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Motivation: Obstacle avoidance & target set stabilization
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Figure borrowed from: E. D. Sontag, Nonlinear Feedback Stabilization Revisited, volume 25 of Progress in Systems and Control Theory,
pages 223-262. Birkhauser, 1999
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Motivation: Obstacle avoidance & target set stabilization

Setting:
@ Dynamical system R™
() = f(z(t),u(t),  x(0) €R", R™
@ Obstacle: Bs(z) Cc R™\{0}
@ Target set: 0eR™

Problem formulation:
Define u : R>¢ — R™ such that

1. lim¢— oo z(t;u(t)) =0
2. z(t;u(t)) ¢ Bs(&) Vit € R>g (and 6 > 0)
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Motivation: Obstacle avoidance & target set stabilization

Setting:
@ Dynamical system
z(t) = f(z(t), u(t)), z(0) € R™", R™
@ Obstacle: Bs(z) Cc R™\{0}
@ Target set: 0eR"™

Problem formulation:
Define u : R>¢ — R™ such that

1. lim¢— oo z(t;u(t)) =0

2. z(t;u(t)) ¢ Bs(&) Vt € R>g (and § > 0)
Assume for simplicity ¢ = Az + Bu

@ (A, B) controllable, i.e.,

V1,22 € R", Ve >0 Fu:[0,e] - R™:
z(0;u(t)) = z1 & z(g5u(t)) = z2.
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Motivation: Obstacle avoidance & target set stabilization

Setting:
@ Dynamical system R™
z(t) = f(z(t), u(t)), z(0) € R™", R™
@ Obstacle: Bs(z) Cc R™\{0}
@ Target set: 0eR"™

Problem formulation:
Define u : R>¢ — R™ such that

1. lim¢— oo z(t;u(t)) =0
2. z(t;u(t)) ¢ Bs(&) Vt € R>g (and § > 0)
Assume for simplicity ¢ = Az + Bu
@ (A, B) controllable, i.e.,
V1,22 € R", Ve >0 Fu:[0,e] - R™:
z(0;u(t)) = z1 & z(g5u(t)) = z2.
However (at least for linear systems)

@ itis easy to address 1. & 2. separately. But, how to
ensure 1. & 2. simultaneously?

P. Braun (UoN) Avoidance & Stabilization 2/12



Motivation: Obstacle avoidance & target set stabilization

Setting:
@ Dynamical system R
() = f(@(t),u(),  (0) €R", R™
@ Obstacle: Bs(&) C R™\{0}
@ Target set: 0eR"™

Problem formulation:
Define u : R™ — R™ such that

1. lim¢— oo z(t;u(z)) =0
2. z(t;u(z)) ¢ Bs(Z) Vit € R>o (@and 6 > 0)
Assume for simplicity ¢ = Az + Bu
@ (A, B) controllable, i.e.,
V1,22 € R", Ve >0 Fu:[0,e] - R™:
z(0;u(t)) = z1 & z(g5u(t)) = z2.
However (at least for linear systems)

@ itis easy to address 1. & 2. separately. But, how to
ensure 1. & 2. simultaneously?

@ How to define a (state dependent) feedback law (i.e.,
u(z(t)) instead of u(t))?

P. Braun (UoN) Avoidance & Stabilization 2/12



Related Settings, Applications and Solutions

Setting:
@ Obstacle avoidance & target set stabilization
@ A special case of constrained control

@ Focus on obstacles leading to topological obstructions
(i.e., the state space is not a simply connected domain)

Control Solutions: [0
@ Artificial potential fields and navigation functions Q

@ Model predictive control

» (Motion planning and reference tracking)
@ (Control) Lyapunov functions and (control) barrier functions
@ Control using logic based switching

> (Orchestrate local control laws)
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Artificial potential fields & navigation functions

2

z1
Mobile robot (nonholonomic integrator):

1 = uj cos(d),
o = uq sin(g),
¢ = us.
Simplified mobile robot: z =
Artificial potential fields:

@ Use gradient to guarantee a decrease with respect to
the target set

Figures borrowed from: K. M. Lynch, F. C. Park, Modern Robotics: @ Local minima? (~» Navigation functions)
Mechanics, planning, and control, Cambridge University Press, 2017

@ Potential fields necessarily have saddle points
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Model Predictive Control & Obstacle Avoidance

Given: Dynamical system
zeXCR", weldCR™
<« “obstacle constraints”

o1 = flag, uk),
lz — ;] > ¢;

Model predictive control: For k € N
1. Solve the optimization problem:

min Z (i, ui)

cHUN—1 %
st. zo=uxp
Tip1 = [z, )
|z — 5] > ¢
(xi,ui) eXxX xU
vie {0,...,N—1}
2. Optimal solution u, ..., uk_;
3. Define feedback law p(zy) = uj

4. Define zgy1 = f(zk, p(z

P. Braun (UoN)
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Note that

@ model predictive control is able to handle
“obstacle constraints”
But
@ “obstacle constraints” naturally lead to

non-convex optimization problems (either
through constraints or cost function)

@ closed-loop properties (i.e., performance,
asymptotic stability, recursive feasibility) are
more difficult to verify
5/12



Model Predictive Control & Obstacle Avoidance

Given: Dynamical system
zeXCR", weldCR™
<« “obstacle constraints”

o1 = flag, uk),
lz — ;] > ¢;
Model predictive control: For k € N
1. Solve the optimization problem:
N-1 1

st. zo =z
Tip1 = [z, )

(zi,u;) € X xU
vie {0,...,N—1}
2. Optimal solution u, ..., uk_;

3. Define feedback law p(zy) = uj

4. Define xp41 = f(xk, p(zk)), set kto k+ 1 and go to step 1.
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Note that

@ model predictive control is able to handle
“obstacle constraints”
But
@ “obstacle constraints” naturally lead to

non-convex optimization problems (either
through constraints or cost function)

@ closed-loop properties (i.e., performance,
asymptotic stability, recursive feasibility) are
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(Control) Lyapunov and (control) barrier functions

Nonlinear system: z = f(z,u), (r € R", u € R™) Obstacle: D C R™.

Definition (Control Lyapunov function (CLF))

A continuously differentiable function V' : R™ — R is called Control Lyapunov function (CLF) if there exist
a1, as € Ko such that

ai(lz]) < V(z) < az(|=])
Vz € R"\{0} 3u € R™ such that (VV (z), f(z,u)) <0

~~ Guarantees global asymptotic stability of the origin
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(Control) Lyapunov and (control) barrier functions

Nonlinear system: z = f(z,u), (r € R", u € R™) Obstacle: D C R™.

Definition (Control Lyapunov function (CLF))

A continuously differentiable function V' : R — R is called Control Lyapunov function (CLF) if there exist
a1, as € Ko such that

ai(lz]) < V(z) < az(|=])
Vz € R"\{0} 3u € R™ such that (VV (z), f(z,u)) <0

~~ Guarantees global asymptotic stability of the origin

Definition (Control Barrier Function (CBF))
A continuously differentiable function B : R™ — R is called control barrier function (CBF) if

B(xz) >0 VzeD and B(z)=0 Vaze€oD
Vz € R"\D Ju € R™ suchthat (VB(z), f(z,u)) <0

~~» Guarantees avoidance of D
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(Control) Lyapunov and (control) barrier functions

Nonlinear system: z = f(z,u), (x € R™, u € R™) Obstacle: D C R™.

Definition (Control Lyapunov function (CLF))

A continuously differentiable function V' : R — R is called Control Lyapunov function (CLF) if there exist
a1, as € Ko such that

a1(j2l) < V(2) < az(lal)
Vz € R"\{0} 3u € R™ such that (VV (z), f(z,u)) <0

~~ Guarantees global asymptotic stability of the origin

Definition (Control Barrier Function (CBF))
A continuously differentiable function B : R™ — R is called control barrier function (CBF) if

B(xz) >0 VzeD and B(z)=0 Vaze€oD
Vz € R"\D Ju € R™ suchthat (VB(z), f(z,u)) <0

~~» Guarantees avoidance of D

How to combine control Lyapunov and control barrier function results?
How to obtain robust and global results? J
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Linear combination of CLFs and CBFs

3
R
X
KRS
RN
e,

R
R

7/12



(Underactuated) Systems with Nontrivial Drift
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PR N . Systems with nontrivial drift
1.5
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(Underactuated) Systems with Nontrivial Drift (Position of the Obstacle)

The location of the obstacle:

~C ‘
NN
/T/T/’ L’ L 1\ l\ K [ @ Consider
2050 © BN i
o5y bl Lot |4 / z:[—% —1}:”[1%
& 0 / V 1/ 1/ 1 ] J ) ) ) (The system is controllable)
05 Yy v /f /f ) / @ Subspace of induced equilibria: (B € R™)
h V [ NN j/f‘/f‘/f E={yeR":0=Ay+ Bv, v € R}
AP A Y JJ/T/T? @ Obstacle D with DN & = 0
15 | Q Q i i jj &JF'JF%/ Sssgglsga::/ﬁijdtﬂg gltfs;gc:zave the obstacle behind’ and
2_2 _‘1 0 ] 5 @ Obstacle DwithDNE #£0
o > Use u to destabilize a point & € D N £ to avoid the obstacle
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(Underactuated) Systems with Nontrivial Drift (Position of the Obstacle)

2 AN \ The location of the obstacle:
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> Use u to destabilize a point & € D N £ to avoid the obstacle
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(Underactuated) Systems with Nontrivial Drift (Shape of the Obstacle)
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The shape of the obstacle

@ Consider again (z = Az + Bu)

. -1 3 0
x:[_; _?i :|x+|: 1 }u
2
@ Consider an obstacle D C R™ with a smooth boundary

~ There exists a point z € 9D such that

* B and the tangent T'(x) of D are linear dependent
* Az points inside D

Avoidance & Stabilization
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(Underactuated) Systems with Nontrivial Drift (Necessity of Controllability)

/4
AV

v
|

7P EARN
70 PNNN
S NN
—— -0 - ——
NSNS s
NN\ /S
NN /S
\ \ v 12
N Y
NN /
~ N 4
- - 0o -
- s \
P.Braun (UoN)

VN ONY

|

/

XX Y

@ Consider
[ 2] 1]:

> The system is stabilizable but not controllable (consider
u(z) = [0 — 2]z, for example).

> Any obstacle on the z2-axis can be easily avoided.

> For any obstacle touching the z2-axis the combined control problem
is not solvable

@ Consider
=70 Ao

> The system is stabilizable but not controllable.
» The shape and the location of the obstacle are important.
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Outline

e Stability and instability characterizations for dynamical ‘ ‘
systems using Lyapunov arguments

e Controller designs for stability & avoidance (relying on 2 =
Lyapunov methods, barrier arguments and hybrid systems) LOS {w }
L
dc 5-
Figure borrowed from: E. D. Sontag, Nonlinear Feedback Stabilizati-

on Revisited, volume 25 of Progress in Systems and Control Theory,
pages 223-262. Birkhauser, 1999
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