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Abstract 

The article presents a statistical mapping approach for cross-
speaker acoustic-to-articulatory inversion. The goal is to estimate 
the most likely articulatory trajectories for a reference speaker 
from the speech audio signal of another speaker. This approach 
is developed in the framework of our system of visual 
articulatory feedback developed for computer-assisted 
pronunciation training applications (CAPT). The proposed 
technique is based on the joint modeling of articulatory and 
acoustic features, for each phonetic class, using full-covariance 
trajectory HMM. The acoustic-to-articulatory inversion is 
achieved in 2 steps: 1) finding the most likely HMM state 
sequence from the acoustic observations; 2) inferring the 
articulatory trajectories from both the decoded state sequence 
and the acoustic observations. The problem of speaker adaptation 
is addressed using a voice conversion approach, based on 
trajectory GMM.  
Index Terms: acoustic-to-articulatory inversion, intelligent 
tutoring systems, pronunciation training, trajectory HMM, voice 
conversion, talking head 

1. Introduction 
Several studies tend to show that a visual feedback of the 
articulatory movements facilitates pronunciation training [1]. 
Different approaches have been proposed in the literature to 
provide this visual feedback. In [2], tongue-palate contact points 
are monitored using electro-palatography; derived visual patterns 
help the patient to improve the positioning of his/her tongue in 
velar and alveolar regions. In [3] and [4] (Ultrax project), 
ultrasound imaging is used to provide a real-time visual feedback 
of tongue movements. Another approach consists in using an 
“augmented” talking head, i.e. a talking head displaying all 
speech articulators including usually hidden ones like the tongue. 
In [6], Massaro et. al. proposed to use an augmented talking head 
as a language tutor: the talking head displays pre-calculated 
animations which help the user to visualize the articulatory 
movements that correspond to a specific speech sound. However, 
this approach does not provide the learner with a real feedback 
on his/her own articulation. In [5], Engvall proposed to use a 
wizard-of-Oz approach to provide this feedback: a human 
listener evaluates the user's pronunciation and animates the 
talking head from a set of pre-generated sequences. In our 
previous work [7], we describe a system of visual articulatory 
feedback, based on the 3D augmented talking head developed at 
GIPSA-lab [8]. This system aims to provide any speaker with a 
real feedback on his/her own articulation. In our approach, the 
talking head is animated automatically from the audio speech 
signal, using acoustic-to-articulatory inversion.  

The problem of acoustic-to-articulatory inversion has been 
addressed in many studies, using either codebook-based 
approaches, as in [9], or statistical regression techniques, as in 
[10], [11], [12], [13] (based respectively on ANN, SVM, GMM 
and HMM).  However, only a few studies ([15], [16]) address the 
problem of cross-speaker acoustic-articulatory inversion, which 
consists in recovering the most likely articulatory trajectories of 
a reference speaker from the speech audio signal of another 
speaker. This is a critical issue for the design of a multi-speaker 
system of visual articulatory feedback. In [7], we proposed an 
HMM-based approach to address this issue. In the training stage, 
sequences of acoustic and articulatory data of the reference 
speaker were modeled, for each phonetic class, by a 2-stream 
context-dependent HMM. The acoustic-to-articulatory mapping 
was achieved in two steps: 1) a “phonetic decoding” step during 
which the most likely phonetic sequence was predicted from the 
acoustic observations; and 2) a “synthesis” step during which the 
articulatory trajectories were estimated from the decoded 
phonetic target and the corresponding HMM state sequence, 
using the MLPG algorithm [14]. The speaker adaptation problem 
was addressed by adapting the acoustic stream of each HMM, 
using the MLLR technique and a small amount on (audio-only) 
adaptation data. This technique, called in this paper the baseline 
technique, gave encouraging results but presents a major 
drawback: during the synthesis stage, the articulatory trajectories 
are estimated only from the decoding phonetic sequence, 
independently of the acoustic observations. As a consequence, 
the estimated articulatory trajectories depend almost exclusively 
on the decoded phonetic label. They do not reflect the acoustic 
variability that exists within each phonetic class (nevertheless, in 
the baseline technique, this variability is partly captured by 
introducing context-dependency in the modeling). This ability to 
take explicitly into account the acoustic observations during the 
generation of the articulatory trajectories is a critical step for 
pronunciation training applications.  

This paper addresses this specific issue and investigates a 
new approach to estimate the articulatory trajectories from both 
the decoded phonetic sequence and the acoustic observations. To 
do so, we adapted the GMM-based mapping approach proposed 
by Toda in [12] to the problem of HMM-based feature mapping. 
An almost identical adaptation has been proposed by Zen in [17]. 
The proposed approach is called in this paper the continuous 
mapping technique. Speaker adaptation is here addressed using a 
voice conversion approach, based on trajectory GMM [18].   

 The article is organized as follows. Section 2 details the 
theoretical aspects of both the baseline and the proposed 
techniques. Section 3 describes the data acquisition protocol and 
details the practical implementation of the mapping techniques. 
Experimental results are presented and discussed in section 4. 
Conclusions and perspectives are presented in the last section. 



2. HMM-based feature mapping  
Sequences of acoustic (spectral) and articulatory feature vectors, 
x and y, are written as: x = [x
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 (T is the sequence length). As usual in the framework of 
trajectory HMM, target features are augmented with their first 
derivatives, such as Y = [Y
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2.1. Baseline mapping technique 

The following section briefly recalls the theoretical aspects of 
the baseline mapping technique [7]. In the training stage, streams 
of acoustic and articulatory feature vectors (recorded 
synchronously) are modeled, for each phonetic class, by a 
multistream HMM. For each stream, the emission probability 
density of each state is modeled by a multivariate Gaussian 
distribution with diagonal covariance matrix. In the mapping 
stage, the sequence of articulatory feature vectors ŷ  is estimated 
from the sequence of acoustic feature vectors x  such as 
ŷ = argmaxy p(y | x){ } with:  

p(y | x) = p(y | λ, q) ⋅ P(λ, q | x)          (1) 

where λ is the parameters set of the HMM and q the HMM state 
sequence. In our implementation, ŷ  is obtained by maximizing 
separately the two conditional probability terms of Equation 1: 
(1) by estimating (λ̂, q̂)  with (λ̂, q̂) = argmaxλ ,q P(λ, q | x){ }

 using the Viterbi algorithm (phonetic decoding stage); and (2), 
by estimating ŷ  such as ŷ = argmax y P(y | λ̂, q̂){ } , using the 
MLPG algorithm [14] (synthesis stage).  

2.2. Continuous mapping technique 

The continuous mapping technique aims at modeling more 
explicitly the articulatory-acoustic local dependencies. For that 
purpose, sequences of acoustic and articulatory features are 
modeled jointly, for each phonetic class, by a single-stream 
“full-covariance” HMM. For each HMM state q, the joint 
probability density function (pdf) of acoustic and articulatory 
features is modeled by:  

pq (z) = N (z,µq ,Σq ) with  z = [x,Y]
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  (2)   

where N (., µ, Σ)  is a normal distribution with mean µ  and 
covariance matrix Σ . Similarly to the baseline technique, the 
mapping starts with the phonetic decoding stage, which 
determines the most likely phonetic sequence, and the 
corresponding HMM state sequence (λ̂, q̂) , from the acoustic 
observations x. Unlike the baseline technique, the articulatory 
trajectories are estimated by taking into account, not only the 
decoded HMM states, but also the acoustic observations, such as 
ŷ = arg maxy p(y | x, λ̂, q̂){ }  . For each frame t, a conditional 

pdf p(Yt | xt , q̂t , λ̂)  is derived from the joint pdf pq̂t (xt ,Yt ) , 

estimated during training:  

p(Yt | xt , q̂t , λ̂) = N (Yt ,Eq̂t ,t
Y ,Dq̂t

Y )

 with
E
q̂t ,t
Y = µq̂t

Y + Σ q̂t
YxΣ q̂t

xx−1
(xt − µq̂t

x )

D
q̂t

Y = Σ q̂t
YY − Σ q̂t

YxΣ q̂t
xx−1

Σ q̂t
xY

⎧

⎨
⎪

⎩
⎪

 (3) 

(the mathematical basis of this derivation can be found in [19], 
p.337). As shown in Equation 3, the target vector of articulatory 

features E
q̂t ,t
Y is expressed as a linear function of the acoustic 

observation xt , and is based on the local correlations between 

the articulatory and the acoustic features for state q̂t , estimated 

during training. Spectral trajectories ŷ  are finally estimated by 
solving the following equation:  

  
ŷ = WT Dq̂

−1W( )−1
WT Dq̂

−1Eq̂
with Eq̂ = [Eq̂1 1, , ...,Eq̂T T ] and Dq̂

−1 = diag[Dq̂1

−1, ...,Dq̂T
−1 ]

 (4) 

where q̂ = [q̂1, .., q̂T ]  is the decoded HMM state sequence and 
W  is a [2DxT-by-DyT] matrix representing the relationship 
between static and dynamic feature vectors:    

 

       (5) 

Like the MLPG algorithm, this method determines the sequence 
of feature vectors that maximizes the likelihood of the model 
with respect to a continuity constraint on the predicted feature 
trajectories.  

2.3. Speaker adaptation 

In the baseline technique, speaker adaptation is achieved by 
adjusting the parameters of the acoustic stream of each HMM, 
using the MLLR technique [20]. MLLR estimates linear 
transformations for models parameters to maximize the 
likelihood of the adaptation data. However, this approach can not 
be used for the continuous mapping technique: since it is based 
on full-covariance HMM, it would require the recording of both 
audio and articulatory adaptation data, which is not acceptable in 
the envisioned application. To overcome this issue, we propose 
to adapt the acoustic observations rather than the model 
parameters. In that purpose, we investigate the use of voice 
conversion as a speaker adaptation technique. The goal is to 
modify the acoustic (spectral) observations of the source speaker 
(i.e. the system user) so that it sounds as if it had been 



pronounced by the reference speaker. The resulting cross-
speaker acoustic-to-articulatory inversion technique can be 
formulated as follows: 

ŷ = arg maxy {p(y | xsource )} with 

p(y | xsource ) = p(y | x
ref

) ⋅ p(xref | xsource )
 (7) 

where xsource  is a sequence of acoustic feature vectors of the 

source speaker and xref  the corresponding sequence of 

converted feature vectors. In our implementation, the “inversion 
term” p(y | x

ref
)  and the “adaptation term” p(xref | xtarget )  

are maximized separately. For the voice conversion step, we use 
the approach proposed by Toda in [18] which is based on 
trajectory GMM. In the adaptation stage, the joint pdf of (time-
aligned) acoustic observations for the source and the reference 
speakers is modeled with: 

p(z) = N (z, µ
q
, Σ

q
) with z = [x

ref
x

source
]

q =1

Q∑   (8) 

using similar notations as in Equation 2. In the mapping stage, 
the suboptimum sequence of mixture component q̂  defined as 

q̂ = argmaxq {P(q | xsource ,η} , is determined using the Viterbi 

algorithm (η  is the GMM parameter set). The sequence of 
converted feature vectors is finally estimated from (q̂,η) , using 
the inference technique described by Equations 3 and 4.  

3. Experimental protocol 

3.1. Data acquisition and Feature Extraction 

Articulatory data of the reference speaker “PB” were recorded 
synchronously with the audio signal using the Carstens 2D EMA 
system (AG200). Six coils were glued on the tongue tip, blade, 
and dorsum, as well as on the upper lip, the lower lip and the 
jaw. The recorded database consists of two repetitions of 224 
VCVs, two repetitions of 109 pairs of CVC real French words, 
and 88 sentences. The database consisted of approximately 17 
minutes of speech, long pauses being excluded. In order to 
evaluate the speaker adaptation technique, a second database of 
audio data only, was recorded using a second speaker named TH. 
This speaker was asked to pronounce the same text material as 
described above.  

Sequence of articulatory features (i.e. x and y coordinates of 
each EMA coils) were downsampled from 200 Hz to 100 Hz and 
low-pass filtered at 20 Hz. The audio speech signal was 
parameterized by 25 mel-cepstrum coefficients (Blackman 
window, 25 frame length, 10 ms frame shift).  

3.2. Training 

For the baseline technique, sequences of articulatory and 
acoustic feature vectors were modeled by a set of 2-stream 
context-dependent HMM (right biphone), using first the 
maximum-likelihood criterion (ML) and then the minimum 
generation error criterion (MGE), as reported in [7]). A tree-
based state-tying strategy was used to address the problem of 
data sparsity. Each resulting multistream HMM was then split 
into two distinct HMMs (one-stream): an “acoustic HMM” used 

for the phonetic decoding stage, and an “articulatory HMM”, 
used for the synthesis stage. Acoustic HMMs were finally 
refined by increasing incrementally the number of Gaussian 
mixture components. For the cross-experiments, acoustic HMMs 
were adapted by (1) aligning the audio adaptation data (recorded 
by speaker TH) at the phonetic level, and (2), updating the model 
parameters using the MLLR technique in order to maximize the 
likelihood on the adaptation data.   

For the continuous HMM-based mapping technique, 
sequences of articulatory and acoustic feature vectors were 
modeled, for each of the 30 phonetic classes, by a single-stream 
“full-covariance” HMM. Due to the lack of training data, the 
training of context-dependent full-covariance HMMs on this 
database was found to be not feasible. As a consequence, we use 
the context-dependent HMMs, trained for the baseline technique, 
for the phonetic decoding stage; the context-independent full-
covariance HMMs being used only for the synthesis stage (the 
target sequence of HMM states was obtained using the results of 
the phonetic decoding stage, and a forced-alignment procedure). 
Also, MGE criterion was not used for to train the full covariance 
HMMs, since it did not lead to any improvement (compared to 
the ML criterion). 

3.3. Evaluation  

The articulatory-acoustic database (recorded by the reference 
speaker PB) was divided into 5 partitions of equal size. A 5-fold 
cross-validation technique was employed for evaluation: each 
list was used once as the test set while the other 4 lists composed 
the training set. A few utterances were excluded from the 
training set and were used as a validation subset for the 
determination of some hyperparameters: (1) the optimal number 
of Gaussians for the acoustic HMM used for the decoding step 
(which was found to be 8); (2), the model insertion penalty 
(which was found to be -20); and (3), the optimal number of 
mixture components for the GMM-based voice conversion step 
(which was found to be 64). For the cross-speaker experiments, 
1/5 of the database (~3mn) recorded by speaker TH was used as 
adaptation dataset, for both the MLLR-based approach and  the 
GMM-based approach (in that case, sequences of acoustic 
feature vectors for source (TH) and target speakers (PB), were 
time-aligned using dynamic time warping).  

For the phonetic stage, the structure of the decoding network 
was a simple loop in which all phones loop back to each other. 
The performance of the decoding stage was measured by 
evaluating the recognition accuracy defined as 
Accaudio = 100 ⋅ (N − S − D − I ) / N , where N is the total 
number of phones in the test set, S, D and I are respectively the 
number of substitution, deletion, and insertion errors.  

For the synthesis stage, the accuracy of the estimated 
articulatory trajectories was measured by calculating, for each 
partition, the root mean square error between the measured and 
the estimated EMA parameters, such as: 

µRMS =
1

D

1

T
( ŷd ,  t − yd ,  t )

2

t=1

T

∑
d=1

D

∑   (5) 

where T is the number of frames in the test set, D is the number 
of EMA parameters (D=12), yd ,  t and  ŷd ,  t  are respectively the 
estimated and the measured position of the dth EMA parameters 



at time t. Since no articulatory data was available for the speaker 
TH, µRMS could not be calculated for the cross-speaker 
experiment. Therefore, the “articulatory recognition” paradigm, 
introduced in [7], was used: an HMM-based phonetic decoder 
trained on the articulatory data of the reference speaker PB 
(using a standard training procedure similar to the one described 
at section 3.2), was used to decode the synthetic articulatory 
trajectory at the phonetic level. The obtained recognition 
accuracy, referred as Accart , was considered as a measure of the 
accuracy of the synthetic trajectory.  

4. Results & Discussion 
For the inversion experiment on the reference speaker PB, the 
baseline and the continuous mapping techniques gave almost 
identical results with: Accaudio=84%, µRMS=1.48mm, and 
Accart=80.2%. Thus, a similar performance can be obtained with 
two distinct mapping strategies: (1) partitioning very finely the 
articulatory-acoustic space and performing the mapping at the 
class-level (context-dependant phonetic class), like in the 
baseline technique; or (2), partitioning less precisely the 
articulatory-acoustic space (30 phonetic class), but learning local 
regression functions, like in the continuous mapping technique.  

For the cross-speaker inversion experiment, the MLLR 
adaptation approach slightly outperforms the GMM-based 
approach for the phonetic decoding stage, with  Accaudio=80% 
(MLLR) vs. Accaudio=73% (GMM). As a consequence, the 
accuracy of the estimated articulatory trajectories is lower for the 
continuous mapping technique, with Accart= 67% vs. 77% for the 
baseline technique. However, when combining MLLR 
adaptation (for the phonetic decoding step) and GMM-based 
speaker adaptation (to adapt the acoustic observations for the 
inversion step), the performance of the continuous mapping 
technique is almost similar to the performance obtained with the 
baseline technique (i.e. Accart= 73% vs. Accart= 77%).  

5. Conclusions and Perspectives 
The article introduces a new approach for estimating the most 
likely articulatory trajectories of a reference speaker, given the 
acoustic signal of another speaker (cross-speaker acoustic-to-
articulatory inversion). This approach is based on the explicit 
modeling of the articulatory-acoustic local correlations, using 
phone-based full-covariance HMMs. Speaker adaptation is 
performed using a voice conversion approach, based on 
trajectory GMM. Results obtained with the proposed approach 
are similar to those obtained with our previous technique, in 
which acoustic and articulatory observations were modeled 
independently, using context-dependant diagonal-covariance 
HMM. In future work, we intend to investigate the use of the 
continuous HMM-based mapping technique for both cross-
speaker and cross-language acoustic-to-articulatory inversion. 
The objective will be to test capacity of the system to deal with 
speech produced by a foreign speaker and also with pathological 
speech.  

6. Acknowledgements 
This work was supported by the French National Research 
Agency (ANR) under contract numbers ANR-08-EMER-001-02 
ARTIS and Joseph Fourier University (Vizart3D project). The 
authors would like to acknowledge Tomoki Toda for useful 

discussions and Christophe Savariaux for his help in the 
recording of EMA data.   

7. References 
[1] Badin, P., Ben Youssef, A., Bailly, G., Elisei, F., and Hueber, T., 

"Visual articulatory feedback for phonetic correction in second 
language learning", in Proc. of SLATE workshop, P1-10, 2010. 

[2] Wrench, A., Gibbon, F., McNeill, A.M., Wood, S., “An EPG 
therapy protocol for remediation and assessment of articulation 
disorders”, in Proc. of ICSLP, Denver, USA, pp. 965-968, 2002 

[3] Bernhardt, B.M., Gick, B., Bacsfalvi, P., Adler-Bock, M. 
“Ultrasound in speech therapy with adolescents and adults”, 
Clinical Linguistics & Phonetics, vol. 19, pp. 605-617, 2005. 

[4] Cleland, J., Scobbie, J.M. & Wrench, A., “Visual Feedback for 
Children with Speech Sound Disorders”, Poster presented at the 3rd 
Colloquium of British Association of Clinical Linguistics, 2011. 

[5] Engwall, O., “Can audio-visual instructions help learners improve 
their articulation? - An ultrasound study of short term changes”, in 
Proc. of Interspeech, pp. 2631-2634, 2008. 

[6] Massaro, D. W., Liu, Y., Chen, T. H., Perfetti, C. A. “A 
Multilingual Embodied Conversational Agent for Tutoring Speech 
and Language Learning”, in Proc. of Interspeech, Pittsburg, USA, 
pp. 825-828, 2006. 

[7] Ben Youssef A., Hueber T., Badin P., Bailly G., "Toward a multi-
speaker visual articulatory feedback system", in Proc. of 
Interspeech, Firenze, Italia, pp. 489-492, 2011. 

[8] Badin, P., Elisei, F.,  Bailly, G., Tarabalka, Y., “An audiovisual 
talking head for augmented speech generation: models and 
animations based on a real speaker's articulatory data”, in 5th Conf. 
on Articulated Motion and Deformable Objects, Eds.: F.J. Perales 
& R.B. Fisher, Berlin, Heidelberg, pp. 132-143, 2008. 

[9] Ouni, S., Laprie, Y.,  “Modeling the articulatory space using a 
hypercube codebook for acoustic-to-articulatory inversion”, J. 
Acoustical Society of America, vol. 118, pp. 444-460, 2005.  

[10] Richmond, K., “Estimating Articulatory Parameters from the 
Acoustic Speech Signal”, PhD thesis, CSTR Edinburgh, 2002. 

[11] Toutios, A., Margaritis, K. “A support vector approach to the 
acoustic-to-articulatory mapping”, in Proc. of Interspeech, pp. 
3221-3224, 2005. 

[12] Toda, T., Black, A.W., Tokuda,  K., “Statistical mapping between 
articulatory movements and acoustic spectrum using a Gaussian 
mixture model”, Speech Comm. vol. 50, no. 3, pp. 215-227, 2007. 

[13] Hiroya, S., Honda, M., “Estimation of Articulatory Movements 
from Speech Acoustics Using an HMM-Based Speech Production 
Model”, IEEE Transactions on Speech and Audio Processing, vol. 
12, no. 2, pp. 175-185, 2004. 

[14] Tokuda, K., Yoshimura, T., Masuko, T., Kobayashi, T., Kitamura, 
T., “Speech parameter generation algorithms for HMM-based 
speech synthesis”, in Proc. of ICASSP, pp. 1315-1318, 2000. 

[15] Hiroya, S. and M. Honda, “Speaker Adaptation Method for 
Acoustic-to-Articulatory Inversion using an HMM-Based Speech 
Production Model”, IEICE Transactions On Information And 
Systems, E87-D(5), pp. 1071-1078, 2004.  

[16] Ghosh, P., Narayanan, S., “A subject-independent acoustic-to-
articulatory inversion”, in Proc. of ICASSP, pp. 4624-4627, 2011. 

[17] Zen, H., Nankaku,  Y., Tokuda,  K., “Continuous Stochastic 
Feature Mapping Based on Trajectory HMMs”, IEEE Trans. on 
Audio, Speech, and Lang. Proc., vol. 19, no. 2, pp. 417- 430, 2011. 

[18] Toda, T., Black, A.W., Tokuda. K., “Voice conversion based on 
maximum likelihood estimation of spectral parameter trajectory”,   
IEEE Trans. on Audio, Speech and Language Processing, vol. 15, 
no. 8, pp. 2222-2235, Nov. 2007. 

[19] M. Kay., S, “Fundamentals of Statistical Signal Processing: 
Estimation Theory”, Prentice Hall, 1993. 

[20] Leggetter, C. and Woodland, P., "Maximum likelihood linear 
regression for speaker adaptation of continuous density hidden 
Markov models", Computer, Speech and Language, vol. 9, pp. 171-
185, 1995. 


