and speaker-independent 
approaches.   

2. General methodology 
The proposed technique is based on: (1) a PCA-based 
decomposition technique named EigenTongue used to 
parameterize the pixels intensity, (2) a PCA-based model of 
the tongue contour referred here to as EigenContour, and (3) 
an artificial neural network for modeling the relationships 
between these two representations. A block diagram of the 
method is given in Figure 1. The different steps involved in 
this method are detailed in the next subsections.  

 
Figure 1: Block diagram of the proposed segmentation 
technique 

2.1. EigenTongue decomposition  

The EigenTongue decomposition technique is a 
straightforward adaptation of the Eigenfaces method proposed 
by [12]. Previous studies on articulatory recognition [13], 
articulatory-acoustic mapping [14], and cross-speaker 
articulatory mapping [15] showed that this technique provides 
a compact and articulatory-consistent representation of tongue 

position in ultrasound images. Besides, it encodes also the 
other visible structure in the image (muscle, fat, speckle 
patterns, etc.), which can be exploited to recover missing 
information about the tongue contours. The EigenTongue 
decomposition technique can be summarized as follows. In the 
training stage, a subset of ultrasound frames is selected from 
the recorded dataset and resized to limit some of the 
redundancy between pixels. A decomposition basis that best 
explains the variation of pixel intensity in the training frames 
was then extracted using PCA (basis vectors for ultrasound are 
called EigenTongues). In the feature extraction stage, each 
new ultrasound frame is projected onto the set of 
EigenTongues. The features used for the mapping experiments 
are defined as the first components in that space (such features 
are referred here to as EigenTongues parameters). The number 
of components is typically determined by keeping the 
eigenvectors that carry 80% of the variance of the training set.  

2.2. EigenContour decomposition  

In the training stage, the tongue contour is annotated manually 
with respect to a polar grid, as illustrated in Figure 2. The 
geometry of this grid is adapted to the morphology of the 
speaker. It is centered on the probe position (given by the 
ultrasound system). The two extreme left and right grid lines 
(back and front of the mouth) are aligned on the acoustic 
shadows created by the hyoid bone and the jaw, respectively. 
This grid positioning aims at dealing with morphological 
differences across speakers. The manual annotation is 
facilitated by the use of Bézier splines: the user manipulates 
control points of the splines instead of pointing each grid-
contour intersection. The tongue contour is represented by the 
x/y coordinates of its intersections with each grid lines. If the 
tongue contour does not cross a specific grid, the 
corresponding point is labeled as ‘missing’ (this could happen 
for the extreme right lines of the grid for back tongue 
articulation). 

 
              Figure 2: Example of annotation grid 

Similarly to the ultrasound images, PCA is used to obtain a 
compact representation of the annotated tongue contours. 
However, a probabilistic PCA (p-PCA) was used to deal with 
missing valued in annotated tongue contours [16]. Similarly to 
the EigenTongue decomposition techniques (section 2.1), the 
basis vectors obtained by p-PCA are called EigenContours. 
For the ANN-based mapping experiments, each contour of the 
training set is represented by the first components in the 
EigenContours space (the resulting features are referred here 
to as EigenContours parameters).   
In the training stage, the relationships between EigenTongues 
and EigenContours parameters are modeled using a single-
layer perceptron. In the segmentation stage (AAN-based 
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mapping), the estimated EigenContours parameters are back-
projected onto the matrix of basis vectors in order to get the 
x/y coordinates of the tongue contour. Segmentation is 
performed on a frame-by-frame basis, is computationally light 
and can thus run in real-time.  

3. Experimental protocol and results  

3.1. Data acquisition 

For this particular study, we recorded a database of 9 speakers 
(4 females and 5 males). In order to be as close as possible to a 
practical speech therapy context, each speaker was asked to 
manually hold the probe him/herself. Tongue movements were 
captured in the midsagittal plane using the Terason T3000 
system, a 128 elements micro convex transducer, and the 
Ultraspeech software [17]. Ultrasound frequency range was 
set to 3-5 MHz, scanning angle to 140°, and penetration depth 
to 7 cm. Ultrasound images were recorded at 60 Hz with a 
resolution of 320×240 pixels. At this size, the resolution of the 
ultrasound images was 0.5 mm / pixel. Each speaker was 
asked to utter two repetitions of the first list of the 
Combescure corpus of phonetically balanced sentences [18], 
for a total of 20 sentences. This results in approximately 5000 
images per speaker.  

3.2. Training data selection 

A preliminary experiment on a single speaker, not included in 
our database, demonstrated that decreasing the number of 
training images from 1200 to 100 would increase the error by 
about 0.5 mm only. Thus, instead of randomly choosing a set 
of images for each speaker, we divided the data in 20 clusters 
by using the k-means algorithm on the EigenTongues 
parameters. The number of clusters was determined based on 
the phonetic knowledge of the different tongue articulations 
existing in French. We picked 5 images by cluster. This 
procedure led to a final set of 100 images for each speaker. 
The resulting 900 images were then manually annotated, using 
the procedure described in Section 2.2.  

3.3. ANN training procedure 

ANN were trained similarly to [19], with the following 
specificities. Weights were first randomly initialized using a 
Gaussian distribution with a 0.0001 standard deviation. The 
error criterion was defined as the Mean Squared Error (MSE) 
between predicted and expected values. The minimization of 
the error was performed with the conjugate gradient method 
using a 3 lines search, on successive batches: at each epoch, 
the training data samples were randomly shuffled. Non-linear 
units used the logistic sigmoid as activation function. Input 
and output data were z-scored before being fed to the ANN. 
Regularization of the ANN during training was done both 
using early-stopping and adding an L2 penalty to the network 
weights (the L2-norm of the weights were included in the cost 
function, with a cost-factor of 0.01). 

3.4. Metrics and evaluation 

Similarly to [5], the accuracy of the estimated tongue contour 
on the kth image was assessed using the MSD measurement 
(Mean Sum of Distance), defined as:  

!!
MSDk =

1
2N min

j
ν i →uj( )+min

j
ui →ν j( )( )

i=1

N

∑  (1)   

where !
ui →ν j  denotes the Euclidean distance between the ith 

point 
!
ui  of the estimated contour and the jth point !

ν j  of the 

(manually) annotated contour (N is the number of grid lines). 
The average error in millimeters over the K images of the test 

set was defined as: !!MSDRMS = R ⋅ (1/K ) MSDk
2

k=1
K∑  where R 

is the resolution of the ultrasound system (R=0.5mm/pixel in 
our case). For each of the 9 recorded speakers, all experiments 
were systematically assessed using a complete 5-fold cross-
validation procedure. For each of the 5 folds, 80 images were 
used to train the ANN (i.e. estimating the model parameters 
and triggering early stopping), the remaining 20 images were 
used for test.  

3.5. Speaker-dependent approach 

The performance of the proposed method was evaluated for 
the 9 recorded speakers, first using a speaker-dependent 
approach. In this scenario, both EigenTongues and 
EigenContours models were estimated from single speaker 
data as well as the ANN parameters.  
Ultrasound images were resized to 64×64 pixels. A set of 40 
EigenTongues parameters was retained for parameterization 
(this number of components explained at least 80% of the 
observed variance, for all the 9 speakers).  
To quantify the amount of manual intervention needed by the 
proposed method, we explored the evolution of the 
performance as a function of the size of the training corpus 
(and thus the number of manually annotated images). For each 
fold of the cross-validation procedure, we selected 
successively the 20, 40, 60, and 80 most distinct images from 
the available 80 training images using a k-means algorithm 
(for these experiments, the set of EigenTongues remained 
calculated from the 80 available frames).  
A set of 8 EigenContours parameters was used to describe the 
tongue (explaining 90% of the variance). The error obtained 
by reconstructing the original tongue contours from only the 

 Figure 3: Performance obtained for the speaker-
dependent experiments as a function of the amount 
of training images. On each box, the central mark 
is the median, the edges of the box are the 25th 
and 75th percentiles, the whiskers extend to the 
most extreme data points not considered outliers, 
and outliers are plotted individually. (*) denotes a 
statistically significant difference between 
conditions, evaluated using an ANOVA test. 
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corresponding 8 EigenContours parameters was found to be 
0.28 mm. This value is therefore the best possible 
performance with this parameterization. 
The number of neurons on the ANN hidden layer was 
determined using cross-validation. However, no improvements 
were observed with more than 35 neurons, which was the 
ANN configuration used for all the speaker-dependent 
experiments. The performances obtained for each size of the 
training set are presented in Figure 3. 
As expected, the best performance was obtained when using 
the largest training set (1.29 mm when using 80 training 
images, compared to 2.96 mm when using only 20 training 
images). A good tradeoff between manual intervention and 
accuracy of the segmentation process can be obtained with 60 
images (1.62 mm). Besides, as shown in Figure 4, the 
proposed method seems to deal correctly with low-quality 
images for which parts of the tongue contour are totally 
missing. This supports our approach based on the use of 
information of the whole image when segmenting the tongue 
contour.  

  

Figure 3: Examples of images where parts of the 
tongue contour are missing. In red, the segmentation 
performed by the neural network. 

3.6. Speaker-independent approach 

The performance of the proposed method was then evaluated 
using a speaker-independent approach. In this scenario, the 
system was trained on a multi-speaker database (8 speakers, 
100 images each), and was evaluated on a so-called ‘target 
speaker’ (which was not seen during training). These 
experiments aim at evaluating the capability of the ANN to 
generalize to a new speaker’s morphology and articulatory 
idiosyncrasies (to our knowledge, this problem has so far not 
been addressed in the literature). Two scenarios were 
investigated. In the first one, no observations of the target 
speaker were included in the training dataset. This corresponds 
to the ‘ideal case’, for which the proposed segmentation 
method becomes fully automatic. In the second one, we added 
some observations of the target speaker in the training set. In 
that case, the proposed segmentation method requires some 
manual intervention. We evaluated the performance for 
different amount of prior knowledge: 20, 40, 60 images, and 
finally 80 images (i.e. as much information about the target 
speaker as the other speakers of the database). Note that both 
the EigenContours model and the ANN were re-estimated for 
each experiment. 80 EigenTongues parameters were used for 
all speaker-independent experiments to encode ultrasound 
images. As expected, this number was higher than for the 
speaker-dependent experiments, likely due to the inter-speaker 
variability. The results are presented in Figure 5. 
As expected, the best results (1.89 mm) were obtained when 
using as much as information about the target speaker as 
possible (i.e. 80 images in this experiment), but no significant 

differences were obtained when using only 60 images 
(1.94 mm). Nevertheless, for these cases, the performance of 
the speaker-independent system is lower than the one 
observed with the speaker-dependent approach. 

 

Figure 4: Performance obtained for the speaker-
independent experiments as a function of the amount 
of training images of the target speaker 

Surprisingly, prior information derived from other speakers 
degrades the mapping instead of improving it. Interestingly, 
the opposite effect is observed when introducing less than 40 
images, since the speaker-independent system outperforms 
significantly the speaker-dependent one. Here, the model 
seems to extrapolate from other speaker’s data. As a 
consequence, in a practical context of biofeedback therapy, the 
speaker-independent approach will be preferred when 
minimum manual intervention is required. However, the 
speaker-dependent approach will lead to a better performance 
when more than 40 images can be annotated by the system 
user.  

4. Conclusions and perspectives 
This article describes a new approach for segmenting the 
tongue contour in an ultrasound image. This method is 
developed in the context of biofeedback speech therapy, in 
order to ‘augment’ the ultrasound image by highlighting the 
tongue contour. The proposed method is based on statistical 
machine learning. It aims at exploiting all the information 
available in the image: indeed the areas corresponding to the 
tongue, but also the other visible structures (muscles, fat, 
speckle pattern, etc.). Experimental results demonstrate the 
effectiveness of this approach, even when parts of the tongue 
are badly imaged.  
Future work will focus on the introduction of dynamic 
constrains (by using contextual information about previous 
segmented frames). A real-time implementation should be also 
done in order to evaluate the proposed system of ultrasound 
biofeedback in a practical context of speech therapy.  

5. Acknowledgements 
The authors would like to thank the Région Rhône-Alpes 
ARC6 funding agency for supporting this work through 
doctoral funding to Diandra Fabre. They also thank all the 
speakers recorded for this experiment.  

2413



6. References 
[1] M. A. Epstein, "Ultrasound and the IRB," Clinical 

Linguistics & Phonetics, vol. 19, pp. 567-572, 2005. 
[2] J. L. Preston and M. Leaman, "Ultrasound visual 

feedback for acquired apraxia of speech: A case report," 
Aphasiology, vol. 28, pp. 278-295, 2014. 

[3] H. M. Lipetz and B. M. Bernhardt, "A multi-modal 
approach to intervention for one adolescent's frontal lisp," 
Clinical linguistics & phonetics, vol. 27, pp. 1-17, 2012. 

[4] G. Modha, B. Bernhardt, R. Church, and P. Bacsfalvi, 
"Case study using ultrasound to treat," International 
Journal of Language & Communication Disorders, vol. 
43, pp. 323-329, 2008. 

[5] M. Li, C. Kambhamettu, and M. Stone, "Automatic 
contour tracking in ultrasound images," Clinical 
Linguistics & Phonetics, vol. 19, pp. 545-554, 2005. 

[6] T. Hueber, G. Chollet, B. Denby, and M. Stone, 
"Acquisition of ultrasound, video and acoustic speech 
data for a silent-speech interface application," Proc. of 
ISSP, pp. 365-369, 2008. 

[7] A. Roussos, A. Katsamanis, and P. Maragos, "Tongue 
tracking in ultrasound images with active appearance 
models," presented at Image Processing (ICIP), 2009 
16th IEEE International Conference on, 2009. 

[8] M. Loosvelt, P.-F. Villard, and M.-O. Berger, "Using a 
biomechanical model for tongue tracking in ultrasound 
images," in Biomedical Simulation: Springer, 2014, pp. 
67-75. 

[9] A. Roussos, A. Katsamanis, and P. Maragos, "Tongue 
tracking in ultrasound images with active appearance 
models," presented at Image Processing (ICIP), 2009 
16th IEEE International Conference on, 2009. 

[10] I. Fasel and J. Berry, "Deep belief networks for real-time 
extraction of tongue contours from ultrasound during 
speech," presented at Pattern Recognition (ICPR), 2010 
20th International Conference on, 2010. 

[11] T. Hueber, G. Aversano, G. Chollet, B. Denby, G. 
Dreyfus, Y. Oussar, P. Roussel, and M. Stone, 
"Eigentongue feature extraction for an ultrasound-based 
silent speech interface," presented at Acoustics, Speech 
and Signal Processing, 2007. ICASSP 2007. IEEE 
International Conference on, 2007. 

[12] M. Turk and A. Pentland, "Eigenfaces for recognition," 
Journal of cognitive neuroscience, vol. 3, pp. 71-86, 
1991. 

[13] T. Hueber, G. Chollet, B. Denby, G. Dreyfus, and M. 
Stone, "Phone recognition from ultrasound and optical 
video sequences for a silent speech interface," presented 
at INTERSPEECH, 2008. 

[14] T. Hueber, G. Bailly, and B. Denby, "Continuous 
Articulatory-to-Acoustic Mapping using Phone-based 
Trajectory HMM for a Silent Speech Interface," 
presented at 13th Annual Conference of the International 
Speech Communication Association (Interspeech 2012), 
2012. 

[15] D. Fabre, T. Hueber, and P. Badin, "Automatic animation 
of an articulatory tongue model from ultrasound images 
using Gaussian mixture regression," presented at 15th 
Annual Conference of the International Speech 
Communication Association (Interspeech 2014), 2014. 

[16] J. Porta, J. Verbeek, and B. Krose, "Active appearance-
based robot localization using stereo vision," 
Autonomous Robots, vol. 18, pp. 59-80, 2005. 

[17] T. Hueber, G. Chollet, B. Denby, and M. Stone, 
"Acquisition of ultrasound, video and acoustic speech 
data for a silent-speech interface application," Proc. of 
ISSP, pp. 365-369, 2008. 

[18] P. Combescure, "20 listes de dix phrases phonétiquement 
équilibrées," Revue d’Acoustique, vol. 56, pp. 34-38, 
1981. 

[19] F. Bocquelet, T. Hueber, P. Badin, L. Girin, and B. 
Yvert, "Robust articulatory speech synthesis using deep 
neural networks for BCI applications," presented at 
Interspeech 2014 (15th Annual Conference of the 
International Speech Communication Association), 
Singapour, 2014. 

 
 

2414


	Welcome Page
	Hub Page
	Session List
	Table of Contents Entry of this Manuscript
	Brief Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Detailed Author Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	Multimedia File Index
	----------
	Abstract Book
	Abstract Card for this Manuscript
	----------
	Next Manuscript
	Preceding Manuscript
	----------
	Previous View
	----------
	Search
	----------
	Also by Thomas Hueber
	Also by Florent Bocquelet
	----------

