
JOURNAL OF LATEX CLASS FILES, VOL. 11, NO. 4, DECEMBER 2012 1

Speaker-Adaptive Acoustic-Articulatory Inversion
using Cascaded Gaussian Mixture Regression

Thomas Hueber, Laurent Girin, Xavier Alameda-Pineda, Gérard Bailly

Abstract—This article addresses the adaptation of an acoustic-
articulatory model of a reference speaker to the voice of another
speaker, using a limited amount of audio-only data. In the context
of pronunciation training, a virtual talking head displaying the
internal speech articulators (e.g. the tongue) could be automati-
cally animated by means of such a model using only the speaker’s
voice. In this study, the articulatory-acoustic relationship of
the reference speaker is modeled by a gaussian mixture model
(GMM). To address the speaker adaptation problem, we propose
a new framework called cascaded Gaussian mixture regression (C-
GMR), and derive two implementations. The first one, referred
to as Split-C-GMR, is a straightforward chaining of two distinct
GMRs: one mapping the acoustic features of the source speaker
into the acoustic space of the reference speaker, and the other
estimating the articulatory trajectories with the reference model.
In the second implementation, referred to as Integrated-C-GMR,
the two mapping steps are tied together in a single probabilistic
model. For this latter model, we present the full derivation of the
exact EM training algorithm, that explicitly exploits the missing
data methodology of machine learning. Other adaptation schemes
based on maximum-a-posteriori (MAP), maximum likelihood
linear regression (MLLR) and direct cross-speaker acoustic-to-
articulatory GMR are also investigated. Experiments conducted
on two speakers for different amount of adaptation data show
the interest of the proposed C-GMR techniques.

Index Terms—acoustic-articulatory inversion, speech produc-
tion, Gaussian Mixture Regression, EM algorithm, speaker adap-
tation, talking head, pronunciation training.

I. INTRODUCTION

ACOUSTIC-ARTICULATORY inversion consists in the
estimation of the movements of the speech articulators

(e.g. tongue, lips, jaw, velum) from the speech audio sig-
nal. The underlying articulatory structure of speech can be
exploited in different areas of speech technology, such as au-
tomatic speech recognition [1], low bit-rate speech coding [2],
and speech synthesis [3]. Acoustic-to-articulatory inversion
can also be used to animate a virtual talking head displaying
the internal speech articulators using augmented reality [4].
Such a tool provides a complete and intuitive visual feedback
that is useful for speech therapy [5], [6] and second language
learning [7]. This is the applicative context of the present
study.
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laurent.girin@gipsa-lab.grenoble-inp.fr

Xavier Alameda-Pineda (PhD) is a post-doctoral fellow affiliated to Univer-
sity of Trento (Italy) and to INRIA Grenoble Rhône-Alpes (France). E-mail:
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Acoustic-to-articulatory inversion has been addressed in
many studies using different techniques: codebook-based ap-
proaches [8]–[10], artificial neural networks [11], [12], sup-
port vector machines (SVM) [13], Gaussian mixture models
(GMM) [14], [15], or hidden Markov models (HMM) [16],
[17].

In most studies, acoustic-articulatory models are trained
in a speaker-dependent way, using simultaneous recordings
of audio and electromagnetic articulography (EMA) data. To
design a pronunciation training system based on a virtual
talking head, a speaker adaptation framework is required for
two reasons. First, the user, referred here to as the source
speaker, is generally different from the reference speaker for
whom the model was trained. Because of the inter-speaker
variability, feeding the acoustic-articulatory model of the ref-
erence speaker with data from the source speaker, is expected
to yield poor articulatory trajectories (as confirmed by our
experiments). Second, a practical usage scenario excludes the
use of invasive devices (such as EMA) on the source speaker.
Hence no articulatory data of the source speaker is assumed
to be available for adaptation. Consequently, the research
question addressed in this study is: How to adapt an acoustic-
articulatory model of a reference speaker to a different speaker,
using acoustic data only?

To the best of our knowledge, only a few studies addressed
the problem of recovering articulatory movements from speech
signals produced by a new (source) speaker, using a model
trained for another (reference) speaker. In [18], Dusan and
Deng proposed a vocal tract length normalization procedure
to compensate the morphological differences between the two
speakers. In [19], Hiroya et al. proposed to adapt an HMM-
based acoustic-to-articulatory model [16]. However, this adap-
tation technique aims at adjusting not only the acoustic-
articulatory relationships of the reference model to the source
speaker, but also the geometry of the reference speaker’s vocal
tract. Given the targeted application, the goal of the present
study is slightly different. We do not aim at representing the
estimated articulatory gestures in the articulatory space of the
source speaker, but rather in the articulatory space of the
reference speaker (in other words, we do not want to modify
the geometry of a talking head associated to this model).

In the present study, the acoustic-articulatory inversion is
addressed in the GMM framework and its associated regres-
sion technique called Gaussian mixture regression (GMR).
Different strategies are investigated to adapt an acoustic-
articulatory GMM trained on a reference speaker to a source
speaker, using a limited amount of audio-only data. First,
we investigate the use of standard techniques such as the
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maximum-a-posteriori (MAP) method [20] and the maximum
likelihood linear regression (MLLR) [21] to adapt the acoustic
part of the acoustic-articulatory GMM. We also consider a
direct cross-speaker model, i.e. a model trained on source
speaker’s audio data aligned with the reference speaker’s
articulatory data. Finally, we introduce another approach called
cascaded Gaussian mixture regression (C-GMR).

Two versions of the C-GMR are proposed, motivated and
evaluated. The first one, referred to as split cascaded GMR
(SC-GMR) is a straightforward chaining of two distinct
GMRs. The main principle is here to map the acoustic
features of the source speaker into the acoustic space of the
reference speaker, similarly to a voice conversion system, be-
fore estimating the articulatory trajectories with the reference
model. In the second version, referred to as the integrated
cascaded GMR (IC-GMR), acoustic conversion and acoustic-
to-articulatory inversion are completely tied and integrated
in a single probabilistic model. For this model, we derive
the exact expectation-maximization (EM) [22] algorithm that
jointly optimizes the complete set of model parameters during
adaptation (i.e. the model parameters related to the acoustic
data of source and reference speakers and to the articulatory
data of the reference speaker). Importantly, this algorithm
is intended to deal with small adaptation datasets using the
missing data methodology of machine learning [23], [24].
As for the inference, we use both “frame-by-frame” estima-
tion based on the mean squared error (MSE) criterion and
“utterance-by-utterance” estimation based on the maximum
likelihood parameter generation (MLPG) algorithm. This latter
algorithm was proposed by Tokuda et al. for HMM-based
speech synthesis [25] and adapted to GMR by Toda et al.
[26]. Note that a preliminary version of the IC-GMR technique
was initially proposed in [27] but with incomplete theoretical
foundations and no training algorithm.

This paper is organized as follows. Section II recalls the
basics of GMR techniques. Section III formalizes MAP and
MLLR-based adaptation schemes, as well as the direct cross-
speaker GMR. Section IV presents the SC-GMR. Section V
presents the IC-GMR. The associated EM algorithm is de-
rived in Section VI. Experiments conducted to assess the
performance of the proposed techniques are reported and
discussed in Section VII. Section VIII provides conclusions
and perspectives.

II. GAUSSIAN MIXTURE REGRESSION

In this section, we first recall the theoretical aspects and set
the notations of the GMR which is the foundation for both
SC-GMR and IC-GMR techniques.

A. Gaussian mixture model

Let us consider X and Y two random (column) vectors,
of dimension DX and DY respectively. Let us denote by
J the concatenation of X and Y into a column vector,
i.e. J = [X>,Y>]>, where > denotes the transpose oper-
ator. Let p(x|ΘX)1 denote the probability density function

1p(x|ΘX) is an abuse of notation, meaning p(X = x|ΘX). Upper-case
letters X denote random vectors, and lower-case letters x, realizations.

(PDF) of X, parametrized by the set of parameters ΘX. Let
N (x|µX,ΣXX) denote the Gaussian distribution on X with
mean vector µX and covariance matrix ΣXX. Let ΣXY denote
the cross-covariance matrix between X and Y. A GMM on
(X, Y) consists of a weighted sum of Gaussian PDFs:

p(j|ΘJ) =

M∑
m=1

πmN (j|µJ,m,ΣJJ,m) , (1)

where M is the number of components of the mixture. For
each component m, πm = p(m) is the prior probability
satisfying

∑M
m=1 πm = 1, µJ,m = [µ>X,mµ

>
Y,m]> is the mean

vector and ΣJJ,m is the covariance matrix given by:

ΣJJ,m =

[
ΣXX,m ΣXY,m

ΣYX,m ΣYY,m

]
. (2)

All these parameters are estimated using the classical EM
algorithm for GMM [28] (ch. 9).

It is well-known that if J follows a Gaussian distribution, the
marginal distribution of X and the conditional distribution of
Y given x are also Gaussian. These results extend to Gaussian
mixtures and we have:

p(y|x,ΘJ)=

M∑
m=1

p(m|x,ΘX)N (y|µY|x,m,ΣYY|x,m), (3)

with

µY|x,m = µY,m + ΣYX,mΣ−1XX,m(x− µX,m), (4)

ΣYY|x,m = ΣYY,m −ΣYX,mΣ−1XX,mΣXY,m, (5)

p(m|x,ΘX) =
πmN (x|µX,m,ΣXX,m)∑M
i=1 πiN (x|µX,i,ΣXX,i)

. (6)

The conditional distribution (3) can be rewritten as a mixture
of linear-Gaussian forms:

p(y|x,ΘJ) =

M∑
m=1

wmN (y|A∗mx + b∗m,U
∗
m) , (7)

with wm = p(m|x,ΘX,m), A∗m = ΣYX,mΣ−1XX,m, b∗m =
µY,m − A∗mµX,m, and U∗m = ΣYY|x,m (this choice of
notation will become clear in Section V-B).

B. GMR-MSE

The conditional GMM (3) (or (7)) can be used to map x
into an estimated value ŷ of y. When the mapping is done
to minimize the mean squared error (MSE) independently for
each observation vector xt, we obtain the well-known result:

ŷt = E[Yt|xt,ΘJ] =

M∑
m=1

p(m|xt,ΘX)µYt|xt,m

=

M∑
m=1

wm(A∗mxt + b∗m). (8)

This mapping is referred to as a gaussian mixture regressor
[29] (of xt into ŷt) based on MSE criterion (GMR-MSE).
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C. GMR-MLPG

Alternatively, [26] proposed a joint estimator for a sequence
of T vectors [y1, . . . ,yt, . . . ,yT ] given an input vector se-
quence [x1, . . . ,xt, . . . ,xT ]. This estimator has the following
expression:

ỹseq =
(
W>D−1W

)−1
W>D−1E, (9)

where ỹseq = [ỹ>1 , . . . , ỹ
>
t , . . . , ỹ

>
T ]> is a DY T column

vector2, W is a matrix encoding the linear dependencies
between static features and their derivatives, E is built from
the MSE estimation for each input vector computed with (8)
and D is a block-diagonal matrix built from the conditional
covariance matrices (5) and posteriors (6), for the whole
considered sequence. The reader is referred to [26] for more
details. This approach will be referred to as GMR-MLPG
since it is an adaptation of the maximum likelihood parameter
generation algorithm (MLPG) proposed in [25] for HMM-
based synthesis, to the GMM-based mapping. By imposing
a consistent relationship between static and dynamic features,
this mapping generates smooth trajectories.

III. GMR ADAPTATION: PRINCIPLES AND BASELINE
METHODS

A. Principles

Let first define the following three random vectors: X and Y
which are respectively acoustic and articulatory feature vectors
of the reference speaker, and Z which is a corresponding
acoustic vector from the source speaker. In practice, X and
Z are composed of MFCC and ∆MFCC coefficients, and Y
are EMA articulatory vectors (see Section VII). As illustrated
in Fig. 1, let us assume that we have an extensive set of N joint
observations {(xn, yn)}Nn=1 = {x1:N ,y1:N} for the training
of the reference speaker GMM (using the EM algorithm for
GMM). In the adaptation stage, the source speaker is asked
to pronounce a subset of the above dataset (typically a few
minutes of speech). We note N0 the number of acoustic
features vectors in the adaptation dataset which is noted here
{zn}N0

n=1 = z1:N0 with indeed N0 < N (in practice we can
have N0 � N ).

B. MAP and MLLR

Maximum-a-posteriori (MAP) [20] and maximum likeli-
hood linear regression (MLLR) [21] are two state-of-the-art
techniques used in automatic speech and speaker recognition
to adapt a GMM (or HMM) using a new set of observations. In
the present study, the goal is to adapt the acoustic-articulatory
(i.e. X-to-Y) GMR of the reference speaker using acoustic-
only (i.e. Z) observations of the source speaker. Therefore, we
propose to apply the MAP and MLLR methodology to adapt
the “acoustic part” of the X-Y GMM, i.e. µX,m and ΣXX,m

for each component m.
The basic principle of the MAP adaptation is to find the

model parameter set ΘZ
MAP that maximizes the posterior

probability p(ΘZ
MAP |z) considering ΘX as prior knowledge

2Notice that ˜ refers to the MLPG estimator and ˆ refers to the MSE
estimator.

Fig. 1. Schematic representation of the key variables in the C-GMR
framework with missing data.

over model parameters. The parameter set ΘZ
MAP is deter-

mined using an EM algorithm with the following re-estimation
equation (to be concise, we recall only the equation for the
mean vectors; see [20] for the update equations of priors and
covariance matrices):

µMAP
X,m =

τµX,m +
∑N0

n=1 p(m|zn,ΘZ)zn

τ +
∑N0

n=1 p(m|zn,ΘZ)
, (10)

where τ is a heuristic hyperparameter shared accross all
GMM components, controlling the balance between the prior
knowledge and the adaptation data.

In MLLR, the model parameters are adapted using an
affine transform: µMLLR

X,m = GµX,m + q and ΣMLLR
XX,m =

HΣXX,mH>. The adaptation data likelihood is maximized
with respect to the transform parameters (G, q, H) using
an EM algorithm. In our implementation, these transform
parameters are shared across all GMM components. There-
fore, MLLR imposes the same affine transformation to all
GMM components, whereas MAP updates each component
separately.

C. Cross-speaker acoustic-articulatory GMR

Another straight-forward way to address the considered
problem is to directly model the statistical relationships be-
tween the source speaker’s acoustics Z and the reference
speaker’s articulation Y with a Z-Y GMM (and directly
derive the corresponding Z-to-Y GMR). This approach is
referred to as the “direct” cross-speaker acoustic-articulatory
GMR (D-GMR). Importantly, training this model requires to
associate the z1:N0

adaptation data with “corresponding” y1:N0

articulatory data. This is done by time-aligning each adap-
tation sentence pronounced by the source speaker, with the
same sentence pronounced by the reference speaker, using a
dynamic time warping (DTW) algorithm. After this procedure,
the adaptation data z1:N0

are assumed to be aligned with
observations x1:N0

, and thus with corresponding articulatory
data y1:N0 (reordering of the vectors is arbitrary). The EM
algorithm for GMM is then applied to the set {z1:N0 ,y1:N0}.

IV. SPLIT CASCADED GAUSSIAN MIXTURE REGRESSION

A. Motivation

One problem with the MAP and MLLR approaches is
that the adaptation of the acoustic parameters of the X-to-Y
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Fig. 2. Graphical representation of SC-GMR.

GMR is done independently of the joint acoustic-articulatory
and articulatory parameters, leading to a potential mismatch.
As for the (cross-speaker) D-GMR, the estimated acoustic-
articulatory model relies on a limited number N0 of artic-
ulatory observations of the reference speaker (among the N
available observations). Because of the complexity of acoustic-
articulation relationships, this may lead to poor inversion
performances, especially when considering small adaptation
datasets.

These two limitations motivated the development of the pro-
posed Cascaded-GMR framework for the considered speaker
adaptation problem. Indeed, the first core motivation of this
framework is to develop an adaptation technique which ben-
efits from all the available articulatory data of the reference
speaker. In other words, the reference model should remain
at the center of the adaptation process, while exploiting the
acoustic adaptation data. In addition to that, the C-GMR aims
at avoiding potential mismatch between adapted and original
model parameters. This can be achieved in two ways:
• either by keeping the complete X-to-Y reference GMR

intact and making the acoustic observation z compatible
with this model. This is the general idea of the split
cascaded GMR (SC-GMR) that we define in the next
subsection.

• or by jointly modeling the statistical relationships of
the three vectors Z, X and Y. This is the spirit of
the integrated cascaded GMR (IC-GMR), that will be
described in Section V.

B. Definition

The split cascaded GMR (SC-GMR) consists of chaining
two separate GMRs: a Z-to-X spectral conversion mod-
ule (similarly to [30]) followed by a X-to-Y acoustic-to-
articulatory inversion module. As illustrated by Fig. 2, those
two GMRs are separated in the sense that the two successive
mappings are independent: the output of the first one is calcu-
lated before being injected as input of the second one. In other
words, we have ŷ = E[Y|x̂,ΘJ] with x̂ = E[X|z,ΘI] (being
I = [Z>,X>]>), where both expectations follow (8) with their
respective parameters. Note that the two GMRs may have a
different number of mixture components. The X-to-Y GMR
parameters are estimated with the EM algorithm for GMM
applied on the complete {(xn,yn)}Nn=1 reference dataset, “as
usual”. The Z-to-X GMR parameters are estimated with the
EM algorithm for GMM applied on the aligned adaptation
dataset {(zn,xn)}N0

n=1 (see Section III-C).

Fig. 3. Graphical representation of IC-GMR.

Compared to the D-GMR, one key-point of the SC-GMR
is that the reference acoustic-articulatory model is trained
from all the N available acoustic-articulatory observations
of the reference speaker. The limited amount of N0 data is
used to model the statistical relationships between source and
reference acoustic spaces. This spectral mapping is assumed
to be simpler, or say, “better-posed”, than acoustic-articulatory
mapping, and may therefore require less training data.

V. INTEGRATED CASCADED GMR

We now present the integrated cascaded GMR (IC-GMR)
model, that we propose to address the present speaker adap-
tation problem. Then, we discuss the specific way the EM
algorithm is to be used in this context. The technical derivation
of this algorithm is given in the next section.

A. Definition of the mixture model

The core idea of the IC-GMR model is to combine spectral
conversion and acoustic-articulatory inversion into a single
GMR-based mapping process. Very importantly, this is made
at the component level of the GMR, i.e. within the mixture, as
opposed to the SC-GMR of Section IV. In other words, the
plugged “conversion + inversion” components share the same
component assignment variable m, as illustrated by the graph-
ical model shown in Fig. 3. The goal is to benefit from the
partitioning of the acoustic-articulatory space of the reference
speaker (i.e. X-Y) which is assumed to be well estimated,
when proceeding to the source speaker adaptation. Contrary to
the SC-GMR, the structure of the Z-to-X conversion process
is thus here constrained by the structure of the X-to-Y GMR.

The statistical dependencies between X, Y and Z are here
defined as:

p(x,y, z|Θ) =

M∑
m=1

p(m)p(y|m,ΘY,m)p(x|y,m,ΘX|Y,m)

× p(z|x,m,ΘZ|X,m), (11)

with

p(m) = πm, (12)
p(y|m,ΘY,m) = N (y|em,Rm) , (13)
p(x|y,m,ΘX|Y,m) = N (x|Amy + bm,Um) , (14)
p(z|x,m,ΘZ|X,m) = N (z|Cmx + dm,Vm) . (15)

For each component, πm still represents the prior distribution,
em and Rm are respectively the mean vector and covariance
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matrix of the marginal Gaussian distribution of Y, Am, bm

and Um are respectively the transition matrix, constant vector
and covariance matrix of the linear-Gaussian conditional pdf
model in (X,Y), and the same for Cm, dm and Vm with
(Z,X).

B. Inference equation

Similarly to Section II, the minimum MSE estimation ŷ of
y given z is given by its posterior mean3:

ŷ =E[Y|z] =

∫
RDY

yp(y|z)dy, (16)

with

p(y|z) =

∫
RDX

M∑
m=1

p(x,y,m|z)dx. (17)

In the IC-GMR case we have:

p(x,y,m|z) = p(m|z)p(y|x, z,m)p(x|z,m)

= p(m|z)p(y|x,m)p(x|z,m), (18)

since Y is independent of Z conditionally on X and m [28]–
(Section 8.2). Therefore, we have:

p(y|z) =

M∑
m=1

p(m|z)

∫
RDX

p(y|x,m)p(x|z,m)dx. (19)

At this point, we can insert (19) into (16). But to go further,
we face a problem: the model is expressed in terms of the
distributions p(y|m), p(x|y,m), p(z|x,m) and not the “in-
verse” distributions p(z|m), p(x|z,m), p(y|x,m) as required
in (19)4. Fortunately, a linear-Gaussian model is “invertible”:
knowing the Gaussian PDFs p(y) and p(x|y), the PDFs p(x)
and p(y|x) are derived easily and form a linear-Gaussian
model [28] (p. 93). In the present case, we can chain the
inversion across Y, X and Z to obtain:

p(y|x,m,ΘY|X,m) = N (y|A∗mx + b∗m,U
∗
m) , (20)

p(x|m,ΘX,m) = N (x|e∗m,R∗m) , (21)
p(x|z,m,ΘX|Z,m) = N (x|C∗mz + d∗m,V

∗
m) , (22)

p(z|m,ΘZ,m) = N (z|f∗m,P∗m) , (23)

with

U∗m = (R−1m + A>mU−1m Am)−1,

A∗m = U∗mA>mU−1m , b∗m = U∗m(R−1m em −A>mU−1m bm),

R∗m = Um + AmRmA>m, e∗m = Amem + bm,

V∗m = (R∗−1m + C>mV−1m Cm)−1,

C∗m = V∗mC>mV−1m , d∗m = V∗m(R∗−1m e∗m −C>mV−1m dm),

P∗m = Vm + CmR∗mC>m, f∗m = Cme∗m + dm.

3In this subsection we omit the parameter set in PDF notation for clarity
of presentation.

4p(m|z) can be deduced from p(z|m) using Bayes formula (6).

Now we can calculate (16) as:

ŷ =

M∑
m=1

p(m|z)

∫
RDX

(∫
RDY

yp(y|x,m)dy

)
p(x|z,m)dx

=

M∑
m=1

p(m|z)

∫
RDX

(A∗mx + b∗m)p(x|z,m)dx

=

M∑
m=1

p(m|z)(A∗m(C∗mz + d∗m) + b∗m), (24)

and finally:

ŷ =

M∑
m=1

p(m|z)(A∗mC∗mz + A∗md∗m + b∗m). (25)

Similarly to (7), it can be shown that C∗m = ΣXZ,mΣ−1ZZ,m,
d∗m = µX,m −C∗mµZ,m. Therefore, (25) is equivalent to :

ŷ =

M∑
m=1

p(m|z)(µY,m

+ ΣYX,mΣ−1XX,mΣXZ,mΣ−1ZZ,m(z− µZ,m)). (26)

The component weights p(m|z) are obtained by applying the
classical formula (6) with distribution (23).

Equation (26) was initially proposed in [27], but without
theoretical support. It exhibits the chaining of Z-to-X and
X-to-Y linear regressions at the mixture component level.
This results into a Z-to-Y GMR with a specific form of the
covariance matrix ΣYZ,m = ΣYX,mΣ−1XX,mΣXZ,m. Note
that these parameters depend on the joint distribution of
(X,Y,Z), and in practice they are estimated from all available
(x,y, z) data (as we will see below). Even if their inference
equation has the same general form, this makes the IC-GMR
quite different from the D-GMR of Section III-C: Remind that
this latter was obtained from a limited set of N0 (z,y) data
only.

Similarly to Section II-C, we can derive the MLPG form
for the IC-GMR. The mean matrix E is here constructed from
(25), and the covariance matrix D is constructed from the
conditional covariance matrices:

ΣYY|z,m = ΣYY,m −ΣYZ,mΣ−1ZZ,mΣZY,m, (27)

which can be shown to be equal to

ΣYY|z,m = Rm −A∗mC∗mCmAmRm. (28)

The sequence ỹseq is then estimated from sequence z by
applying (9) with the constructed E and D matrices.

C. IC-GMR and EM for speaker adaptation

In order to infer the articulatory trajectory y from the
acoustic features of the source speaker z by means of (25), the
parameters of the joint model (11) need to be estimated from
the data. Since (11) is a mixture model, this naturally leads to
an EM algorithm [22], [28], whose derivation is given in the
next section. In general, the initialization of EM algorithms is
known to be a crucial phase. In the present study, we propose
the following strategy:
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• First, the reference GMR is obtained from an extensive
set of (x,y) data, using the EM algorithm for GMMs
just as in Section IV-B.

• Second, we note that the joint marginal distribution of
(X,Y) obtained by integrating (11) over z is given by:

p(j|ΘJ) =

M∑
m=1

πmp(y|m,ΘY,m)p(x|y,m,ΘX|Y,m). (29)

Since for each m, both the marginal distribution of Y
and the conditional distribution of X|y are Gaussian,
(29) is equivalent to the standard GMM on (X,Y)
given in (1). Therefore, the parameters of (29), i.e.
{πm, em,Rm,Am,bm,Um}Mm=1 are computed from the
parameters of the reference GMR5.

• Third, {Cm,dm,Vm}Mm=1, i.e., the parameters involving
Z, are initialized using the N0 aligned (z,x) data.

• Finally, after the initialization is done, both the N0

aligned (z,x,y) data and the remaining N −N0 (x,y)
data are used to train the IC-GMR. Most importantly, all
data are used to jointly update all IC-GMR parameters, as
opposed to the SC-GMR adaptation, where the reference
model remains unchanged, i.e. its parameters are not
influenced by the adaptation data z1:N0

.

VI. EM ALGORITHM FOR IC-GMR

In this section, we derive the exact EM algorithm associated
to the IC-GMR model presented in the previous section.
The aim of the EM algorithm is to maximize the expected
complete-data log-likelihood, denoted by Q. At each iteration,
the E-step computes Q and the M-step maximizes Q with
respect to the parameters Θ. The EM algorithm alternates
between the E and M steps until convergence.

A. E-step

At iteration i + 1, Q(Θ,Θ(i)) is defined as the expected
value of the complete data log-likelihood with parameter set
Θ. The expectation is taken accordingly to the posterior
distribution of latent variables given the observed data and
the parameter set at the previous iteration, Θ(i). In order to
derive the Q function we follow the general methodology
given in, e.g., [28]–(Section 9.4) and [23]. This leads to (30),
where all pdfs are defined in Section V-A, jn = [x>n y>n ]>,
on = [x>n y>n z>n ]> (see the details in Appendix A). For
n ∈ [1, N0],

γ(i+1)
m (on) =

p(on,m|Θ(i)
m )

p(on|Θ(i))
(31)

are the so-called responsibilities (of component m explaining
observation on) [28]. Note that (30) is valid for any trivariate
mixture model on (X,Y,Z) (or any bivariate mixture model
on (J,Z)) with partially missing z data and i.i.d. observations.

5The one-to-one correspondence between the parameters of the “compact”
GMM formulation (1) and the parameters of the “developed” formulation (29)
is similar to the one given with (7).

If we now extend the definition of responsibilities for n ∈
[N0 + 1, N ] with:

γ(i+1)
m (jn) =

p(jn,m|Θ(i)
J,m)

p(jn|Θ(i)
J )

, (32)

and we use the IC-GMR definition (11)–(15), (30) becomes
(see Appendix A for details):

Q(Θ,Θ(i)) =
1

2

N0∑
n=1

M∑
m=1

γ(i+1)
m (on) (2 log πm − log |Rm|

− log |Um| − log |Vm| − ‖yn − em‖2Rm

−‖xn −Amyn − bm‖2Um
− ‖zn −Cmxn − dm‖2Vm

)
+

1

2

N∑
n=N0+1

M∑
m=1

γ(i+1)
m (jn) (2 log πm − log |Rm| − log |Um|

− log |Vm| − ‖yn − em‖2Rm
− ‖xn −Amyn − bm‖2Um

−
∥∥∥C(i)

m xn + d(i)
m −Cmxn − dm

∥∥∥2
Vm

− Tr[V−1m V(i)
m ]),

(33)

where ‖x‖2R = x>R−1x denotes the Mahalanobis distance of
x with matrix R and Tr stands for the trace operator. The sum
in the range [1, N0] is a direct match of [28]–(9.40), i.e. the
classical EM for GMM, while the sum in [N0 + 1, N ] results
from the expectation over the missing data zn.

For n ∈ [N0 + 1, N ], let us denote the expected value
of Zn given xn for the m-th model component by z′nm =

C
(i)
m xn+d

(i)
m = µ

(i+1)
Z|xn,m

. This amounts to replace the missing
data with their conditional mean given xn and the current
model parameters. For convenience, let us extend the notation
z′nm to the interval n ∈ [1, N0] with z′nm = zn (which
does not depend on m here). If, in addition, we denote
γ
(i+1)
nm = γ

(i+1)
m (on) for n ∈ [1, N0] and γ(i+1)

nm = γ
(i+1)
m (jn)

for n ∈ [N0 + 1, N ], then Q(Θ,Θ(i)) can be rewritten as:

Q(Θ,Θ(i)) =
1

2

N∑
n=1

M∑
m=1

γ(i+1)
nm (2 log πm − log |Rm|

− ‖yn − em‖2Rm
− log |Um| − ‖xn −Amyn − bm‖2Um

− log |Vm| − ‖z′nm −Cmxn − dm‖
2
Vm

)

−
M∑

m=1

(
N∑

n=N0+1

γ(i+1)
nm

)
Tr[V−1m V(i)

m ]. (34)

B. M-step

In this subsection, we provide the M-step updates for the
IC-GMR parameters. The details of the derivations are given
in Appendix B. Three important properties of the update
rules appear. First, they are all closed-form expressions, thus
yielding to an intrisically efficient EM algorithm. Second,
the dependencies between the update rules do not form a
loop. In other words, we first update the parameters that are
independent, to later on estimate the rest of them. Third,
several auxiliary quantities are shared between different up-
dates, so that calculating these quantities once for all saves
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Q
(
Θ,Θ(i)

)
=

N0∑
n=1

M∑
m=1

γ(i+1)
m (on) log p(on,m|Θm) +

N∑
n=N0+1

M∑
m=1

1

p
(
jn|Θ(i)

J

) ∫
RDZ

p
(
on,m|Θ(i)

m

)
log p(on,m|Θm)dzn (30)

computational power. Additionally, this allows to present the
update rules more clearly, as follows.
Auxiliary variables are weighted sums of the observations
and their outer-products:

S(i+1)
m =

N∑
n=1

γ(i+1)
nm , S

(i+1)
X,m =

N∑
n=1

γ(i+1)
nm xn,

and S
(i+1)
XX,m =

N∑
n=1

γ(i+1)
nm xnx>n . (35)

The definition of the variables S(i+1)
Y,m , S(i+1)

Z′,m , S(i+1)
XY,m, S(i+1)

YY,m,
S
(i+1)
Z′X,m and S(i+1)

Z′Z′,m follows the same principle.

Priors: Maximization of Q(Θ,Θ(i)) with respect to the priors
is trivial, since it is identical to the GMM case [28] (with
of course the responsibilities being calculated from the IC-
GMR’s PDF). For m ∈ [1,M ], we have:

π(i+1)
m =

1

N
S(i+1)
m . (36)

Constant vectors and transition matrices: For m ∈ [1,M ],
we have:

e(i+1)
m =

1

S
(i+1)
m

S
(i+1)
Y,m , (37)

and Am, bm, Cm and dm are updated with (38) and (39).
Note that A

(i+1)
m and b

(i+1)
m have the form of the standard

weighted-MSE estimates of Am and bm given the (x, y)
dataset and using the responsibilities as weights. C

(i+1)
m and

d
(i+1)
m have a similar form but take into account partially

missing z data.
Covariance matrices: For m ∈ [1,M ], we have:

R(i+1)
m = e(i+1)

m e(i+1)>
m +

(
S
(i+1)
YY,m − S

(i+1)
Y,m ∗ e

(i+1)
m

)
S
(i+1)
m

, (40)

U(i+1)
m =b(i+1)

m b(i+1)>
m + 1

S
(i+1)
m

(
S
(i+1)
XX,m+A

(i+1)
m S

(i+1)
YY,mA

(i+1)>
m

−S(i+1)
XY,m ∗A(i+1)

m −
(
S
(i+1)
X,m −A(i+1)

m S
(i+1)
Y,m

)
∗ b(i+1)

m

)
, (41)

V(i+1)
m =d(i+1)

m d(i+1)>
m + 1

S
(i+1)
m

(
S
(i+1)
Z′Z′,m+C

(i+1)
m S

(i+1)
XX,mC

(i+1)>
m

−S(i+1)
Z′X,m ∗C(i+1)

m −
(
S
(i+1)
Z′,m−C(i+1)

m S
(i+1)
X,m

)
∗ d(i+1)

m

)
+ V(i)

m

∑N
n=N0+1 γ

(i+1)
nm , (42)

where P ∗Q = PQ>+ QP> denotes the symmetrized outer
product of P and Q. Interestingly, (37), (40), (38) and (41)
correspond to the classical two-variable GMM, whereas (39)
and (42) encode the effect of the missing data. Indeed, all
statistics related to Z are computed using the actually observed
zn for n ∈ [1, N0] and the expected value µ(i+1)

Z|xn,m
for n ∈

[N0 + 1, N ].

C. Complete EM algorithm

The main steps of the initialization of the EM algorithm
have been given in Section V-C. We complete this descrip-
tion here by formalizing the initialization of the subset of
parameters related to Z, i.e. {Cm,dm,Vm}Mm=1. Basically,
this is done by evaluating (39) with the auxiliary variables
involving Z being calculated using observed z data only, i.e.
z1:N0 , corresponding x data, i.e. x1:N0 , and responsibilities
for n ∈ [1, N0] given by (31). The complete EM algorithm for
the IC-GMR, including the initialization step, is schematized
in Algorithm 1. The E-step boils down to the calculation of
the responsibilities (31) and (32). The M-step computes the
auxiliary quantities defined in (35) that speed up the update
of the parameters (36)–(42).

VII. EXPERIMENTS

In this section, we describe the experiments we conducted
to evaluate and compare the five adaptation techniques consid-
ered in this study (MAP-based and MLLR-based adaptation,
D-GMR, SC-GMR and IC-GMR), and we discuss the results.

A. Data

The articulatory data of the reference speaker were recorded
synchronously with the audio signal using the Carstens 2D
EMA system (AG200). Six coils were glued on the tongue
tip, blade, and dorsum, and on the upper lip, the lower lip
and the jaw (the position of the velum was not recorded). 2D
positions of the 6 coils were concatenated in 12-dimensional
feature vectors. The sequences of articulatory feature vectors
y were recorded at 200Hz and downsampled to 100Hz. The
recorded database consists of two repetitions of 224 VCVs
(Vowel-Consonant-Vowel sequences such as [apa], [ata], etc.),
two repetitions of 109 pairs of CVC real French words (such
”balle”, ”pomme”, etc.), and 88 sentences. Silence and long
pauses were removed from the data set, which finally contains
16 minutes of speech.

In order to evaluate and compare the five adaptation tech-
niques considered in this study, a second database of audio
data only was recorded by two other speakers: one male
(M1) and one female (F1). Both were asked to pronounce
the same corpus as the one recorded by the reference speaker.
All audio speech signals (from the reference speaker and the
two source speakers) were sampled at 16kHz. Audio feature
vectors (x and z data) consisted of 13 MFCC coefficients
extracted from 25ms-frames (weighted with the Hamming
window) every 10ms (therefore, audio and articulatory vectors
are synchronized at 100Hz). To capture the dynamics of speech
articulation, both acoustic and articulatory feature vectors
were completed by their first derivative. This resulted in 26-
dimensional acoustic vectors and 24-dimensional articulatory
vectors).
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A(i+1)
m =

(
S
(i+1)
XY,m−

1

S
(i+1)
m

S
(i+1)
X,m S

(i+1)>
Y,m

)(
S
(i+1)
YY,m−

1

S
(i+1)
m

S
(i+1)
Y,m S

(i+1)>
Y,m

)−1
,b(i+1)

m =
1

S
(i+1)
m

(
S
(i+1)
X,m −A(i+1)

m S
(i+1)
Y,m

)
(38)

C(i+1)
m =

(
S
(i+1)
Z′X,m−

1

S
(i+1)
m

S
(i+1)
Z′,m S

(i+1)>
X,m

)(
S
(i+1)
XX,m−

1

S
(i+1)
m

S
(i+1)
X,m S

(i+1)>
X,m

)−1
,d(i+1)

m =
1

S
(i+1)
m

(
S
(i+1)
Z′,m−C(i+1)

m S
(i+1)
X,m

)
(39)

Algorithm 1: EM algorithm for integrated cascaded-GMR
(IC-GMR) with partially missing data Z.

Initialization
Use EM for GMM over {xn,yn}Nn=1 to compute Θin

J :{
πin
m, e

in
m,R

in
m,A

in
m,b

in
m,U

in
m

}M
m=1

.
for n := 1 : N0 do

z′nm = zn, ∀m.
end
for m := 1 : M do

for n := 1 : N0 do
Set γin

nm using (32) with Θin
J .

end
Sin

Z′,m =
∑N0

n=1 γ
in
nmz′nm

Sin
Z′X,m =

∑N0

n=1 γ
in
nmz′nmx>n

Sin
Z′Z′,m =

∑N0

n=1 γ
in
nmz′nm(z′nm)>

end
Use (39), (42) with the previous auxiliary variables to
compute

{
Cin

m,d
in
m,V

in
m

}M
m=1

.
Set Θ(0) = Θin and i = 1.
while Not convergence do

E-step
for n := 1 : N0 do

p(on|Θ(i)) =
∑M

m=1 p(on,m|Θ(i)
m ), using (11).

for m := 1 : M do
γ
(i)
nm =

p(on,m|Θ(i)
m )

p(on|Θ(i))
.

end
end
for n := N0 + 1 : N do

p(jn|Θ(i)) =
∑M

m=1 p(jn,m|Θ
(i)
J,m), using (29).

for m := 1 : M do

γ
(i)
nm =

p(jn,m|Θ(i)
J,m)

p(jn|Θ(i)
J )

.

z′nm = C
(i)
m xn + d

(i)
m .

end
end
M-step

for m := 1 : M compute
Auxiliary variables using (35)
π
(i+1)
m and e

(i+1)
m using (36) and (37)

A
(i+1)
m and b

(i+1)
m using (38)

C
(i+1)
m and d

(i+1)
m using (39)

R
(i+1)
m ,U(i+1)

m and V
(i+1)
m using (40), (41) and

(42)
end
i++

end

B. Evaluation protocol
A 5-fold cross-validation technique was employed for eval-

uation. For each source speaker (M1 and F1), the acoustic-
articulatory database was divided into 5 subsets of approximate
equal size, each one representing about 3 min of speech.
At each trial, 4 subsets were used for training the reference
speaker model (i.e. the x-to-y inversion), and the remaining
subset was used for test. Also at each trial, 10 experiments
were conducted by varying the amount of adaptation data. De-
pending on the experiment, an adaptation subset was extracted
randomly from the training set, with a size equal to k/20 of the
size of the training set with k ∈ [1, 10], i.e approximately 0.7,
1.4, 2.1, 2.8, 3.4, 3.9, 4.5, 4.9, 5.3 and 6 min of speech signals.
For all adaptation schemes, no significant improvement was
observed for larger datasets. Therefore, we report here only
the results obtained when using less than 6 min of adaptation
data, out of the 16 min available for each source speaker. This
results in 50 experiments, for each of the two source speakers
M1 and F1 (i.e. 100 experiments in total).

C. Metrics
In a practical context, the articulatory movements estimated

from the source speaker’s acoustics occur in the vocal tract
space of the reference speaker (displayed via a virtual talk-
ing head). For each test sequence, the original articulatory
movements recorded on the reference speaker were therefore
considered as the target.

Two metrics were used to evaluate the accuracy of the
estimated articulatory trajectories. The first one is the Root
Mean Squared Error (RMSE) between the articulatory feature
vectors of the reference speaker and those estimated from
the source speaker’s acoustics. A paired t-test was used to
estimate a 95%-confidence interval for each RMSE measure.
For each experiment (i.e. for each size of adaptation dataset),
paired t-test were also used to determine if the performances
given by two adaptation techniques were significantly different
from each other. Before calculating the RMSE, a DTW-based
procedure was used to align the signals of reference and
source speakers. In contrast to the training step, we here
warped the audio signals produced by the reference speaker
onto the audio signals produced by the source speaker, and
then we warped the articulatory movements of the reference
speaker accordingly. This way, the articulatory movements of
the reference speaker matched the speech rate of the source
speaker. This enables the generation of audiovisual sequences
of the talking head displaying the estimated articulatory tra-
jectories synchronously with the voice of the source speaker.
Such sequences are provided with this paper as supplementary
material.

The second metric used for evaluation was derived from
the so-called articulatory recognition paradigm [7], [31], [32].
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This metric aims at evaluating the estimated trajectory at the
phonetic level and can be summarized as follows. First, a
HMM-based phonetic decoder was trained on the articulatory
data of the reference speaker. A standard training procedure
based on triphone modeling was used (with a 3-state left-to-
right HMM, and a tree-based state-tying strategy, using the
HTK toolkit [33]). For each test utterance, the Viterbi algo-
rithm was then used to decode at phonetic level the articulatory
trajectories estimated from the source speaker’s acoustics. In
order to alleviate the problem of insertion/deletion errors due
to the absence of a language model, this evaluation procedure
was used only on VCV and CVC sequences (the decoder being
forced to recognize VCV and CVC only). The phone error
rate (PER) was used as a measure of the accuracy of the
estimated articulatory trajectories. It is here defined as PER =
100∗((Np−Sp)/Np), where Np is the total number of phones
in the test set, and Sp is the number of substitution errors. The
95%-confidence interval of each PER measure was defined
as the Wilson score interval. For each experiment, statistical
significance between two adaptation methods in term of PER
was assessed using the non-parametric Wilcoxon test (which
was preferred to paired t-test because of the non-Gaussian
form of errors distribution).

D. Implementation details

The number of mixture components of the different models
were optimized at each trial of the 5-fold cross-validation,
using a subset of the training set. As for the reference acoustic-
articulatory GMR, we tested M ∈ {16, 32, 64, 128, 256}. In
most experiments, the optimal number was found to be 64 or
128. Since the performance obtained with these two values
were very close, we selected M = 64 to limit the number of
parameters for the different models (we recall that all GMR
and C-GMR models involve full covariance matrices). As for
the first stage of the SC-GMR (i.e. the spectral conversion
GMR) and the D-GMR, and for each size of the adaptation
dataset, a cross-validation procedure was used to determine
the best number of mixture components K among 8, 16, 32
and 64. For D-GMR, SC-GMR and IC-GMR, the number
of EM iteration was fixed empirically to 50. In practice, we
observed no significant evolution of model parameters with
more iterations. As for the MLLR-based adaptation scheme,
we adopted the formulation of [34]. Best performance was
obtained when adapting µX,m and keeping the original value
of ΣXX,m and prior πm, for each component m. As for the
MAP-based adaptation scheme, both µX,m and ΣXX,m were
adapted, but best performance was obtained when keeping the
original value of πm.

E. Results

First, we report the performance of the acoustic-to-
articulatory inversion by the reference X-Y GMR, using
reference speaker speech signals as inputs. This provides an
upper bound for the five adaptation schemes considered in this
study (i.e. the best possible result). In terms of RMSE, we
obtained an error of 1.8 mm using GMR-MSE, and 1.5 mm
using GMR-MLPG. These results are consistent with the

literature on acoustic-articulatory mapping, e.g. [12], [15]. In
terms of PER, we obtained 6% for the GMR-MSE, and 3.1%
for the GMR-MLPG.

On the other extreme side, we report the performance
obtained by the reference speaker X-Y GMR (in MLPG
implementation) when processing speech inputs z from source
speakers F1 and M1, with no adaptation. This provides a lower
bound for the five adaptation schemes (i.e. the worst possible
results). As expected, the performance decreased drastically
compared with the upper bound, with RMSE = 3.8 mm
/ PER = 67% for speaker M1, and RMSE = 4.4 mm /
PER = 80% for speaker F1 (we recall that speaker M1 and
reference speaker are male, whereas speaker F1 is a female).
These results confirm the strong need to adapt the reference
speaker model.

Let us now present the results obtained for the source
speakers M1 and F1, for all adaptation schemes (MLLR, MAP,
D-GMR, SC-GMR and IC-GMR). Fig. 4 and 5 show the
RMSE and PER obtained for speakers M1 and F1 respectively,
as a function of the amount of adaptation data, and for
both MSE and MLPG implementations. These results can be
discussed from different perspectives.

First of all, the adaptation of the reference model to the
source speaker’s acoustics drastically reduces both RMSE and
PER. As an example, let us consider the IC-GMR technique
in MSE implementation when considering 2 min of adaptation
data. Compared to the lower bound, the relative improvement
for speaker M1 is 29% for RMSE and 50% for PER (with
2.7 mm RMSE and 32% PER). For speaker F1, it is 34%
for RMSE and 57% for PER (with 2.9 mm RMSE and 34%
PER). This shows the global efficiency of the proposed C-
GMR framework.

As expected, the MLPG implementation of each adaptation
scheme systematically outperforms the corresponding MSE
implementation (solid vs. dashed curves), for both source
speakers, and all sizes of adaptation dataset. As mentioned
in [15], the statistical smoothing of MLPG is of particular
interest for the acoustic-to-articulatory inversion given the
slow-varying nature of the EMA data. Using MLPG, the
mapping is achieved utterance-by-utterance and not frame-
by-frame as in MSE implementation. All acoustic feature
vectors of an input sequence z contribute to the estimation
of each output vector yt. As a consequence, the mapping can
benefit from contextual information, which is also important
to tackle the ill-posed nature of acoustic-articulatory inversion.
However, in its standard implementation, MLPG estimation
can not be done in real-time, which remains an important issue
for the present system.

Let us now describe in more details the RMSE results
for the five adaptation schemes (Fig. 4). In all experiments,
MAP-based adaptation significantly outperforms MLLR. As
a possible explanation, let us recall that MLLR imposes the
same transformation to all GMM components, whereas MAP
updates each component separately, leading potentially to
better flexibility and accuracy. Experimental results show very
distinct error patterns between MAP and MLLR on the one
hand, and D-GMR, SC-GMR and IC-GMR on the other hand.
Surprisingly, the performance of MAP and MLLR are quite
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Fig. 4. Performance obtained with MLLR, MAP, D-GMR, SC-GMR and
IC-GMR (for both MSE and MLPG implementations) as a function of the
amount of adaptation data, in terms of RMSE, for speaker M1 (top) and F1
(bottom). Error bars represent 95% confidence intervals of RMSE.

stable with the size of the adaptation dataset. Best performance
is almost already obtained with less than 1 min of adaptation
data (training with a smaller size was not feasible). As already
mentioned in Section IV-A, this may be explained by a
potential mismatch between the adapted acoustic parameters
and the original acoustic-articulatory parameters of the X-Y
reference GMR. In contrast, performances of D-GMR, SC-
GMR and IC-GMR increase with the size of the adaptation
dataset (for both MSE and MLPG implementations).

Now we detail the differences between D-GMR, SC-GMR
and IC-GMR. In MSE implementation, SC-GMR and IC-
GMR significantly outperform D-GMR for less than 2.1 min of
adaptation data for speaker M1 and 2.7 min for speaker F1. For
larger adaptation datasets, D-GMR, SC-GMR and IC-GMR
give similar performances. As already mentioned in Section
IV-A, D-GMR exploits only the reference speaker’s articula-
tory data that can be associated with the source speaker’s audio
data. Hence, training the D-GMR on a limited dataset leads to
low performances. This result tends to validate the proposed
C-GMR models (SC-GMR and IC-GMR). We recall that these

Fig. 5. Performance obtained with MLLR, MAP, D-GMR, SC-GMR and
IC-GMR (for both MSE and MLPG implementations) as a function of the
amount of adaptation data, in terms of phone error rate, for speaker M1 (top)
and F1 (bottom). Error bars represent 95% confidence intervals of PER.

techniques exploit all available data from the reference speaker
when training the acoustic-articulatory model. Regarding the
MLPG implementations, the differences between D-GMR on
the one hand and SC-GMR/IC-GMR on the other hand are
smaller compared to the MSE implementation (for both source
speakers). The smoothing effect of MLPG seems to alleviate
the impact of errors on the estimated articulatory targets.

We now compare the performance of SC-GMR and IC-
GMR. As shown in Fig. 4, IC-GMR outperforms slightly
SC-GMR for MSE implementation in RMSE terms (i.e. the
solid red curve is most often slightly below the solid blue
curve). In order to test if the difference between the two
techniques was statistically significant over all experiments (i.e
not for a specific size of adaptation dataset), we conducted
a 3-way ANOVA test based on a mixed model (using the
lme package of the R software). The variable to explain was
the RMSE whereas the explicative variables were: a 2-level
categorical factor method (SC-GMR/IC-GMR), another 2-
level categorical factor speaker (M1/F1), a 10-level categorical
factor for the size of the adaptation corpus, and a random
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effect of the test sentence to account for data pairing. For
both MSE and MLPG implementations, the factor method did
not interact significantly with any of the two other factors. For
MSE implementation, its effect was significant on the RMSE
measure which is lower for IC-GMR compared to SC-GMR,
by 0.008 with F (1, 21976) = 221 and p < 0.001. Therefore,
IC-GMR outperforms slightly, but significantly, SC-GMR for
MSE implementation. An opposite tendency was observed for
MLPG implementation. Here, SC-GMR outperforms slightly
IC-GMR by 0.002, but this main effect is weakly significant
(F (1, 21976) = 10 and p = 0.0016). Therefore, performances
of SC-GMR and IC-GMR in MLPG implementation should
be considered as equivalent.

Similar general trends are observed for the PER (Fig. 5).
As expected, the curves are less regular than for RMSE since
a difference in terms of RMSE does not necessarily lead to a
phonetic decoding error (in other words, PER metric is less
fine-grained than RMSE). For MSE implementation, SC-GMR
and IC-GMR outperform D-GMR almost always significantly.
Similarly to RMSE results, IC-GMR outperforms slightly SC-
GMR. However, the difference is here almost never significant.
Again, the MLPG implementations of D-GMR, SC-GMR and
IC-GMR (dashed curves) lead to similar performances (with
20% PER in average).

F. Discussion

To summarize the previous results, the proposed C-GMR
framework most often outperforms the other adaptation tech-
niques when considering the conventional MSE estimator.
This is true for both RMSE and PER metrics, for both
source speakers M1 and F1, and more importantly for small
adaptation datasets. A good trade-off between the amount of
adaptation data and the performance can be found between 1.5
and 2.5 min, depending on the speaker and on the implemen-
tation (MSE or MLPG). The performance for small datasets
validates the benefit of introducing an intermediate spectral
conversion stage (i.e. Z-to-X) in the acoustic-articulatory
inversion process. This allows the model to rely on a well-
estimated acoustic-articulatory model of the reference speaker.

For both SC-GMR and IC-GMR, the performances decrease
significantly for very small datasets (say, less that 1 min).
For both techniques, we can conjecture different explanations
for this result. As concern the SC-GMR, one characteristic
of this model is its flexibility, in the sense that the number
of components of the Z-to-X GMR can be set independently
from the X-to-Y GMR. Consequently, the Z-to-X model can
adapt to the structure of the adaptation set. This is suitable
when dealing with a dense adaptation set. However, it can
be problematic for a very small and potentially too sparse
dataset. Indeed, some regions of source and reference speaker’s
acoustic space which are not represented in the adaption
dataset may not be correctly covered by the model.

This problem is theoretically tackled by the IC-GMR. As
an example, let us consider a component of the X-to-Y
GMR for which no corresponding z observation is available
in the adaptation dataset. Thanks to the integrated structure of
the IC-GMR, this component should be preserved and even

slightly adapted using the estimated missing data (as detailed
in Section VI). Therefore, the accuracy of the mapping in this
area of the acoustic space will depend only on the distance of
the z observation to the mean of the considered component.

Therefore, the IC-GMR should achieve better generalization
than the SC-GMR. However, our experiments did not confirm
such property for the smallest adaptation datasets. Among the
possible limitations of the IC-GMR, we can conjecture two.
For very small adaptation datasets (i.e. N0 � N ), the amount
of data available to correctly bootstrap the proposed IC-GMR
training algorithm may not be sufficient: in the initialization
stage, the statistics Sin

Z′,m, Sin
Z′X,m and Sin

Z′Z′,m are calculated
from available adaptation data z1:N0

and x1:N0
. This may

deliver poorly reliable estimations of parameters Cin
m, din

m and
Vin

m, and thus poorly estimated missing data z′ and so forth in
the following EM iterations. In other words, there may exist
a limit on the amount of adaptation data above which the
proposed EM algorithm and associated initialization work as
a virtuous circle. A second limitation could be related to the
ratios between data amount and number of model parameters.
The number of free parameters that have to be estimated in
any of the considered training processes is significantly lower
for the SC-GMR than for the IC-GMR. Indeed, the SC-GMR
is a chain of two independent 2-vector GMRs, whereas the
IC-GMR is basically a 3-vector GMR. When the amount
of training/adaptation data gets too limited, models with a
larger number of parameters are generally penalized. This is
a remaining issue of the proposed IC-GMR framework which
should be addressed in future work.

VIII. CONCLUSION

This article addresses the problem of how to adapt an
acoustic-articulatory GMR trained on a reference speaker, to
another (source) speaker, using a limited amount of audio-
only speech data. First, we investigated standard adaptation
techniques for GMM such as MLLR and MAP, to modify
the acoustic component of the acoustic-articulatory GMR.
We tested also the performance of a standard GMR, which
models directly the statistical relationships between the source
speaker’s acoustics, and the reference speaker’s articulation
(referred to as D-GMR). Then, we introduced a new general
framework called cascaded Gaussian mixture regression. This
approach aims notably at exploiting all information available
about the acoustic-articulatory relationship of the reference
speaker. To that purpose, it decomposes the conversion process
in two steps, 1) a spectral mapping step which models the
statistical relationships between source and reference speaker’s
acoustics, and 2) an acoustic-articulatory inversion step. Two
versions of the C-GMR have been proposed. The first one is a
straightforward chaining of two GMRs (SC-GMR), achieving
respectively the spectral mapping and the acoustic-articulatory
inversion. The second one (IC-GMR) integrates the two
regressions in a single joint probabilistic model. The EM
algorithm associated to the IC-GMR has been derived within
the framework of missing data to deal with limited adaptation
datasets. In line with the existing literature on conventional
GMR, we derived two mapping procedures for the IC-GMR,
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based respectively on MSE estimator and MLPG algorithm
(the latter including an explicit smoothness constraint).

Experiments have shown that both SC-GMR and IC-GMR
outperform MAP, MLLR and D-GMR, and were able to
recover phonetically consistent articulatory trajectories, from
as few as 3 min of adaptation data. Besides, IC-GMR outper-
formed slightly (but significantly) SC-GMR in MSE imple-
mentation.

Further experiments should be conducted in order to validate
the proposed system in a realistic applicative context. To
that purpose, the performance of the C-GMR framework
when adapting to disordered or non-native speech should be
evaluated. In such cases, the pronunciation differences between
source and reference speakers can be notable. This may occur
when the reference speaker’s language contains a phoneme
which does not exist in the the source speaker’s language,
or when the source speaker’s production is altered by an
articulatory disorder. To address this challenge, the proposed
training algorithm of IC-GMR should be extended to the case
of non-parallel corpus as considered in [35]. Moreover, the use
of the C-GMR framework (and notably the IC-GMR approach)
could be envisioned in other speech processing areas, such
as silent speech interfaces [36] which are devices converting
speech-related biosignals (e.g. articulatory movements, elec-
trical activity of face muscles, etc.) into audible speech. The
C-GMR techniques could be used to adapt an articulatory-to-
acoustic GMR trained with vocalized data but used with silent
speech and possible altered articulation [37].

SUPPLEMENTARY MATERIAL

A video showing the articulatory talking head animated
automatically from the speech audio signal of speakers F1/M1,
for different VCV sequences, using SC-GMR and IC-GMR
techniques is provided as supplementary material. The MAT-
LAB source code of IC-GMR training and mapping algorithms
is available at http://www.gipsa-lab.fr/∼thomas.hueber/cgmr/.
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APPENDIX A
DERIVATION OF Q

(
Θ,Θ(i)

)
Q is classically computed by taking the expectation of

the complete-data log-likelihood with respect to the posterior
distribution of the hidden variables given the observations (and
the parameters at previous iteration):

Q
(
Θ,Θ(i)

)
=

N0∑
n=1

M∑
m=1

p
(
m|on,Θ

(i)
)

log p(on,m|Θm)+

N∑
n=N0+1

M∑
m=1

∫
RDZ

p
(
zn,m|jn,Θ(i)

)
log p(on,m|Θm)dzn.

With definition (31) and multiplying and dividing the terms
of the second double sum by p(jn,Θ(i)), (30) follows imme-
diately. Injecting (11)–(15) into the first double sum of (30)

leads to the first double sum of (33). As for the second double
sum, we remark that:∫

RDZ

p
(
on,m|Θ(i)

m

)
log p(on,m|Θm)dzn

= p
(
jn,m|Θ(i)

m

)[
log p (jn,m|Θm) +∫

RDZ

p
(
zn,m|jn,Θ(i)

m

)
log p (zn,m|jn,Θm) dzn

]
.

Factor p(jn|Θ(i)) together with p(jn,m|Θ(i)
m ) form the re-

sponsibilities (32), and the integral term is responsible for the

term−
∥∥∥C(i)

m xn + d
(i)
m −Cmxn − dm

∥∥∥2
Vm

−Tr[V−1m V
(i)
m ] of

(33), that is equivalent in the case of missing data to the term
−‖zn −Cmxn − dm‖2Vm

present in the first double sum of
(33).

APPENDIX B
MAXIMIZATION OF Q

(
Θ,Θ(i)

)
In this appendix we present the derivations for the M-step.

All formulas start by taking the derivative of Q as expressed
in (34).

Constant vectors and transition matrices: For m ∈ [1,M ],
we have:

∂Q(Θ,Θ(i))

∂em
= R−1m

N∑
n=1

γ(i+1)
nm (yn − em).

Setting this expression to zero leads to:

em =

∑N
n=1 γ

(i+1)
nm yn∑N

n=1 γ
(i+1)
nm

, (43)

from which we obtain (37). This expression is very similar
to the classical GMM case (see [28]), except for the specific
definition of the responsibilities for n ∈ [N0 + 1, N ]. In the
same line, taking the derivative of Q(Θ,Θ(i)) with respect to
bm and setting the result to zero leads to:

bm =

∑N
n=1 γ

(i+1)
nm (xn −Amyn)∑N

n=1 γ
(i+1)
nm

. (44)

Besides, for m ∈ [1,M ], we have:

∂Q(Θ,Θ(i))

∂Am
= U−1m

N∑
n=1

γ(i+1)
nm (xn −Amyn − bm)y>n .

Setting this expression to zero leads to:

Am =

(
N∑

n=1

γ(i+1)
nm (xn − bm)y>n

)(
N∑

n=1

γ(i+1)
nm yny>n

)−1
.

(45)
With the notation introduced in (35), Equ. (44) and (45) write:

bm =
1

S
(i+1)
m

(
S
(i+1)
X,m −AmS

(i+1)
Y,m

)
(46)

and
Am =

(
S
(i+1)
XY,m − bmS

(i+1)>
Y,m

)
S
(i+1)−1
YY,m . (47)
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Replacing (46) into (47) we can deduce the final result for
Am and bm given by (38)6. The optimal expression for Cm

and dm in (39) are obtained in the same manner.
Covariance matrices: For m ∈ [1,M ], we have:

∂Q(Θ,Θ(i))

∂R−1m

=
1

2

N∑
n=1

γ(i+1)
nm

(
Rm−(yn−em)(yn−em)>

)
.

Setting this expression to zero leads to:

Rm =
1∑N

n=1 γ
(i+1)
nm

N∑
n=1

γ(i+1)
nm (yn−em)(yn−em)>

=
1

S
(i+1)
m

(
S
(i+1)
YY,m − S

(i+1)
Y,m ∗ em + eme>m

)
.

We recall that P∗Q = PQ>+QP> denotes the symmetrized
outer product of P and Q. From these equations the result
in (40) follows immediately. In the same line, taking the
derivative of Q(Θ,Θ(i)) with respect to U−1m and setting the
result to zero leads to:

Um =
1

S
(i+1)
m

N∑
n=1

γ(i+1)
nm (xn−Amyn−bm)(xn−Amyn−bm)>,

which drives us to (41). These expressions are of course empir-
ical covariance matrices weighted by specific responsibilities.
As for the maximization of Q(Θ,Θ(i)) with respect to Vm,
we have the additional contribution of the Trace term due to
the missing data. Setting the corresponding derivative to zero
yields:

Vm =
1

S
(i+1)
m

((
N∑

n=N0+1

γ(i+1)
nm

)
V(i)

m +

N∑
n=1

γ(i+1)
nm (z′nm−Cmxn−dm)(z′nm−Cmxn−dm)>

)
.

The second term on the right side is an empirical covariance
matrix and, again, it is similar to the classical GMM case [28]
except for the specific definition of observation vectors and
responsibilities for n ∈ [N0 + 1, N ]. The first term accounts
for the missing data, i.e. zn for n ∈ [N0 + 1, N ]. From this
last equation (42) follows easily.
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2013. He is currently a Post-Doctoral fellow at
the University of Trento. His research interests are
multimodal machine learning and signal processing
for scene analysis.

Gérard Bailly is a senior CNRS Research Director
at GIPSA-Lab, Grenoble-France. He was deputy
director of the lab in 2007-2012. He has been
working in the field of speech communication for
30 years, supervised 27 PhD Thesis, authored 40
journal papers, 24 book chapters and more than
170 papers in major international conferences. He
coedited Talking Machines: Theories, Models and
Designs (Elsevier, 1992), Improvements in Speech
Synthesis (Wiley, 2002) and Audiovisual speech
processing (CUP, 2012). His current interests include

the conception and evaluation of interactive systems, in particular social robots
and virtual conversational agents.


