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Abstract 
The article presents an HMM-based mapping approach for 
converting ultrasound and video images of the vocal tract into an 
audible speech signal, for a silent speech interface application. 
The proposed technique is based on the joint modeling of 
articulatory and spectral features, for each phonetic class, using 
Hidden Markov Models (HMM) and multivariate Gaussian 
distributions with full covariance matrices. The articulatory-to-
acoustic mapping is achieved in 2 steps: 1) finding the most 
likely HMM state sequence from the articulatory observations; 
2) inferring the spectral trajectories from both the decoded state 
sequence and the articulatory observations. The proposed 
technique is compared to our previous approach, in which only 
the decoded state sequence was used for the inference of the 
spectral trajectories, independently from the articulatory 
observations. Both objective and perceptual evaluations show 
that this new approach leads to a better estimation of the spectral 
trajectories. 
Index Terms: silent speech interface, handicap, HMM-based 
speech synthesis, audiovisual speech processing 

1. Introduction 
In the past few years, the design of silent speech interfaces (SSI) 
has emerged as a new field in the speech research community 
[1]. SSI may be defined as automatic systems enabling oral 
communication without the necessity of vocalizing the speech 
sound. Application areas are in the medical field, as an aid for 
laryngectomized patients, and in the telecommunication sector, 
in the form of a “silent telephone”, which could be used for 
confidential or furtive communication, or in very noisy 
environments. To date, several technologies have been proposed 
to capture the articulatory activity (or the very low acoustic 
activity) during silent speech: surface electromyography (sEMG) 
[2]; tissue-conducted microphone (also called NAM 
microphone) [3]; and permanent-magnetic articulography 
(PEMA) [4]. In our approach, articulatory movements are 
captured by a multimodal imaging system composed of an 
ultrasound transducer placed beneath the chin and a video 
camera placed in front of the lips [5].  

In this paper, we address the problem of “articulatory-to-
acoustic” mapping, i.e. the synthesis of an audible speech signal, 
from (visual) articulatory data only. In our previous work, this 
problem has been addressed using non-linear regression 
techniques based respectively on artificial neural networks 
(ANN) and Gaussian mixture models (GMM). In [6], we 
proposed an HMM-based approach which allows the 
introduction of external a priori linguistic information in the 

mapping process. The mapping was achieved in two steps: 1) a 
“phonetic decoding” step during which the most likely phonetic 
sequence was predicted from the articulatory observations; and 
2) a “synthesis” step during which spectral trajectories were 
estimated from the predicted phonetic sequence and the decoded 
HMM state sequence, using the MLPG algorithm [7]. Unlike 
GMM and ANN-based approach, the mapping here was achieved 
not at the frame level, but at the phone level. External linguistic 
constraints could thus be introduced in the mapping via a 
limitation on the authorized vocabulary (as in [6]) or by using a 
statistical language model (as in [8]). A HMM-based approach 
outperforms ANN-based and GMM-based approaches: the use of 
linguistic constraints helps to recover missing information in the 
articulatory data, such as the voicing characteristic of course, but 
also the position of some articulators like the velum. However, 
this approach presents a major drawback: the spectral trajectories 
are estimated only from the decoding phonetic sequence, 
independently of the articulatory observation. As a consequence, 
the quality of the synthesis depends exclusively on the accuracy 
of the decoding phonetic sequence: an error during the decoding 
stage corrupts necessarily the synthesis.  

This paper focuses on this issue and investigates a new 
approach to estimate the spectral feature trajectories from both 
the decoded phonetic sequence and the articulatory observations. 
To do so, we adapted the approach originally proposed by Toda 
in [9] for GMM-based mapping to the framework of HMM-
based mapping. An almost identical approach has been proposed 
by Zen in [10] for voice conversion and acoustic-to-articulatory 
mapping. The proposed approach is referred in this paper as the 
“continuous HMM-based mapping technique”.    

 In this approach, the dependency between the articulatory 
and the acoustic variables is learned explicitly by jointly 
modeling sequences of articulatory and spectral features, for 
each phonetic class, with a “full-covariance” HMM (i.e. HMM 
for which the emission probability density functions (pdf) are 
modeled by multivariate Gaussian distributions with full 
covariance matrices). Spectral trajectories are estimated using a 
ML-based parameter estimation algorithm, which explicitly 
adjusts the spectral targets from the articulatory observations.   

The article is organized as follows. Section 2 details the 
theoretical aspects of the continuous HMM-based mapping 
technique. Section 3 describes the data acquisition protocol, the 
feature extraction process, and details the practical 
implementation of the two mapping techniques. Experimental 
results are presented and discussed in section 4. Conclusions and 
perspectives are presented in the last section. 



2. HMM-based feature mapping  
Sequences of articulatory and spectral feature vectors, x and y, 
are written as: x = [x
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where x t  and y t , are Dx/Dy dimensional vectors of 
articulatory/spectral features observed at the time t (T is the 
sequence length). As usual in HMM-based parameter estimation, 
spectral features are augmented with their first derivatives, such 
as Y = [Y
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]  with Y
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,Δy

t
] .  

2.1. Baseline mapping technique 

The following section briefly recalls the theoretical aspects of the 
HMM-based mapping technique introduced in [6], which is 
referred in this paper as the “baseline technique”. In the training 
stage, streams of articulatory and spectral feature vectors 
(recorded synchronously) are modeled, for each phonetic class, 
by a multistream HMM. For each stream, the emission 
probability density of each state is modeled by a multivariate 
Gaussian distribution with diagonal covariance matrix. In the 
mapping stage, the sequence of spectral feature vectors ŷ  is 
estimated from the sequence of articulatory feature vectors x
such as ŷ = argmaxy p(y | x){ } with:  

p(y | x) = p(y | λ, q) ⋅ P(λ, q | x)          (1) 

where λ is the parameters set of the HMM and q the HMM state 
sequence. In our implementation, ŷ  is obtained by maximizing 
separately the two conditional probability terms of Equation 1: 
(1) by estimating (λ̂, q̂)  with (λ̂, q̂) = argmaxλ ,q P(λ, q | x){ }

 using the Viterbi algorithm (phonetic decoding stage); and (2), 
by estimating ŷ  such as ŷ = argmax y P(y | λ̂, q̂){ } , using the 
MLPG algorithm [7] (synthesis stage). This algorithm estimates 
the feature trajectories by solving the following equation:  

ŷ = WT Σ q̂
−1W( )−1

WT Σ q̂
−1Mq̂

with Mq̂ = [µq̂1
, ..., µq̂T ] and Σ q̂

−1 = diag[Σ q̂1

−1, ..., Σ q̂T
−1 ]

  (2) 

where q̂ = [q̂
1
, ..., q̂

T
]  is the decoded HMM state sequence, µk  

and Σk are respectively the mean and the diagonal covariance 
matrix of the Gaussian emission probability density associated 
with state k. W  is a [2DxT-by-DyT] matrix representing the 
relationship between static and dynamic feature vectors:    

 

       (3) 

2.2. Continuous HMM-based mapping 

The new approach aims at modeling more explicitly the local 
correlations between articulatory and spectral features. For that 
purpose, sequences of articulatory and spectral features are 
modeled jointly, for each phonetic class, by a single-stream “full-
covariance” HMM: the joint probability density function (pdf) of 
articulatory and spectral observations is modeled, for each HMM 
state q, by a single Gaussian, with:  

pq (z) = N (z,µq ,Σq ) with  z = [x,Y]
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  (4)   

where N (., µ, Σ)  is a normal distribution with mean µ  and 
covariance matrix Σ . Similarly to the baseline technique, the 
mapping starts with the phonetic decoding stage, which 
determines the most likely phonetic sequence, and the 
corresponding HMM state sequence (λ̂, q̂) , from the articulatory 
observations x. Unlike the baseline technique, the sequence of 
spectral feature vectors is estimated by taking into account, not 
only the decoded HMM states, but also the articulatory 
observations, such as ŷ = arg maxy p(y | x, λ̂, q̂){ }  . For each 

frame t, a conditional pdf p(Yt | xt , q̂t , λ̂)  is derived from the 

joint pdf pq̂t (xt ,Yt ) , estimated during training:  

p(Yt | xt , q̂t , λ̂) = N (Yt ,Eq̂t ,t
Y ,Dq̂t

Y )
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(the mathematical basis of this derivation can be found in [11], 
p.337). As shown in Equation 5, the target vector of spectral 

features E
q̂t ,t
Y , is expressed as a linear function of the 

articulatory observation xt , and is based on the “local” 
correlations between the articulatory and the spectral features for 
state q̂t , estimated during training. Spectral trajectories ŷ  are 
finally estimated by solving the following equation:  

  
ŷ = WT Dq̂

−1W( )−1
WT Dq̂

−1Eq̂
with Eq̂ = [Eq̂1 1, , ...,Eq̂T T ] and Dq̂

−1 = diag[Dq̂1

−1, ...,Dq̂T
−1 ]

 (6) 

which can be seen as an adaptation of Equation 2, to the problem 
of HMM-based feature mapping. As with the MLPG algorithm, 
this method determines the vector sequence that maximizes the 
likelihood of the model with respect to a continuity constraint on 
the predicted feature trajectories.  



3. Experimental protocol 

3.1. Data acquisition 

The two mapping techniques described in section 2 are evaluated 
on a continuous speech database consisting of one-hour of high-
speed ultrasound and video sequences, recorded synchronously 
with the audio signal. Data were acquired using the Ultraspeech 
acquisition system (http://www.ultraspeech.com) [11]. 
Ultrasound and video streams were both recorded at a frame rate 
of 60 frames per second, the audio signal was recorded at 16 kHz 
(16 bits). A female native English speaker was asked to 
pronounce the 1132 sentences of CMU ARCTIC corpus [13]. 
Acquisition was split into 10 sessions, spaced in time. An inter-
session re-calibration mechanism (detailed in [11]), was used to 
maintain the positioning accuracy of the sensors across all 
sessions. A typical pair of ultrasound and video images, 
extracted from the recorded database, is shown in figure 1. 

 
Figure 1: Ultrasound and video images  
recorded with the Ultraspeech system.  

3.2. Feature extraction 

The EigenTongues/EigenLips decomposition technique [14] was 
used to encode each ultrasound/video frame. First, regions of 
interest (ROI), selected in ultrasound and video images, were 
resized to 64x64 pixels. Sets of EigenTongues/EigenLips were 
calculated by performing a Principal Component Analysis on a 
phonetically balanced subset of frames. Each ultrasound/video 
image was projected onto the set of EigenTongues/EigenLips. 
The number of projections used for coding was determined by 
keeping the eigenvectors carrying at least 80% of the variance of 
the training set; 30 coefficients were used as static features for 
each visual stream. In order to be compatible with the speech 
analysis rate, the EigenTongues/EigenLips feature sequences 
were oversampled from 60 Hz to 100 Hz. Finally, they were 
concatenated with their first derivatives in a single articulatory 
feature vector (120-dimensional vector). In order to make 
tractable the training of full-covariance HMMs, the 
dimensionality of articulatory feature vectors was reduced to 30, 
using Locality Preserving Projection technique (LPP) [15]. 
Dimensionality reduction was performed only for the continuous 
mapping technique, since it did not lead to any improvement for 
the baseline technique.  

The spectral content of the audio speech signal was 
parameterized by 25 mel-cepstrum coefficients (Blackman 
window, 25ms frame length, 10 ms frame shift). Static spectral 
features were concatenated with their first derivatives in a single 
spectral feature vector (50-dimensional vector). Silence frames 
were removed automatically using a threshold-based silence 
detection method, at the beginning and end of each recorded 
sentence.  

3.3. Training 

For the baseline technique, sequences of articulatory and 
acoustic feature vectors were modeled by a multistream HMM, 
for each of the 40 phonetic classes (with diagonal covariance 
matrix). Two streams were dedicated to the modeling of the 
visual features (ultrasound/video), one stream was used to model 
the spectral features. HMMs were first trained separately, using 
the Baum-Welch algorithm and then processed simultaneously, 
using an embedded training strategy. Context-dependency was 
then introduced in the modeling to take into account context 
effects such as co-articulation and anticipation (triphone 
modeling). A tree-based state-tying strategy was used to address 
the problem of data sparsity. Each resulting multistream HMM 
was then split into two distinct HMMs: a 2-streams “articulatory 
HMM” (ultrasound/video), used for the recognition stage, and a 
1-stream “acoustic HMM”, used for the synthesis stage. 
Articulatory HMMs were finally refined by increasing 
incrementally the number of Gaussian mixture components.    

For the continuous HMM-based mapping technique, 
sequences of articulatory and acoustic feature vectors were 
modeled, for each of the 40 phonetic classes, by a single-stream 
“full-covariance” HMM. Due to the lack of training data, the 
training of context-dependent full-covariance HMMs on this 
database was found to be not feasible. As a consequence, we use 
the context-dependent HMMs, trained for the baseline technique,  
for the phonetic decoding stage; the context-independent full-
covariance HMMs being used only for the synthesis stage (the 
target sequence of HMM states was obtained using the results of 
the phonetic decoding stage, and a forced-alignment procedure).  

4. Results & Discussion 
In the two HMM-based mapping techniques, linguistic 
constraints can be introduced to help the phonetic decoding. 
With that in mind, we implemented two decoding scenarios. In 
the first, considered “unconstrained”, the structure of the 
decoding network was a simple loop in which all phones loop 
back to each other. In the second, or “constrained” scenario, the 
decoding network allows all possible word combinations which 
can be built from a 3k word dictionary. No statistical language 
model was used in the present study.  The first 1110 sentences of 
the recorded database were divided into 37 lists of 30 sentences. 
A K-fold validation (leave-one-out) technique was employed for 
evaluation: each list was used once as the test set while the other 
34 lists composed the training set. Two test lists were excluded 
from this procedure to be used as a validation set for the 
determination of two hyperparameters: (1) the optimal number of 
Gaussians for the articulatory HMM used for the decoding stage 
(which was found to be 4); and (2), the model insertion penalty 
(which was found to be respectively -20 and -150 for the 
unconstrained  and  constrained scenario). The performance of 
the decoding stage was measured by evaluating the recognition 
accuracy defined as Acc = 100.(N − D − S − I ) / N , where N 
is the total number of phones in the test set, S, D and I are 
respectively the number of substitution, deletion, and insertion 
errors. The recognition accuracy was found to be 68.4% for the 
unconstrained scenario and 78.3 % for the constrained scenario. 

The quality of the estimated spectral trajectories was first 
evaluated by calculating the Mel-cepstral distance (MCD) 
between the target and the predicted mel-cepstrum coefficients, 



defined as: MCDs [dB] = (10 / ln10) 2. (m̂d − md )
2

d= s
24∑ .  

If s=0, the distance includes the 0th cepstral dimension which 
corresponds to overall signal power. In this paper, we focus on 
the value of MCD1 since we are interested more in the shape of 
the target spectral envelope, than in the intensity variation of the 
synthetic speech sound. Results are presented in Table 1.  

Table 1. Objective performance evaluation (MCDs[dB]).   

Scenario Baseline HMM-
based mapping 

Continuous HMM-
based mapping 

Unconstrained 
(Acc=68.4%) 

MCD1 = 6.01 
(MCD0 = 8.35) 

MCD1 = 5.68 
(MCD0 = 7.8) 

Constrained 
(Acc=78.3%) 

MCD1 = 5.97 
(MCD0 = 8.30) 

MCD1 = 5.60 
(MCD0 = 7.76) 

Forced-alignment 
(Acc=100%) 

MCD1 = 5.76 
(MCD0 = 7.86) 

MCD1 = 5.46 
(MCD0 = 7.4) 

The continuous HMM-based mapping technique leads to an 
average improvement of 0.33 dB for MCD1 (and 0.51 dB for 
MCD0). Paired-sample t-tests showed that this improvements 
was statistically significant, for each of the two decoding 
scenarios (and for both MCD0 and MCD1, with p<0.001). The 
continuous HMM-based mapping is also slightly less sensitive to 
decoding errors: the degradation of the performance between the 
“forced-alignment” scenario (for which the phonetic target is 
given, i.e. Acc=100%) and the unconstrained scenario 
(Acc=68.4%) is 3.9% for the continuous mapping technique, 
whereas it is 4.2% for the baseline technique.   

In order to confirm the objective evaluation conclusions, a 
perceptual comparison of the two mapping techniques was 
performed using a XAB listening test. 15 sentences were 
randomly selected from the test corpus. For each sentence, 3 
audio stimuli (named X, A and B) were synthesized using the 
STRAIGHT vocoder [16]. The target speech sound X was built 
by analyzing and (re)-synthesizing the original audio signal. The 
spectral content of stimuli A and B was estimated from the 
articulatory observations using either the baseline, or the 
continuous mapping technique. The constrained scenario 
(Acc=78.3%) was used for the phonetic decoding stage. In order 
to evaluate only the accuracy of the derived spectral trajectories, 
excitation characteristics of the target sound X (pitch, aperiodic 
component and energy) were used for the synthesis of A and B 
(so that A,B and X share the same prosodic content). 10 listeners 
were asked to say which of the sounds A or B was the most 
similar to X (A and B were presented in a random order). In 80% 
(σ=9%) of the cases, the listeners chose the stimuli synthesized 
with the continuous HMM-based mapping technique  
(inter-listener agreement (Fleiss’ Kappa coefficient)=0.53±0.02). 
    

5. Conclusions and Perspectives 
The article introduces a new approach to estimate spectral 
feature trajectories from ultrasound and video articulatory data, 
for a silent speech interface application. We describe a  
parameter generation algorithm which explicitly takes into 
account the local dependencies between the articulatory and the 
spectral features, modeled by a set of full-covariance HMM. 
Both objective and perceptual evaluations shows that this 
technique outperforms our previous approach, in which the 

parameter generation were driven only by the decoded HMM 
state sequence, independently from the articulatory observations.   

Future work will focus on the real-time implementation of 
the continuous HMM-based mapping technique. The adaption of 
low-delay feature mapping techniques [17] will be investigated.  
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