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A standard Dynamic Optimization Problem

(P)



Minimize g(x(T )) +
∫ T

S L(t , x(t),u(t))dt
over meas. functions u : [S,T ]→ Rm ,

and arcs x ∈W 1,1([S,T ];Rn) s.t.
ẋ(t) = f (t , x(t),u(t)) a.e. t ∈ [S,T ]
u(t) ∈ U(t) ⊂ Rm a.e. t ∈ [S,T ]
h(x(t)) ≤ 0 for all t ∈ [S,T ]
x(S) = x0

The data for this problem comprise:

[S,T ] time interval
g : Rn → R endpoint cost function

L : R× Rn × Rm → R running cost (Lagrangian)
f : R× Rn × Rm → Rn dynamics

U : [S,T ] ; Rm control set
h : Rn → R state constraint

x0 ∈ Rn left-end point
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A standard Dynamic Optimization Problem

(P)



Minimize g(x(T ))
over meas. functions u : [S,T ]→ Rm ,

and arcs x ∈W 1,1([S,T ];Rn) s.t.
ẋ(t) = f (t , x(t),u(t)) a.e. t ∈ [S,T ]
u(t) ∈ U(t) ⊂ Rm a.e. t ∈ [S,T ]
h(x(t)) ≤ 0 for all t ∈ [S,T ]
x(S) = x0

Some Application Areas

1. Aerospace: flight trajectories
2. Economics: growth/consumption, optimal harvesting
3. Chemical engineering, Biology: optimize yield
4. Medicine: anti-cancer treatments, etc.
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Example: A Growth/Consumption Model

A ‘growth versus consumption’ problem of neoclassical
macro-economics, based on the Ramsey model of economic
growth.
Question: what balance should be struck between investment
and consumption to maximize overall investment in social
programmes over a fixed period of time?

Maximize
∫ T

0 (1− u(t))xα(t)dt
subject to
ẋ(t) = −ax(t) + bu(t)xα(t) for a.e. t ∈ [0,T ],
u(t) ∈ [0,1] for a.e. t . ∈ [0,T ] ,
x(t) ≥ 0 for all t ∈ [0,T ] ,
x(0) = x0 .

Here, a > 0, b > 0, x0 ≥ 0 and α ∈ (0,1) are given constants
and [0,T ] is a given interval.
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A Growth/Consumption Model...



Maximize
∫ T

0 (1− u(t))xα(t)dt
subject to
ẋ(t) = −ax(t) + bu(t)xα(t) for a.e. t ∈ [0,T ],
u(t) ∈ [0,1] for a.e. t . ∈ [0,T ] ,
x(t) ≥ 0 for all t ∈ [0,T ] ,
x(0) = x0 .

Data/model interpretation:

x → global economic output
r(x) = bxα → financial return from economic output x
−ax → fixed costs reducing growth
u → the proportion to invest in industry
1− u → the proportion to invest in social programmes
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A Growth/Consumption Model...



Minimize −
∫ T

0 (1− u(t))xα(t)dt
subject to
ẋ(t) = −ax(t) + bu(t)xα(t) for a.e. t ∈ [0,T ],
u(t) ∈ [0,1] for a.e. t . ∈ [0,T ] ,
−x(t) ≤ 0 for all t ∈ [0,T ] ,
x(0) = x0 .

Data/model interpretation:

x → global economic output
r(x) = bxα → financial return from economic output x
−ax → fixed costs reducing growth
u → the proportion to invest in industry
1− u → the proportion to invest in social programmes
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A ‘simplified’ Dynamic Optimization Problem

(P)



Minimize g(x(T ))
over meas. functions u : [S,T ]→ Rm ,

and arcs x ∈W 1,1([S,T ];Rn) s.t.
ẋ(t) = f (t , x(t),u(t)) a.e. t ∈ [S,T ]
u(t) ∈ U(t) ⊂ Rm a.e. t ∈ [S,T ]
x(S) = x0

Data: g : Rn → R, f : R× Rn × Rm → Rn, U(t) ⊂ Rm, x0 ∈ Rn

Rmk:
∫ T

S L can be ‘removed’ by state augmentation technique

⇒ no state constraints at present

A minimizer: an admissible process (trajectory/control pair)
(x̄ , ū) s.t.

g(x̄(T )) ≤ g(x(T )) for all admissible (x ,u)
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Dynamic Optimization Problems

Differential Inclusion Formulation

(DI)


Minimize g(x(T ))
over arcs x ∈W 1,1([S,T ];Rn) s.t.
ẋ(t) ∈ F (t , x(t)) a.e. t ∈ [S,T ]
x(S) = x0

Rmk: ‘(P)→ (DI)’ taking F (t , x) = f (t , x ,U(t))

but we can also have

F (t , x) = f (t , x ,U(t , x)) ...
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Classical Methods in Dynamic Optimization

In applications, optimal controls are calculated by means of
numerical schemes based on discretization. But continuous
time optimal control has an important role:

Control problems associated with the physical world are
‘continuous’
Theory can tell us when problems are degenerate, and
computational schemes will be ill-conditioned
Basis for high precision ‘shooting’ methods (numerical
methods)
Theory provides tests of local optimality for controls
obtained by numerical methods
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Classical Methods in Dynamic Optimization
1. Dynamic Programming (Sufficient conditions for

optimality): ‘Analyze minimizers via solutions (the value
function) to the Hamilton Jacobi equation’

R. Bellman
1920 - 1984

2. Maximum Principle (Necessary conditions for optimality):
‘Analyse minimizers via solutions to a system which
involves state and adjoint (costate) variables’

L.S. Pontryagin
1908 - 1988
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Hamilton Jacobi Methods (Dynamic Programming)

‘Analyze minimizers via solutions to the Hamilton Jacobi
equation’ (R. Bellman)

P(S, x0)

{
Minimize g(x(T ))
over processes (x ,u) s.t. x(S) = x0.

Embed in family of problems, parameterized by initial data

P(τ, ξ)

{
Minimize g(x(T ))
over processes (x ,u) s.t. x(τ) = ξ .

Define V (τ, ξ) := Inf(P(τ, ξ)) Value Function
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Hamilton Jacobi Methods (Dynamic Programming)

V (τ, ξ) = Inf
(

P(τ, ξ)

{
Minimize g(x(T ))
over processes (x ,u) s.t. x(τ) = ξ

)
Principle of Optimality: it establishes some important
monotonicity properties of the Value Function:

a) the map t → V (t , x(t)) is nondecreasing on [τ,T ] for
every process (x ,u)

b) if the process (x̄ , ū) is optimal for P(τ, ξ), then
t → V (t , x̄(t)) is constant on [τ,T ]

PDE of Dynamic Programming: V (., .) is a solution to

(HJ)


Vt (t , x) + min u∈U(t) Vx (t , x) · f (t , x ,u) = 0

for all (t , x) ∈ (S,T )× Rn

V (T , x) = g(x) ∀x ∈ Rn .
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Hamilton Jacobi Methods (Dynamic Programming)

Suppose that we solve the (HJ) equation, how does knowing
V (., .) help?

The idea:
For each (t , x) let (t , x)→ χ(t , x) be a point in U(t) (a control)
such that

Vt (t , x) + Vx (t , x) · f (t , x , χ(t , x)) = 0

(a steepest descent feedback).
Then for any initial data (τ, ξ), the solution to{

ẋ(t) = f (t , x(t), χ(t , x(t))) for a.e. t ∈ [τ,T ]
and x(τ) = ξ.

is optimal.
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Hamilton Jacobi Methods (Dynamic Programming)

From the beginning some difficulties have been apparent
V (., .) is nondifferentiable; replace ∇V = (Vt ,Vx )?
Need generalized solutions to (HJ) equation
Extend a generalized solution to (HJ), in presence of
state constraints
Even if V (., .) is smooth, there is no continuous χ(., .) in
general: what do we mean by a solution to
ẋ(t) = f (t , x(t), χ(t , x(t)))?

Some answers from: Non-Smooth Analysis, Viscosity Solutions
Theory.
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Nonsmoothness

Example 1.

Minimize x(1)
over measurable functions u : [0,1]→ R

and x ∈W 1,1([0,1];R) satisfying
ẋ(t) = xu a.e.,
u(t) ∈ [−1,+1] a.e.,
x(0) = 0.

Data: g(x) = x , f (x ,u) = xu, U = [−1,+1]

⇒ min u∈[−1,+1] Vx (t , x) · xu = −|Vx (t , x)x |

The Hamilton Jacobi equation in this case takes the form

(HJ)

{
Vt (t , x)− |Vx (t , x)x | = 0 for all (t , x) ∈ (0,1)× R,
V (1, x) = x for all x ∈ R.
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(HJ)

{
Vt (t , x)− |Vx (t , x)x | = 0 for all (t , x) ∈ (0,1)× R,
V (1, x) = x for all x ∈ R.

The value function is

V (t , x) =

{
xe−(1−t) if x ≥ 0
xe+(1−t) if x < 0.

Rmk 1. V satisfies the Hamilton Jacobi (HJ) equation on
{(t , x) ∈ (0,1)× R : x 6= 0}. However V cannot be said to be
a classical solution because V is non-differentiable on the
subset {(t , x) ∈ (0,1)× R : x = 0}.

Rmk 2. The non-differentiability of the value function
encountered this example is by no means exceptional.
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First Order Necessary Conditions
Take a minimizer (x̄ , ū). Define

H(t , x ,p,u) := p · f (t , x ,u) (un-maximized) Hamiltonian

Maximum Principle (L.S. Pontryagin): There exist an arc
p ∈W 1,1([S,T ];Rn) (costate arc) and λ ≥ 0, s.t.

(p, λ) 6= 0 (Non-trivial Lagrange Multipliers)
−ṗ(t) = p(t) · fx (t , x̄(t), ū(t)) a.e. t ∈ [S,T ]

(The Costate Equation)
H(t , x̄(t),p(t), ū(t)) = max

u∈U(t)
H(t , x̄(t),p(t),u) a.e. t ∈ [S,T ]

(The Weierstrass/Maximality Condition)
−p(T ) = λgx (x̄(T )) (The Transversality Condition)

Widely used to solve dynamic optimization problems, either
directly or via numerical methods (cf. Shooting Methods).
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Enter State Constraints
Consider the state constrained dynamic optimization problem

(SC)



Minimize g(x(T ))
over meas. functions u : [S,T ]→ Rm ,

and arcs x ∈W 1,1([S,T ];Rn) s.t.
ẋ(t) = f (t , x(t),u(t)) a.e. t ∈ [S,T ]
u(t) ∈ U(t) ⊂ Rm for a.e. t ∈ [S,T ]
h(x(t)) ≤ 0 for all t ∈ [S,T ] (state constraint)
x(S) = x0 and x(T ) ∈ C.

Data: g : Rn → R, f : R× Rn × Rm → Rn, U(t) ⊂ Rm, x0 ∈ Rn,
C ⊂ Rn

h : Rn → R

A minimizer: an admissible process (x̄ , ū) s.t.

g(x̄(T )) ≤ g(x(T )) for all admissible (x ,u)
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Admissible trajectory/control process

A process (a trajectory/control pair) (x ,u) is called
admissible if it satisfies (for the reference dynamic optimization
problem)
- the dynamic constraints: ẋ = f (t , x ,u), u(t) ∈ U(t), a.e.
- the end-point constraints: x(S) = x0, x(T ) ∈ C
- the state constraint: h(x(t)) ≤ 0 for all t ∈ [S,T ].

0x
A

TS t

)(tx

)(ˆ tx C

x is admissible:
h(x(t)) ≤ 0 ∀t
but x̂ is NOT admissible:
h(x̂(t)) > 0 for some t
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State Constrained Maximum Principle, a first look...
Take a minimizer (x̄ , ū).

There exist multipliers: arc p ∈W 1,1, λ ≥ 0, and
a Borel measure on [S,T ],
a bounded Borel measurable function γ : [S,T ]→ Rn s.t.

(p, µ, λ) 6= (0,0,0)

−ṗ(t) = q(t) · fx (t , x̄(t), ū(t)) a.e. t ∈ [S,T ]

H(t , x̄(t),q(t), ū(t)) = max
u∈U(t)

H(t , x̄(t),q(t),u)

−q(T ) ∈ λgx (x̄(T )) + NC(x̄(T ))

supp{µ} ⊂ {t ∈ [S,T ] : h(x̄(t)) = 0}
γ(t) = hx (x̄(t)) for µ-a.e. t ∈ [S,T ]

q ∈ NBV ([S,T ];Rn)

q(t) :=

{
p(S) if t = S
p(t) +

∫
[S,t] γ(s)dµ(s) if t ∈ (S,T ] .
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Hamilton Jacobi Methods (Dynamic Programming)

Embed in family of problems, parameterized by initial data:
given any (τ, ξ) ∈ [S,T ]× Rn, P(τ, ξ) is variant on P(S, x0)
when the ‘initial data’ (τ, ξ) replaces (S, x0).

P(τ, ξ)

{
Minimize g(x(T ))
over admissible processes (x(.),u(.)) s.t. x(τ) = ξ .

Define V (τ, ξ) := Inf(P(τ, ξ)) Value Function

V : [S,T ]× Rn → R ∪ {+∞}

(Note: V (τ, y) = +∞ since y /∈ A.)

(τ ,ξ)

TS

x1(T )

x2(T )
∂ A

(τ , y )

A

τ
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Dynamic Programming – State Constraints

P(τ, ξ)


Minimize g(x(T ))
over admissible processes (x ,u) s.t.
x(τ) = ξ.

How does the state constraint affect optimality conditions?

Now, value function V : [S,T ]× Rn → R ∪ {+∞} is a lower
semicontinuous solution to

Vt (t , x) + min u∈U(t) Vx (t , x) · f (t , x ,u) = 0
for all (t , x) ∈ (S,T )× int A

V (T , x) = g(x) ∀x ∈ A

unique, in fact, in some generalized sense (Non-Smooth
Analysis, Viscosity Solutions...)

Here A := {x ∈ Rn : h(x) ≤ 0}

Bettiol State Constrained Dynamic Optimization



Nonsmoothness

There was a lack of suitable analytic tools for investigating
local properties of nonsmooth functions/sets are (easily)
encountered in the study of dynamic optimization problems:
- Dynamic Programming (cf. Example 1)
- Necessary Optimality Conditions (for instance to take account
of pathwise constraints)

Two important breakthroughs occurred in the 1970’s:
1 F. H. Clarke’s theory of generalized gradients generalized

the concept of ‘subdifferentials’ of convex functions to
larger functions classes launched the field of nonsmooth
analysis

2 the concept of viscosity solutions, due to M. G. Crandall
and P.-L. Lions, which provides a framework for proving
existence and uniqueness of generalized solutions to
Hamilton Jacobi equations
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Nonsmooth Analysis - Basic Definitions

Nonsmooth Analysis: provides tools for local approximations
of non-differentiable functions and of sets with
non-differentiable boundaries.

Key question: How should classical concepts of ‘gradients’ and
‘normals’ be adapted, to give provide useful local information
about non-differentiable functions and sets with
non-differentiable boundaries?
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Origins - Smooth framework
Take a closed set C ⊂ Rn, a function f : Rn → R and x̄ ∈ Rn.

Assume:
boundary of C is an n − 1 dimensional C1 manifold
f is continuously differentiable

The normal vector η to boundary of C at x̄ is the (unit) normal
to the tangent space of the manifold at x̄ , oriented to ‘point out
of C’

If C = {x ∈ Rn : h(x) ≤ 0}, then η = ∇h(x̄).

The normal vector provides a dual description of tangent space
to the boundary of C near x̄ .

The gradient ∇f (x̄) provides a linear approximation to f near x̄ :

∇f (x̄)(x − x̄) ≈ f (x)− f (x̄)

Bettiol State Constrained Dynamic Optimization



Origins - Convex Analysis
Suppose C and f are smooth AND convex
η and ξ = ∇f (x̄) can be equivalently defined to satisfy the
properties

η ·(x− x̄) ≤ 0, ∀ x ∈ C and ξ ·(x− x̄) ≤ f (x)−f (x̄), ∀ x ∈ Rn

Now assume C and f are merely convex.
set of normal vectors NC(x̄) := {η : η · (x − x̄) ≤ 0, ∀x ∈ C}
set of subgradients of f

∂f (x̄) := {ξ : ξ · (x − x̄) ≤ f (x)− f (x̄), ∀x ∈ Rn}

𝑓

C

x

𝜼

x

(𝝽, −1)
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Proximal Normal Cones

Take a closed set C ⊂ Rn and a point x̄ ∈ C. A vector η ∈ Rn is
said to be a proximal normal vector to C at x̄ if there exists
M ≥ 0 such that

η · (x − x̄) ≤ M|x − x̄ |2 for all x ∈ C. (1)

The cone of all proximal vectors to C at x̄ is called the proximal
normal cone to C at x̄ and is denoted by NP

C (x̄):

NP
C (x̄) := {η ∈ Rn : ∃M ≥ 0 s.t. (1) is satisfied }
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Proximal Normal Cones...

Set	  

y	  .	  
x	  
_	  

η	


Set	  C	  

Figure: Proximal Normal Vectors

Defining property of proximal normal vectors η:

η · (x − x̄) ≤ M|x − x̄ |2 for all x ∈ C

Equivalently:

∃y and α ≥ 0 s.t. x̄ = ProjC(y) and η = α(y − x̄)
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Limiting Normal Cones

Take a closed set C ⊂ Rn and a point x̄ ∈ C. A vector η ∈ Rn is
said to be a limiting normal vector to C at x̄ if there exist xi

C→ x
and ηi → η s.t.

ηi ∈ NP
C (xi) for all i .

The set of all limiting vectors to C at x̄ is called the limiting
normal cone to C at x̄ and is written NC(x̄):

NC(x̄) := {η ∈ Rn : ∃ xi
C→ x and ηi → η s.t.

ηi ∈ NP
C (xi) ∀ i}.

→ xi
C→ x indicates that xi → x and xi ∈ C for all i
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Limiting Normal Cones...

.

.

Set Cx

x
normals

normals

Figure: Limiting Normal Vectors at different base points

Some basic properties of NC(x̄):
NC(x̄) is a closed cone
NC(x̄) may not be convex (cf. figure)
NC(x̄) contains non-zero points, if x̄ is a boundary point
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Proximal Subgradients

Take an extended valued, lower semicontinuous function
f : Rn → R ∪ {+∞} and a point x̄ ∈ dom {f}.
A vector η ∈ Rn is said to be a proximal subgradient of f at x̄ if
there exist ε > 0 and M ≥ 0 such that

η · (x − x̄) ≤ f (x)− f (x̄) + M|x − x̄ |2

for all points x which satisfy |x − x̄ | ≤ ε.

→ The notation dom {f} denotes the set {y : f (y) < +∞ }
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Proximal Subgradients...

The set of all proximal subgradients of f at x̄ is called the
proximal subdifferential of f at x̄ and is denoted by ∂P f (x̄):

∂P f (x̄) := {there exist ε > 0 and M ≥ 0 such that (2) is satisfied }.

η · (x − x̄) ≤ f (x)− f (x̄) + M|x − x̄ |2 (2)
for all points x which satisfy |x − x̄ | ≤ ε.
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Geometric Interpretation of Proximal Subgradients

direction (h ,-1)

x

f( x )

graph f

f

x

Geometric interpretation: a proximal subgradient to f at x̄ is
the slope at x = x̄ of a paraboloid,

y = η · (x − x̄) + f (x̄)−M|x − x̄ |2,

which coincides with f at x = x̄ and which lies on or below the
graph of f on a neighbourhood of x̄ .
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Limiting Subgradients

Take an extended valued, lower semicontinuous function
f : Rn → R ∪ {+∞} and a point x̄ ∈ dom {f}. A vector η ∈ Rn is
said to be a limiting subgradient of f at x̄ if there exist
sequences xi

f→ x̄ and ηi → η such that

ηi ∈ ∂P f (xi) for all i .

The set of all limiting subgradients of f at x̄ is called the limiting
subdifferential and is denoted by ∂f (x̄):

∂f (x̄) := {η : ∃ xi
f→ x and ηi → η such that ηi ∈ ∂P f (xi) for all i}.

→ xi
f→ x indicates that xi → x and f (xi)→ f (x) as i →∞
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Limiting Subdifferential

limiting normals to epigraph of f

graph of limiting subdifferential of f

f

x

.

.
x

∂ f
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Limiting Subdifferential
Some basic properties of the limiting subdifferential ∂f (x̄):

∂f (x̄) is a closed (but not always convex) set
if f is convex, then ∂f (x̄) is the subdifferential of the
convex analysis
It is possible that

∂f (x̄) 6= −∂(−f )(x̄)

Suppose that f is Lipschitz continuous on a neighbourhood
of x̄ . Then, for any subset S ⊂ Rn of zero n-dimensional
Lebesgue measure, we have

co ∂f (x̄) = co {η : ∃ xi → x such that ∇f (xi) exists and
xi /∈ S for all i and ∇f (xi)→ η}

= ∂C f (x̄) (Gradient Formula).

→ ∂C f (x̄) is the Clarke subdifferential
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Subdifferentials

Other properties

If f is of class C1 near x̄ , then ∂C f (x̄) = {∇f (x̄)}

If f is of class C1 near x̄ and ∇f is Lipschitz near x̄ , then
∂P f (x̄) = {∇f (x̄)} = ∂C f (x̄)

Partial limiting subdifferential: if f = f (x , y), then
∂x f (x̄ , ȳ) denotes the limiting subdifferential of x → f (x , ȳ)

There are, in fact, a number of ways of defining
subgradients and there exist equivalent ways of defining
subgradients: as limits of proximal subgradients, by means
of normals to epigraph sets, etc.
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The Clarke Tangent Cone

Take a closed set C ⊂ Rn and a point x ∈ C.
The Clarke tangent cone to C at x is the set

TC(x) := lim inf
t↓0,y C→x

t−1(C − y).

Rmk 1: Equivalent ‘sequential’ definition:

TC(x) = {ξ : ∀ sequences xi
C→ x and ti ↓ 0

∃ a sequence {ci} ⊂ C s. t. t−1
i (ci − xi)→ ξ}

Rmk 2: The Clarke tangent cone TC(x) and the limiting
normal cone NC(x) are related according to

TC(x) = NC(x)∗ = {ξ : ξ · ν ≤ 0 for all ν ∈ NC(x)}
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A State Constrained Problem
Consider the state constrained dynamic optimization problem

(SC)



Minimize g(x(S), x(T ))
over meas. functions u : [S,T ]→ Rm ,

and arcs x ∈W 1,1([S,T ];Rn) s.t.
ẋ(t) = f (t , x(t),u(t)) a.e. t ∈ [S,T ]
u(t) ∈ U(t) ⊂ Rm for a.e. t ∈ [S,T ]
h(x(t)) ≤ 0 for all t ∈ [S,T ] (state constraint)
(x(S), x(T )) ∈ C.

Data: g : Rn × Rn → R, f : R× Rn × Rm → Rn, U(t) ⊂ Rm,
C ⊂ Rn × Rn

h : Rn → R

A minimizer: an admissible process (x̄ , ū) s.t.

g(x̄(S), x̄(T )) ≤ g(x(S), x(T )) for all admissible (x ,u)

Bettiol State Constrained Dynamic Optimization



Assumptions

(H1) for fixed x , f (., x , .) is L([S,T ])× Bm measurable,
there exists a L([S,T ])× Bm measurable function
k : [S,T ]× Rm → [0,∞) such that t → k(t , ū(t)) is
integrable and, for a.e. t ∈ [S,T ],

|f (t , x ,u)− f (t , x ′,u)| ≤ k(t ,u)|x − x ′|

for all x , x ′ ∈ Rn and u ∈ U(t),
(H2): the set Gr U is L([S,T ])× Bm measurable,
(H3): g is Lipschitz continuous and C is a closed subset of Rn×n,
(H4): there exists kh > 0 such that

|h(x)− h(x ′)| ≤ kh|x − x ′| for all x , x ′ ∈ Rn
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Maximum Principle - Pure State Constraints
Let (x̄ , ū) be a minimizer for (SC).
Then there exist p ∈W 1,1([S,T ];Rn), λ ≥ 0,
a Borel measure µ on [S,T ], a bounded Borel measurable
function γ : [S,T ]→ Rn s.t.
(a): (p, µ, λ) 6= (0,0,0),
(b): −ṗ(t) ∈ co ∂xH(t , x̄(t),q(t), ū(t)) a.e. t ∈ [S,T ],
(c): H(t , x̄(t),q(t), ū(t)) = max

u∈U(t)
H(t , x̄(t),q(t),u) a.e. ,

(d): (q(S),−q(T )) ∈ λ∂g(x̄(S), x̄(T )) + NC(x̄(S), x̄(T )),
(e): supp{µ} ⊂ {t ∈ [S,T ] : h(x̄(t)) = 0} and

γ(t) ∈ ∂>h(x̄(t)) for µ-a.e. t ∈ [S,T ] ,

where q ∈ NBV ([S,T ];Rn) is the function

q(t) :=

{
p(t) if t = S
p(t) +

∫
[S,t] γ(s)dµ(s) if t ∈ (S,T ] .

∂>h(x̄(t)) := co lim sup {∂h(yi) : yi → x̄(t), h(yi) > 0 ∀i}
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The ‘hybrid subdifferential’

The ‘hybrid subdifferential’ ∂>h(x) is the set

∂>h(x) = co {η : ∃ yi → x and ηi → η s. t.
ηi ∈ ∂h(yi), h(yi) > 0 ∀ i ∈ N}

A =
{

(x1, x2) ∈ R2 : |x2| − x1 ≤ 0
}

h(x) := |x2| − x1 = max{h1(x),h2(x)}

h1(x) = x2 − x1, h1(x) = −x2 − x1

A

∇ h1=(−1,1 )

∇ h2=(−1,−1 )

x

yi

∂
>h (0)
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Comments

It is a state constrained version of Clarke Nonsmooth
Maximum Principle

Autonomous Case: Assume, also, that f (t , x ,u) and U(t)
are independent of t . Then, in addition to the above
conditions, there exists a constant r such that
(f): H(t , x̄(t),q(t), ū(t)) = r a.e..
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Comments...
The state constraint formulation ‘h(x(t)) ≤ 0’, in (SC) can be
extended to ‘h(t , x(t)) ≤ 0’, where h(t , x) is permitted to be
merely Lipschitz continuous w.r.t. x and upper
semicontinuous w.r.t. t . This allows to cover a number of
special cases of interest.
(i): Multiple state constraints: hk (t , x(t)) ≤ 0 for t ∈ [S,T ],

k = 1, . . . ,M, in which the hk (t , x)’s are Lipschitz
continuous w.r.t. x , can be accommodated by setting
h(t , x) := maxk{hk (t , x)}.

(ii): Implicit state constraint: x(t) ∈ A, for t ∈ [S,T ], in which
A ⊂ Rn is a given closed set. Here the necessary
conditions are valid in a modified where, in condition (e),
the Borel measurable function γ is now required to satisfy

γ(t) ∈ co (NA(x̄(t)) ∩ {ξ ∈ Rn : |ξ| = 1}) .

These modified conditions can be derived by setting
h(x) = dA(x) (dA is the distance function to the set A).
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Non-degeneracy and Normality of the Maximum
Principle

If (x̄ , ū) satisfies the Maximum Principle =⇒ extremal.

If (x̄ , ū) provides the minimum =⇒ optimal.

If λ = 1 =⇒ Normality of the Maximum Principle
If λ = 0 =⇒ Abnormal case

If

λ+

∫
(S,T ]

dµ(s) +
∣∣∣p(S) + hx (x̄(S)) µ({S})

∣∣∣ 6= 0

=⇒ Non-degeneracy of the Maximum Principle
Rmk: ‘Normality =⇒ Non-degeneracy’
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A degenerate situation
Consider a special case in which f (t , x ,u), h(t , x) and U(t) are
independent of t .
Assume that f (.,u) (for all u ∈ Rm), g and h are of class C1, f is
continuous, and the left end-point are fixed, i.e.

C = {x0} × C1

To explore the degeneracy phenomenon, we suppose that

h(x0) = 0.

0x
A

TS t

)(tx

1C
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A degenerate situation..

Then the necessary conditions of optimality assert the
existence of an absolutely continuous arc p ∈W 1,1([S,T ];Rn),
λ ≥ 0, a measure µ s.t.

(i) (λ,p, µ) 6= (0,0,0),

(ii) −ṗ(t) =
(p(t) +

∫
[S,t] hx (x̄(s))dµ(s)) · fx (x̄(t), ū(t)) a.e. t ∈ [S,T ],

(iii) u → (p(t) +
∫

[S,t] hx (x̄(s))dµ(s)) ·
f (x̄(t),u) is maximized over u ∈ U at ū(t), a.e. t ∈ [S,T ],

(iv) −(p(T ) +
∫

[S,T ] hx (x̄(s))dµ(s)) ∈ λgx (x̄(T )) + NC1(x̄(T )),

(v) suppµ ⊂ {t : h(x̄(t)) = 0}
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A degenerate situation..

Here, we find that conditions (i)-(v) above are satisfied (for
some p, λ and µ) when x̄ is any arc satisfying the constraints of
(SC). A possible choice of multipliers is

(p ≡ −hx (S), µ = δ{S}, λ = 0) (3)

(δ{S} denotes the unit measure concentrated at {S}.) Provided
hx (S) 6= 0, these multipliers are non-zero. Condition (v) is
satisfied, by (3). The remaining conditions (i) – (iv) are satisfied
since ∫

(S,t]
hx (x̄(s))dµ(s) = 0 for t ∈ (S,T ).

The fact that the necessary conditions (i) - (v) are automatically
satisfied by ALL admissible arcs renders them useless
(degenerate) as necessary conditions.
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Non-degeneracy

How should we deal with the degeneracy phenomenon?

Extra necessary conditions or extra hypotheses are clearly
required.

There are now a number of ways to do this.

We focus here on a particular analytical tool which can be used
in several approaches:

→ distance estimates
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A useful analytical tool
Distance estimates (Filippov-type theorems) constitute a
common set of analytical tools which can be used to resolve a
number of important questions in state constrained dynamic
optimization problems.
Some applications are

non-degeneracy and normality of the maximum
principle (which provides necessary conditions for
optimality);
existence, characterization and regularity of the value
function for Hamilton-Jacobi-Bellman and
Hamilton-Jacobi-Isaacs equations;
sensitivity conditions: adjoint variables in the Maximum
Principle can be interpreted as ‘gradients’ of the value
function;
feedback laws, (synthesis)
...
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A useful analytical tool...

Distance estimates consist in constructing a admissible
state trajectory x which lies ‘close’ to a state trajectory x̂
that violates the state constraint, and for which x(S) = x̂(S).
Specifically, there exists a constant K , independent of x̂(.),
such that

||x(.)− x̂(.)|| ≤ K × ρ(x̂(.)) , x0

∂ A

S t T

A

A
A

x ( t )

x̂ ( t )

where ||.|| is some norm defined on the set of trajectories, for
instance L∞ or W 1,1.

Here we have a linear estimate w.r.t. the ‘violation rate’ ρ(x̂(.))

||x ||L∞ = supt∈[S,T ] |x(t)|, ||x ||W 1,1 = |x(S)|+
∫

[S,T ] |ẋ(t)| dt
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The “constraint violation rate” of an arc x(.)
ρ(x(.)) represents the “violation rate” of an arc
x(.) : [S,T ]→ Rn

• If we have a “functional inequality representation”:

A = {x |h(x) ≤ 0} .
for some (Lipschitz) function h : Rn → R.

ρ(x(.)) := max
t∈[S,T ]

{h(x(t)) ∨ 0}

• If A is an arbitrary closed set, we can define ρ(x(.)) via the
distance function to the set A, dA(x):

ρ(x(.)) := maxt∈[S,T ] dA(x(t))

ASetThe   
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Distance estimates

More in general we can consider the following estimate

m((x(.),u(.)), (x̂(.), û(.))) ≤ θ(ρ(x̂(.))) ,

where
m(., .) is a metric on the set of processes (Strictly
speaking we should say pseudo-metric, since we do not
require ‘m(p,p′) = 0 =⇒ p = p′’)
θ(.) : R+ → R+ is a rate of convergence modulus, i.e. a
function satisfying limρ↓0 θ(ρ) = 0.

Rmk: The stronger the metric m(., .) and greater the rate at
which θ(ρ) tends to zero as ρ→ 0, the more the information
that is conveyed by the estimates.
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Distance estimates...

m((x(.),u(.)), (x̂(.)û(.))) ≤ θ(h(x̂(.))) ,

A variety of estimates has been considered,
distinguished by the choice of m(., .) and θ(.).

At least 4 different approaches have been employed
(here, we shall see two of them).
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An application: Distance Estimates⇒ Normality

Idea of the proof/approach

Consider the optimal control problem

(P1)



Minimize g(x(T ))
subject to
ẋ(t) = f (x(t),u(t)) a.e. t ∈ [S,T ] ,
u(t) ∈ U a.e. t ∈ [S,T ] ,
h(x(t)) ≤ 0 for all t ∈ [S,T ] ,
x(S) = x0 ,

in which f and h are of class C1, and g is Lipschitz (of rank kg).

Suppose that we have at hand the distance estimate:

||x(.)− x̂(.)||L∞ ≤ K × ρ(x̂(.))

Take an optimal process (x̄ , ū)

⇒ the maximum principle applies with λ = 1 (normal case)
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Distance Estimates⇒ Normality ...

Idea of the proof/approach
CLAIM: ((z̄ ≡ 0, x̄), ū) is an optimal process for the problem

(P2)


Minimize g(x(T )) + Kkg(z(T ) ∨ 0)
subject to
ż(t) = 0, ẋ(t) = f (x(t),u(t)) , u(t) ∈ U
h(x(t))− z(t) ≤ 0
x(S) = x0, z(S) ≥ 0 .

Indeed, suppose to the contrary that there exists a process
((z ′, x ′),u′) with lower cost:

g(x ′(T )) + Kkg max
t∈[S,T ]

{h(x ′(t)) ∨ 0} < g(x̄(T )) + 0

Recall: maxt∈[S,T ] {h(x ′(t)) ∨ 0} = ρ(x ′(.))
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Distance Estimates⇒ Normality ...

We have
g(x ′(T )) + Kkg × ρ(x ′(.)) < g(x̄(T ))

According to the distance estimate applied to (x ′,u′), there
exists an admissible (for (P1)) process (x ,u) s.t.

||x(.)− x ′(.)||L∞ ≤ K × ρ(x ′(.))

But, then (x ,u) is admissible for (P1) and satisfies:

g(x(T )) ≤ g(x ′(T )) + kg ||x(.)− x ′(.)||L∞
≤ g(x ′(T )) + kgK × ρ(x ′(.))

< g(x̄(T )) .

This contradicts the optimality of (x̄ , ū)!
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Distance Estimates⇒ Normality ...

Now apply the nonsmooth state constrained Maximum
Principle with the reference minimizer ((z̄ ≡ 0, x̄), ū) for (P2).

Let λ and µ be the cost and ‘measure’ multipliers respectively,
and let p(.) and pz(.) ≡ −c be the costate arcs associated with
the x and z variables.

We deduce the usual Maximum Principle conditions for
(P1) in relation to (x̄ , ū) and p.

BUT...
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Distance Estimates⇒ Normality ...

BUT the transversality conditions in relation to z̄ and pz yield
the additional information that

c ≥ 0

and
c +

∫
[S,T ]

dµ(t) ≤ Kkgλ .

If λ = 0, we would have, by the preceding condition, µ = 0 and
pz(.) ≡ 0. But also, in consequence of the adjoint inclusion and
the transversality condition for p(.), we would also have
p(.) ≡ 0. From this contradiction of the non-triviality of the
multipliers.

We conclude that λ = 1.
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Distance Estimates - ‘Standing Hypotheses’
Recall the data of the control system:{

ẋ(t) = f (t , x(t),u(t)) and u(t) ∈ U(t)
h(x(t)) ≤ 0

Assume that for some c > 0 and kf (.) ∈ L1

f (., x , .) is L × Bm (Lebesgue-Borel) meas. for each x ; U(.)
has Borel-meas. graph; f (t , x ,U(t)) is closed, for each t , x
|f (t , x ,u)| ≤ c(1+|x |) for all u ∈ U(t), (t , x) ∈ [S,T ]×Rn

|f (t , x ,u)− f (t , x ′,u)| ≤ kf (t)|x − x ′|
for all t ∈ [0,1], x , x ′ ∈ Rn and u ∈ U(t).

(we say ‘f is closed, meas., integr. Lipschitz with linear
growth’)

and we also have the following Constraint Qualification
f (t , x ,U(t)) ∩ int TA(x) 6= ∅ for all x ∈ ∂A , t ∈ [S,T ]

Inward Pointing Condition.
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Inward Pointing Condition

ASetThe   

x

),,(  UxtfSetThe

)(xAT

The Clarke tangent cone to A at x ∈ A, TA(x), is defined by

TA(x) = lim inf

t↓0,y A→x

t−1(A− y)
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Approach: use a suitable time-delay control argument

Assumptions: Lipschitz continuity set of velocities

Result: L∞-norm estimate on trajectories that is linear w.r.t.
the violation rate ρ(x̂(.))
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Idea of this approach

),,( Uxtf

 (.)x̂

t

 (.)x

v

𝜌 ො𝑥

𝜎𝜌 ො𝑥

Figure: ‘Time-delay control argument’: whenever the boundary is
approached, use the interior pointing vector v̄ to “push” inside the
trajectory (candidate to be ‘admissible’): apply v for a time
proportional to the “violation rate”, σρ(x̂(.)).
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Examples

Two examples [Bettiol-Bressan-Vinter, SICON 2010, 2011]
maybe renewed some interest in this area, showing that for an
arbitrary state constraint set A (merely closed):

1) Preceding linear estimate is not valid in general (A merely
closed), when the L∞-norm is we replaced by stronger
norms/metrics (W 1,1, Ekeland metric).

2) Even linear L∞-estimates fail to hold true in general (A
merely closed) when t ; f (t , x ,U(t)) is discontinuous

The Ekeland metric↔ dE((x̂ , û), (x , u)) := meas{t : û(t) 6= u(t)}
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Example 1 (in R2) - W 1,1 Estimates

)ˆ( x

 (.)x̂

 (.)x

Figure: Example where Linear W 1,1 Estimate is not Valid. The
trajectory x̂(.) approximated by a admissible trajectory x(.).
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Example 1: Details

f (t , x ,u) = u, U = co ({(1,+2)}, {(1,−2)}, {(0,0)})
A = {(x1, x2) ∈ R2 | |x2| ≤ x1}

Then ρ(x̂(.)) > 0 and

|| x̂(.)− x(.) ||W 1,1 ≥
N∑

i=1

|(x̂(ti+1)− x(ti+1))− (x̂(ti)− x(ti))|

≥ 2× ρ(x̂(.))× N,

where N = number of switches: 3N ≥ 1
2 ×

(
1

ρ(x̂(.))
+ 1
)
.

So

|| x̂(.)− x(.) ||W 1,1 ≥ const.× ρ(x̂(.)) | loge ρ(x̂(.))| .
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Example 2 (in R3) - L∞ Estimates

)ˆ( x

 (.)x̂

 (.)x

f (t , x ,U(t)) = U(t) is
closed convex valued +
‘inward’ pointing
condition
A = {(x1, x2, x3) | |x2| ≤
x1}

But, for any K > 0 and ε > 0, there exists a process (x̂(.), û(.))
such that ε > ρ(x̂(.)) > 0 and

||x̂(.)− x(.)||L∞ ≥ K × ρ(x̂(.)) .

In this example t ; f (t , x ,U(t)) is discontinuous
(measurable in time).
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More general Estimates? (L∞, W 1,1...)

Some questions raised taking into account the examples:

If A has a smooth boundary, are linear L∞-estimates
valid when f (., x ,u) is measurably time-dependent?

They can even be improved to linear W 1,1-estimates!
And if A is merely closed,

- are linear L∞-estimates valid when f (., ., .) is no longer
Lipschitz?

- what can we say about stronger norms(/metrics) than L∞?

- if not linear, what can we say about distance estimate
regularity/behaviour?

Some motivations for stronger metrics:

W 1,1-estimates→ non-degeneracy necessary optimality conditions [Rampazzo-Vinter, SICON 2000]

Ekeland metric→ normality Maximum Principle when the dynamics and control constraint set are possibly
discontinuous in and non-closed respectively.
(cf. F. H. Clarke, The Maximum Principle Under Minimal Hypotheses, SICON, 1976.)
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Counter-Examples

Consider now an arbitrary closed set A.
Eliminate “f (., x ,u) is Lipschitz” assumption. Then, for
any α ∈ (0,1), the superlinear Hölder estimate

||x̂(.)− x(.)||L∞ ≤ K × (ρ(x̂(.)))α

is not in general verified!
Replace “f (., x ,u) is Lipschitz” by “f (., x ,u) is
continuous” assumption. Then, the superlinear
ρ| log(ρ)|-estimate

||x̂(.)− x(.)||L∞ ≤ K × ρ(x̂(.))| log(ρ(x̂(.)))|

is not in general valid!
(see [Bettiol, Frankowska and Vinter, JDE 2012])
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W 1,1 Distance Estimates for ‘smooth’ A

Theorem (W 1,1 Estimates for 1 smooth State Constraint)
Assume standing hypotheses and

r = 1 (one state constraint)
there exist β > 0 and γ > 0 s.t., whenever |h(x)| ≤ β, then

inf
u∈U(t)

∇h(x) · f (t , x ,u) < −γ (unif. “inward pointing”).

Then, for any pair (x̂(.), û(.)) s.t. x̂(S) ∈ A, there exists an
admissible pair (x(.),u(.)) such that x(S) = x̂(S) and

||x̂(.)− x(.)||W 1,1 ≤ K × ρ(x̂(.))

(K does not depend on x̂(.))

Rmk: it is a W 1,1 estimate, linear w.r.t. ρ(x̂(.)).
(This linear estimate is also valid with the ‘Ekeland metric’.)

Rmk: W 1,1 distance estimates =⇒ L∞ distance estimates

(cf. [Bettiol, Bressan, Vinter, SICON 2010], [Bettiol, Vinter, IEEE TAC 2011])
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Proof (in a simple case) - stronger metrics

Consider a smooth simple case ( [S,T ] = [0,1]):{
ẋ(t) = u(t) u(t) ∈ U for a.e. t ∈ [0,1]
x(t) ∈ A for all t ∈ [0,1] state constraint

where U ⊂ Rn bounded, b ∈ Rn, and A = {x ∈ Rn : b ·x ≤ 0}.

∃ ε̄ > 0 and v̄ ∈ U s.t. b · v̄ = −ε̄ . , (“inward pointing”)

Define

t̄ := inf {t ∈ [0,1] |b · x̂(t) > 0}, W := {t ∈ [̄t ,1] |b · ˙̂x > 0}

),,( Uxtf  (.)x̂
t

v

 x̂ 

 (.)x̂Set W where change 
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Proof (in a simple case)

Take δ > 0 the minimum number s.t.

meas{W ∩ [̄t , t̄ + δ]} = (1/ε̄)× ρ(x̂(.))

if meas{W ∩ [̄t , t̄ + δ]} ≥ (1/ε̄)ρ(x̂(.)). Otherwise set t̄ = 1.
Now choose the trajectory x(.) satisfying x(0) = x̂(0) and

admissible trajectory x(.):

ẋ(t) =

{
v̄ for t ∈ [̄t , t̄ + δ] ∩W
˙̂x(t) otherwise

),,( Uxtf
 (.)x̂

t

v

 x̂ 

 (.)x
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Proof: continued
Then (x(.),u(.)) is a process on [0,1] such that x(0) = x̂(0),

meas{t : ẋ(t) 6= ˙̂x(t)} ≤ (1/ε̄)× ρ(x̂(.))

(ρ(x̂(.)) = maxt∈[0,1]{b · x̂(t) ∨ 0} )
and for all t ∈ [0,1],

b · x(t) = b · x̂(t) +

∫
W∩[̄t ,̄t+δ]

b · ẋ(t)−
∫

W∩[̄t ,̄t+δ]
b · ˙̂x(t) ≤ 0

and since U is bounded

||x̂(.)− x(.)||W 1,1 ≤ K × ρ(x̂(.)), K = (sup
v∈U
|v |/ε̄)

Bur also
dE((x̂ , û), (x , u)) ≤ (1/ε̄)× ρ(x̂(.)) .

2
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Counter-Example for L∞ Estimates

)ˆ( x

 (.)x̂

 (.)x

f (t , x ,U(t)) = U(t) is
closed convex valued +
‘inward’ pointing
condition
A = {(x1, x2, x3) | |x2| ≤
x1}

But, for any K > 0 and ε > 0, there exists a process (x̂(.), û(.))
such that ε > ρ(x̂(.)) > 0 and

||x̂(.)− x(.)||L∞ ≥ K × ρ(x̂(.)) .

In this counter-example t ; f (t , x ,U(t)) is discontinuous.
Ref.: [Bettiol, Bressan and Vinter, SICON 2010]
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A positive answer for arbitrary closed sets
Theorem (“Linear” L∞-estimates for arbitrary closed sets)
Assume standing hypotheses and

t 7→ f (t , x ,U(t)) has bounded variation, uniformly over a
neighbourhood of ∂A.
For each (t , x) ∈ [S,T ]× ∂A,

co f (t , x ,U(t)) ∩ int TA(x) 6= ∅ , (“inward pointing”) .

Then, for any pair (x̂(.), û(.)) s.t. x̂(S) ∈ A, there exists a
(strictly) admissible process (x(.),u(.)) such that x(S) = x̂(S)
and

||x̂(.)− x(.)||L∞ ≤ K × ρ(x̂(.)) .

(Bettiol and Vinter, Math Prog. 2018)

Rmk: This allows data when the time-dependence is governed
by a fractional power modulus of absolute continuity. ⇒ can
apply Maximum Principle in the normal form.
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Definition. (Bounded variation)
t ; F (t , x)(= f (t , x ,U(t))) has bounded variation uniformly
over x ∈ X0 ⊂ Rn if there exists a non-decreasing bounded
variation function η : [S,T ]→ R (called a ‘modulus of
variation of F (., x)’) such that, for every [s, t ] ⊂ [S,T ] and
x ∈ X0,

dH(F (s, x),F (t , x)) ≤ η(t)− η(s).

dH(A,B) is the Hausdorff distance between two arbitrary
non-empty closed sets in Rn A and B:

dH(A,B) := max

{
sup
a∈A

dB(a), sup
b∈B

dA(b)

}
.
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Bounded variation multifunctions

t ; F (t , x)(= f (t , x ,U(t))) has bounded variation if for every
[s, t ] ⊂ [S,T ] and x ∈ X0,

dH(F (s, x),F (t , x)) ≤ η(t)− η(s).

Example. Consider the control system for t ∈ [0,1]

{
ẋ(t) = b(t)u(t) a.e.
u(t) ∈ U = [−1,1]

where

b(t) =

{
0.5 if t ∈ [0,0.5]
1 if t ∈ (0.5,1] .

),( Utf
t

5.0

5.0

1

1

t ; f (t ,U) has boun. var. (It is discontinuous.)
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Comments and further developments

Rmk. Examples show that if (‘coupled’) hypotheses (Bounded
Variation)-(Inward Ponting Condition) are not satisfied, than we
might have ‘very bad’ behaviour of distance estimates (cf.
examples in [Bettiol and Vinter, Math Prog. 2018]).

Rmk. In Differential Games theory, one can define two value
functions for the game via non-anticipative strategies (or
Varayia-Roxin-Elliot-Kalton strategies).

Distance estimates constructs can be used to build up
non-anticipative strategies, obtaining linear/super-estimates
w.r.t. Ekeland/W 1,1/L∞ metrics.

It follows that (under appropriate assumptions) the
(lower/upper) value function is Lipschitz continuous.
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Dynamic Programming – State Constraints

P(τ, ξ)

{
Minimize g(x(T ))
over admissible processes (x ,u) s.t. x(τ) = ξ.

→ g : Rn → R ∪ {+∞} is extended valued; incorporates an
implicit terminal constraint

x(T ) ∈ C ,

where C := {x ∈ Rn | g(x) < +∞} is a closed set.

⇒ It is necessary to consider lower semicontinuous solutions
(lsc) to (HJ)
→ we impose the condition in addition to the ‘standing
hypotheses’:
(∗) the multifunction (t , x) ; f (t , x ,U(t)) is convex and (to

simplify) continuous
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Dynamic Programming – State Constraints

P(τ, ξ)

{
Minimize g(x(T ))
over admissible processes (x ,u) s.t. x(τ) = ξ.

Define V (τ, ξ) := Inf(P(τ, ξ)) Value Function

The goal: represent the value function as the unique solution,
appropriately defined, of the (HJ). Various, equivalent,
definitions of ‘solution’ of (HJ) are involved: Dini solution,
proximal solution (of Clarke), viscosity solution.
Two different classical paths:

viscosity solutions: it is possible to show directly (without
consideration of state trajectories) that the Hamilton Jacobi equation
has a unique solution.
system theoretic: it is intimately connected with properties of state
trajectories; invariance (viability) theorems are employed to show that a
solution to the Hamilton Jacobi equation provides a lower bound to the
cost of an arbitrary state trajectory and this lower bound is achieved by
some state trajectory. (Nonsmooth Analysis)
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Theorem (Characterization of Value Functions for State
Constrained Problems (I): Outward-Pointing Condition)
Assume the ‘standing hypotheses’. Suppose in addition that

(CQ)outward : for each s ∈ [S,T ), t ∈ (S,T ] and x ∈ ∂A,

f (t , x ,U(t)) ∩
(
− int TA(x)

)
6= ∅

Take a function V : [S,T ]× Rn → R ∪ {+∞}. Then assertions
(a)–(c) below are equivalent:
(a) V is the value function for (SC).
(b) V is lsc on [S,T ]× Rn, V (t , x) = +∞ if x /∈ A, and

(i) for all (t , x) ∈ ([S,T )× A) ∩ dom V

inf
u∈U(t)

D↑V ((t , x); (1, f (t , x ,u))) ≤ 0,

(ii) for all (t , x) ∈ ((S,T ]× int A) ∩ dom V

sup
u∈U(t)

D↑V ((t , x); (−1,−f (t , x ,u))) ≤ 0,

(iii) for all x ∈ A

lim inf
{(t′,x′)→(T ,x):t′<T ,x′∈int A}

V (t ′, x ′) = V (T , x) = g(x).
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The lower Dini (directional) derivative

Definition.
Take a function ϕ : Rk → R ∪ {+∞}, a point x ∈ domϕ and a
vector d ∈ Rk . The lower Dini (directional) derivative of ϕ at x in
the direction d ∈ Rk is defined to be:

D↑ϕ(x ; d) := lim inf
h↓0, e→d

h−1 [ϕ(x + he)− ϕ(x)] .
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(c) V is lsc on [S,T ]× Rn, V (t , x) = +∞ if x /∈ A, and
(i) for all (t , x) ∈ ((S,T )× A) ∩ dom V , (ξ0, ξ1) ∈ ∂PV (t , x)

ξ0 + inf
u∈U(t)

ξ1 · f (t , x ,u) ≤ 0,

(ii) (t , x) ∈ ((S,T )× int A) ∩ dom V , (ξ0, ξ1) ∈ ∂PV (t , x)

ξ0 + inf
u∈U(t)

ξ1 · f (t , x ,u) ≥ 0,

(iii) for all x ∈ A,

lim inf
{(t′,x′)→(S,x):t′>S}

V (t ′, x ′) = V (S, x)

and

lim inf
{(t′,x′)→(T ,x):t′<T , x′∈int A}}

V (t ′, x ′) = V (T , x) = g(x).
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Theorem (Characterization of Value Functions for State
Constrained Problems (II): Inward-Pointing Condition)
Assume the ‘standing hypotheses’. Suppose in addition that
g(.) is continuous on A and

(CQ)inward : for each s ∈ [S,T ), t ∈ (S,T ] and x ∈ ∂A,

f (t , x ,U(t)) ∩ int TA(x) 6= ∅

Take a function V : [S,T ]× Rn → R ∪ {+∞}. Then assertions
(a)–(c) below are equivalent:
(a) V is the value function for (SC).
(b) V is lsc on [S,T ]× Rn, V (t , x) = +∞ if x /∈ A, and

(i) for all (t , x) ∈ ([S,T )× A) ∩ dom V

inf
u∈U(t)

D↑V ((t , x); (1, f (t , x ,u))) ≤ 0,

(ii) for all (t , x) ∈ ((S,T ]× int A) ∩ dom V

sup
u∈U(t)

D↑V ((t , x); (−1,−f (t , x ,u))) ≤ 0,

(iii) for all x ∈ A, V (T , x) = g(x).
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(c) V is lsc on [S,T ]× Rn, V (t , x) = +∞ if x /∈ A, and
(i) for all (t , x) ∈ ((S,T )× A) ∩ dom V , (ξ0, ξ1) ∈ ∂PV (t , x)

ξ0 + inf
u∈U(t)

ξ1 · f (t , x ,u) ≤ 0,

(ii) (t , x) ∈ ((S,T )× int A) ∩ dom V , (ξ0, ξ1) ∈ ∂PV (t , x)

ξ0 + inf
u∈U(t)

ξ1 · f (t , x ,u) ≥ 0,

(iii) for all x ∈ A,

lim inf
{(t′,x′)→(S,x):t′>S}

V (t ′, x ′) = V (S, x)

and V (T , x) = g(x).
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Theorem (Viscosity solution characterization of Value
Functions for State Constrained Problems -
Inward/Outward-pointing Condition)
Assume the ‘standing hypotheses’ and, in addition,
(CQ)outward and (CQ)inward , and that g|A is locally bounded
and satisfies ((g|A)∗)∗ = g|A. Take a lower semicontinuous,
locally bounded function V : [S,T ]× Rn → R such that
V (t , x) = +∞ when x /∈ A.
Then V is the value function for (SC) if and only if V is a locally
bounded function on [S,T ]× A, lower semicontinuous
constrained viscosity solution of (HJ).

W∗ and W ∗ (referred to as the upper envelope and the lower
envelope of W , respectively) are the functions:

W ∗(y) := lim sup
y ′→y

W (y ′) and W∗(y) := lim inf
y ′→y

W (y ′) .
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Constrained viscosity solution of (HJ):
(i) (V is a viscosity supersolution) for any point (t , x) ∈ (S,T )× A and any

C1 function ψ : R× Rn → R such that

(t ′, x ′)→ V (t ′, x ′)− ψ(t ′, x ′)

has a local minimum at (t , x) (relative to [S,T ]× A) we have

−ψt (t , x) + H(t , x ,−ψx (t , x)) ≥ 0 ,

(ii) (V is a viscosity subsolution) for any point (t , x) ∈ (S,T )× int A and any
C1 function ψ : R× Rn → R such that

(t ′, x ′)→ V ∗(t ′, x ′)− ψ(t ′, x ′)

has a local maximum at (t , x) (relative to [S,T ]× A) we have

−ψt (t , x) + H(t , x ,−ψx (t , x)) ≤ 0 ,

(iii) for all x ∈ A
lim inf

{(t′,x′)→(S,x)|t′>S}
V (t ′, x ′) = V (S, x),

(V|[S,T ]×A)∗(T , x) = (g|A)∗(x) and V (T , x) = g(x).

H is, as usual, the Hamiltonian function

H(t , x , p) := max
u∈U(t)

p · f (t , x , u) .
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The solution to the Growth/Consumption problem

Techniques of dynamic programming provide.
The state feedback function χ : [0,T ]× (0,∞)→ [0,1]:

χ(t , x) :=


0 if x > ȳ(t)
1 if x < ȳ(t)
α if x = ȳ(t) and t ≤ T −∆

0 if x = ȳ(t) and t > T −∆

in which ȳ : (−∞,T ]→ (0,∞) is the function

ȳ(t) :=

x̂ if t ≤ T −∆[
b
a (1− e−aα(T−t)

] 1
1−α if t > T −∆

x̂ :=
(
αb
a

) 1
1−α and ∆ := 1

aα ln
(

1
1−α

)
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The solution to the Growth/Consumption pb...

Given initial data (t0, x0) ∈ [0,T ]× (0,∞), the optimal output
x∗ is the unique solution in the space of Lipschitz continuous
functions on [t0,T ] of the differential equation{

ẋ∗(t) = −ax∗(t) + b(x∗)α(t)χ(t , x∗(t)) a.e. t ∈ [t0,T ],
x(t0) = x0 .

The optimal proportion of financial return for investment u∗ is
unique (w.r.t. the equivalence class of almost everywhere equal
functions) and is given by

u∗(t) = χ(t , x∗(t)), for a.e. t ∈ [t0,T ] .

Rmk: the solution is expressed in state feedback form: the
optimal control u∗ is expressed as a function of the current
state.
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The solution to the Growth/Consumption pb...

S

Figure: Optimal Trajectories for the Consumption/Growth Problem

References:
→ K. Miao and R. Vinter, OCAM 2021 (solution of the problem)
see also for the state constrained (HJ) eq. solution
interpretation:
J. Bernis, P. Bettiol, R. Vinter, JDE 2022
J. Bernis and P. Bettiol, JCA 2023
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Proximal solution
Write V : [0,T ]× (0,∞)→ R the value function for (GC).
Let ψ : [0,∞)→ [0,∞) be the mapping

ψ(x) := x1−α for x ∈ [0,∞) .

Then

V (t , x) = (W ◦ (Id , ψ)) (t , x), for all (t , x) ∈ [0,T ]× [0,∞) ,

where W : [0,T ]× R→ R ∪ {−∞} is the unique upper
semicontinuous function s.t. W (t , y) = −∞ whenever y < 0,

(i) for all (t , y) ∈ (0,T )× [0,∞), (ξ0, ξ1) ∈ ∂PW (t , y)

ξ0 + sup
u∈[0,1]

(
ξ1 ·(−a(1−α)y +(1−α)bu)+(1−u)y

α
1−α
)
≥ 0;

(ii) for all (t , y) ∈ (0,T )× (0,∞), (ξ0, ξ1) ∈ ∂PW (t , y)

ξ0 + sup
u∈[0,1]

(
ξ1 ·(−a(1−α)y +(1−α)bu)+(1−u)y

α
1−α
)
≤ 0;

∂PW (t , y) = −∂P(−W )(t , y): proximal superdifferential of W
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Proximal solution...

(iii) for all y ∈ [0,∞)

lim sup
{(t ′,y ′)→(0,y):t ′>0}

W (t ′, y ′) = W (0, y)

and

lim sup
{(t ′,y ′)→(T ,x):t ′<T , y ′>0}

W (t ′, y ′) = W (T , y) = 0.
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Viscosity solution
W : [0,T ]× R→ R ∪ {−∞} is the unique upper
semicontinuous function such that W is continuous on
[0,T ]× [0,∞), W (t , y) = −∞ whenever y < 0 and

(i) for all (t , y) ∈ (0,T )× [0,∞), (ξ0, ξ1) ∈ ∂+W (t , y)

ξ0 + sup
u∈[0,1]

(
ξ1 ·(−a(1−α)y +(1−α)bu)+(1−u)y

α
1−α
)
≥ 0;

(ii) for all (t , y) ∈ (0,T )× (0,∞), (ξ0, ξ1) ∈ ∂−W (t , y)

ξ0 + sup
u∈[0,1]

(
ξ1 ·(−a(1−α)y +(1−α)bu)+(1−u)y

α
1−α
)
≤ 0;

(iii) for all y ∈ [0,∞)

lim sup
{(t ′,y ′)→(0,y), t ′>0}

W (t ′, y ′) = W (0, y)

and
W (T , y) = 0.
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The Fréchet subdifferential

The Fréchet subdifferential (also called strict subdifferential)
of ϕ at x̄ ∈ domϕ is defined by

∂−ϕ(x̄) := {ξ | (ξ,−1) ∈ N̂epi ϕ(x̄ , ϕ(x̄))}.

We recall also that, if ϕ : Rm → R ∪ {−∞} is an upper
semicontinuous function and x̄ ∈ domϕ, then the Fréchet
superdifferential of ϕ at x̄ is defined as ∂+ϕ(x̄) := −∂−(−ϕ)(x̄).

N̂C(x) :=
{
ξ ∈ Rm | lim sup

y C→x

|y − x |−1 ξ · (y − x) ≤ 0
}
.

Well known properties are:
N̂C(x) = {ξ ∈ Rm | ξ · v ≤ 0, ∀v ∈ TC(x)} (i.e. N̂C(x) is the polar
cone to TC(x)) and

NP
C (x) ⊂ N̂C(x).
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Sensitivity Results with state constraints

Theorem
Assume that A = {h(x) ≤ 0}, h ∈ C1+, and ‘standing
hypotheses’.
Let (x̄ , ū) be a minimizer for problem (SC). Then there exists a
function of bounded variation q, right continuous on (S,T ), and
a Radon measure µ on [S,T ] s.t.
(i): the conditions of the state constrained Maximum Principle

are satisfied
(ii): (H(t , x̄(t),q(t)), −q(t)) ∈ ∂0V (t , x̄(t)) a.e. [S,T ]

(iii): p(S) ∈ ∂x (−V )+(S, x̄(S))
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Notation: (−V )+(., .) is the extended valued function on R×Rn

(−V )+(t , x) :=

{
−V (t , x) if t ∈ [S,T ] and x ∈ A
+∞ otherwise .

∂0V is the ‘hybrid’ (from the interior) subdifferential:

∂0V (t , x) := co lim sup

{
∂V (t ′, x ′) | (t ′, x ′) A0

−→ (t , x)

}
,

A0 := {x |h(x) < 0} .
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Theorem
Assume A is (nonempty) closed, ’standing assumptions’ on
ẋ ∈ F , (CQ)inward and F is BV w.r.t. t . Then V (., .) is locally
Lipschitz continuous on [S,T ]× A.
Then there exists p(.) ∈W 1,1([S,T ];Rn) and a function of
bounded variation η(.) : [S,T ]→ Rn, continuous from the right
on (S,T ), such that
(i): for some finite positive Borel measure µ on [S,T ] and

Borel measurable selection

γ(t) ∈ (co NA(x̄(t))) ∩ B µ− a.e. t ∈ [S,T ]

we have

η(t) =

∫
[S,t]

γ(s)dµ(s), for all t ∈ (S,T ] ,

(ii): ṗ(t) ∈ co {r : (r ,q(t)) ∈ NGr{F (t ,.)}(x̄(t), ˙̄x(t))} a.e.
(iii): −q(T ) ∈ ∂g(x̄(T )), q(S) ∈ ∂(−V )+(S, x̄(S)) and
(iv): q(t) · ˙̄x(t) = maxv∈F (t ,x̄(t)) q(t) · v a.e.,
where q(t) := p(t) + η(t) for t ∈ (S,T ] .
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Theorem (continue...)

Furthermore p(.) and η(.) can be chosen also to satisfy the
‘partial and the full sensitivity relations’:

(v) −q(t) ∈ ∂0
x V (t , x̄(t)) a.e. t ∈ (S,T ] ,

where, for (t , x) ∈ [S,T ]× A

∂0
x V (t , x) := ∩ε>0 co ∪{x ′ ∈ (x+εB) ∩ int A} ∂V (t , x ′) ;

vi) (H(t , x̄(t),q(t)),−q(t)) ∈ ∂0V (t , x̄(t)) a.e. t ∈ (S,T ] ,

where, for (t , x) ∈ [S,T ]× A

∂0V (t , x) :=

∩ε>0 co ∪{(t ′,x ′) ∈ ((t ,x)+εB) ∩ [S,T ]×int A} ∂V (t ′, x ′) .
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Exercises

Ex 1. Let V be the value function for (SC). Assume that the
‘standing hypotheses’ are satisfied, and that
g : Rn → R ∪ {+∞} is lower semicontinuous.
(a) Then V (t , x) > −∞ for all (t , x) ∈ [S,T ]× Rn.
(b) If in addition f (t , x ,U(t)) takes convex values, then V is

lower semicontinuous and V (t , x) > −∞ for all
(t , x) ∈ [S,T ]× Rn .

(c) If in addition to the ‘standing hypotheses’ also hypotheses
(BV) and (Inward Pointing) are satisfied and g is locally
Lipschitz continuous on A (resp. continuous on A), then V
is locally Lipschitz continuous on [S,T ]× A (resp.
continuous on [S,T ]× A).
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Exercises

Ex 2 (State constrained maximum principle in Gamkrelidze
form.) Let (x̄ , ū) be a minimizer for the state constrained
problem

Minimize g(x(S), x(T ))
subject to ẋ(t) = f (x(t),u(t)),u(t) ∈ U a.e.
h(x(t)) ≤ 0 for all t ∈ [S,T ]
(x(S), x(T )) ∈ C .

with data functions f : Rn × Rm → Rn, g : Rn × Rn → R,
h : Rn → R and sets U ⊂ Rm and C ⊂ Rn × Rn.
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Exercises

Assume that standing hypotheses are satisfied. Assume further
that g is C1, f (., ū(t)) is C1 a.e. and h is C2. Show that there
exist p ∈W 1,1([S,T ];Rn), a BOrel measure µ on [S,T ] and
λ ≥ 0 such that

(i)): (p, µ, λ) 6= (0,0,0),

(ii): −ṗ(t) =
(
p(t) +

∫
[S,t] dµ(s)hx (x̄(t))

)
· fx (x̄(t), ū(t)) +∫

[S,t] dµ(s)hxx (x̄(t)) · f (x̄(t), ū(t)),

(iii): u → (p(t) +
∫

[S,t] dµ(s)hx (x̄(t))) · f (x̄(t),u) is maximized
over U at u = ū(t). a.e.,

(iv): supp {µ} ⊂ {t : h(x̄(t)) = 0},
(v): (p(S),−(p(T ) +

∫
[S,T ] dµ(t)hx (x̄(T ))) =

λ∇g(x̄(S), x̄(T )) + NC(x̄(S), x̄(T )).
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