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Motivation: Obstacle avoidance & target set stabilization

Figure borrowed from: E. D. Sontag, Nonlinear Feedback Stabilization Revisited, volume 25 of Progress in Systems and Control Theory,
pages 223-262. Birkhäuser, 1999
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Motivation: Obstacle avoidance & target set stabilization

Setting:
Dynamical system

ẋ(t) = f(x(t), u(t)), x(0) ∈ Rn, Rm

Obstacle: Bδ(x̂) ⊂ Rn\{0}
Target set: 0 ∈ Rn

Problem formulation:
Define u : R≥0 → Rm such that

1. limt→∞ x(t;u(t)) = 0

2. x(t;u(t)) /∈ Bδ(x̂) ∀ t ∈ R≥0 (and δ > 0)

Assume for simplicity ẋ = Ax+Bu

(A,B) controllable, i.e.,
∀x1, x2 ∈ Rn, ∀ε > 0 ∃ u : [0, ε]→ Rm :
x(0;u(t)) = x1 & x(ε;u(t)) = x2.

However (at least for linear systems)
it is easy to address 1. & 2. separately. But, how to
ensure 1. & 2. simultaneously?

How to define a (state dependent) feedback law (i.e.,
u(x(t)) instead of u(t))?

Rn

x̂

0
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ẋ(t) = f(x(t), u(t)), x(0) ∈ Rn, Rm

Obstacle: Bδ(x̂) ⊂ Rn\{0}
Target set: 0 ∈ Rn

Problem formulation:
Define u : R≥0 → Rm such that

1. limt→∞ x(t;u(t)) = 0

2. x(t;u(t)) /∈ Bδ(x̂) ∀ t ∈ R≥0 (and δ > 0)
Assume for simplicity ẋ = Ax+Bu
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Related Settings, Applications and Solutions

Setting:
Obstacle avoidance & target set stabilization

A special case of constrained control

Focus on obstacles leading to topological obstructions
(i.e., the state space is not a simply connected domain)

Control Solutions:
Artificial potential fields and navigation functions

Model predictive control
▶ (Motion planning and reference tracking)

(Control) Lyapunov functions and (control) barrier functions

Control using logic based switching
▶ (Orchestrate local control laws)
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Artificial potential fields & navigation functions

Figures borrowed from: K. M. Lynch, F. C. Park, Modern Robotics:
Mechanics, planning, and control, Cambridge University Press, 2017

x1

x2

u1

ϕ

u2

Mobile robot (nonholonomic integrator):

ẋ1 = u1 cos(ϕ),

ẋ2 = u1 sin(ϕ),

ϕ̇ = u2.

Simplified mobile robot: ẋ = u
Artificial potential fields:

Use gradient to guarantee a decrease with respect to
the target set

Local minima? (⇝ Navigation functions)

Potential fields necessarily have saddle points
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Model Predictive Control & Obstacle Avoidance

Given: Dynamical system

xk+1 = f(xk, uk), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm

|x− x̂j | ≥ cj ← “obstacle constraints”

Model predictive control: For k ∈ N
1. Solve the optimization problem:

min
u0,...,uN−1

N−1∑
i=0

ℓ(xi, ui)

s.t. x0 = xk

xi+1 = f(xi, ui)

|xi − x̂j | ≥ cj

(xi, ui) ∈ X × U
∀i ∈ {0, . . . , N − 1}

2. Optimal solution u⋆
0, . . . , u

⋆
N−1

3. Define feedback law µ(xk) = u⋆
0

4. Define xk+1 = f(xk, µ(xk)), set k to k+1 and go to step 1.

x̂1

x̂2

x̂3

Note that
model predictive control is able to handle
“obstacle constraints”

But
“obstacle constraints” naturally lead to
non-convex optimization problems (either
through constraints or cost function)

closed-loop properties (i.e., performance,
asymptotic stability, recursive feasibility) are
more difficult to verify
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(Control) Lyapunov and (control) barrier functions

Nonlinear system: ẋ = f(x, u), (x ∈ Rn, u ∈ Rm) Obstacle: D ⊂ Rn.

Definition (Control Lyapunov function (CLF))
A continuously differentiable function V : Rn → R is called Control Lyapunov function (CLF) if there exist
α1, α2 ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|)
∀x ∈ Rn\{0} ∃u ∈ Rm such that ⟨∇V (x), f(x, u)⟩ < 0

⇝ Guarantees global asymptotic stability of the origin

Definition (Control Barrier Function (CBF))
A continuously differentiable function B : Rn → R is called control barrier function (CBF) if

B(x) > 0 ∀ x ∈ D and B(x) = 0 ∀ x ∈ ∂D
∀x ∈ Rn\D ∃u ∈ Rm such that ⟨∇B(x), f(x, u)⟩ ≤ 0

⇝ Guarantees avoidance of D

How to combine control Lyapunov and control barrier function results?
How to obtain robust and global results?
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Linear combination of CLFs and CBFs
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(Underactuated) Systems with Nontrivial Drift
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Systems with nontrivial drift

Consider

ẋ =

[
0 −1
1 0

]
x+

[
1
0

]
u

▶ The system is controllable
▶ The influence of u is limited

(⇝ Behind the obstacle, u can only be used to stall time)
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(Underactuated) Systems with Nontrivial Drift (Position of the Obstacle)
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2 The location of the obstacle:

Consider

ẋ =

[
−1 3

2
− 3

2
−1

]
x+

[
0
1

]
u

(The system is controllable)

Subspace of induced equilibria: (B ∈ Rn)

E = {y ∈ Rn : 0 = Ay +Bν, ν ∈ R}

Obstacle D with D ∩ E = 0

▶ Use the natural drift Ax to ‘leave the obstacle behind’ and
use Bu to avoid the obstacle

Obstacle D with D ∩ E ̸= 0

▶ Use u to destabilize a point x̂ ∈ D ∩ E to avoid the obstacle
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(Underactuated) Systems with Nontrivial Drift (Shape of the Obstacle)
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The shape of the obstacle

Consider again (ẋ = Ax+Bu)

ẋ =

[
−1 3

2
− 3

2
−1

]
x+

[
0
1

]
u

Consider an obstacle D ⊂ Rn with a smooth boundary
⇝ There exists a point x ∈ ∂D such that

⋆ B and the tangent T (x) of ∂D are linear dependent
⋆ Ax points inside D
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(Underactuated) Systems with Nontrivial Drift (Necessity of Controllability)

Consider

ẋ =

[
−1 0
0 1

]
x+

[
0
1

]
u

▶ The system is stabilizable but not controllable (consider
u(x) = [0 − 2]x, for example).

▶ Any obstacle on the x2-axis can be easily avoided.
▶ For any obstacle touching the x2-axis the combined control problem

is not solvable

Consider

ẋ =

[
−1 0
0 −1

]
x+

[
1
0

]
u

▶ The system is stabilizable but not controllable.
▶ The shape and the location of the obstacle are important.
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Outline

• Stability and instability characterizations for dynamical
systems using Lyapunov arguments

• Controller designs for stability & avoidance (relying on
Lyapunov methods, barrier arguments and hybrid systems)

Figure borrowed from: E. D. Sontag, Nonlinear Feedback Stabilizati-
on Revisited, volume 25 of Progress in Systems and Control Theory,
pages 223-262. Birkhäuser, 1999
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