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Overview

¤𝑥 ∈ 𝜂 ( |𝑥 | )𝐹 (𝑥 )
𝜂 : R≥0 → R>0

¤𝑥 ∈ 𝐹 (𝑥 ) ¤𝑥 ∈ −𝐹 (𝑥 )

strong complete
instability

strong complete
instability

(strong) asymptotic
stability

∃ 𝜅 ∈ K∞K∞
strong K∞K∞-instability

∃ 𝛽 ∈ KL
(strong) KL-stability

∃ 𝐶 : R𝑛 → R≥0
smooth Chetaev fcn.

∃ 𝑉 : R𝑛 → R≥0
smooth Lyapunov fcn.

weak complete
instability

weak complete
instability

asymptotic
stabilizability

∃ 𝜅 ∈ K∞K∞
weak K∞K∞-instability

∃ 𝛽 ∈ KL
weak KL-stability

∃ 𝐶 : R𝑛 → R≥0
control Chetaev fcn.

∃ 𝑉 : R𝑛 → R≥0
control Lyapunov fcn.

𝐶 = 𝑉

\ \

\ \

\ \
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Notation: Comparison functions

A continuous function 𝜌 : R≥0 → R≥0 is said to be of class
P (𝜌 ∈ P) if 𝜌(0) = 0, and 𝜌(𝑠) > 0 for all 𝑠 > 0.

A function 𝛼 ∈ P is said to be of class K (𝛼 ∈ K) if it is
strictly increasing.

A function 𝛼 ∈ K is said to be of class K∞ (𝛼 ∈ K∞ ) if
lim𝑠→∞ 𝛼(𝑠) = ∞.

A continuous function 𝜎 : R≥0 → R≥0 is said to be of
class L (𝜎 ∈ L) , if it is strictly decreasing, and
lim𝑠→∞ 𝜎 (𝑠) = 0.

A continuous function 𝛽 : R2
≥0 → R≥0 is said to be of class

KL (𝛽 ∈ KL) if 𝛽 ( ·, 𝑠) ∈ K∞ for all 𝑠 ∈ R≥0 and
𝛽 (𝑠, · ) ∈ L for all 𝑠 ∈ R≥0.

P-function

|𝑥 |

𝜌( |𝑥 |)

K-function

𝛼( |𝑥 |)

|𝑥 |

K∞-function

|𝑥 |

𝛼( |𝑥 |)

𝛽 ( |𝑥 |, 𝑡 )

L-function

𝑡
|𝑥 |

𝜎 ( |𝑥 |)

𝛽 ( |𝑥 |, 𝑡 )
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Differential inclusions
Setting:

Differential inclusion

¤𝑥 ∈ 𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛

defined through set-valued map 𝐹 : R𝑛 ⇒ R𝑛

we are interested in stability properties of the origin, i.e.,
0 ∈ 𝐹 (0) without loss of generality.

Assumption (Basic conditions)

The set-valued map 𝐹 : R𝑛 ⇒ R𝑛 with 0 ∈ 𝐹 (0) has nonempty,
compact, and convex values on R𝑛, and it is upper semicont.

Upper semicontinuity:
For each 𝑥 ∈ R𝑛 and for all 𝜀 > 0 there exists a 𝛿 > 0 such
that for all 𝜉 ∈ 𝐵𝛿 (𝑥 ) we have 𝐹 ( 𝜉 ) ⊂ 𝐹 (𝑥 ) + 𝐵𝜀 (0) .
Example:

𝐹 (𝑥 ) =
{

[0, 1], 𝑥 = 0
1, 𝑥 ≠ 0

Assumption (Lipschitz continuity)

The set-valued map 𝐹 : R𝑛 ⇒ R𝑛 with 0 ∈ 𝐹 (0) is locally
Lipschitz continuous on R𝑛\{0}.

Lipschitz continuity:
If there exists a constant 𝐿 > 0 and a neighborhood
O ⊂ R𝑛 of 𝑥 ∈ R𝑛\{0} such that

𝐹 (𝑥1 ) ⊂ 𝐹 (𝑥2 ) + 𝐵𝐿 |𝑥1−𝑥2 | (0) ∀ 𝑥1, 𝑥2 ∈ O

Why do we care about differential inclusions?
Consider the control system

¤𝑥 = 𝑓 (𝑥, 𝑢) , 𝑥0 ∈ R𝑛 , 𝑢 ∈ U(𝑥 ) ⊂ R𝑚

Define the set-valued map

𝐹 (𝑥 ) = conv{ 𝑓 (𝑥, 𝑢) ∈ R𝑛 |𝑢 ∈ U(𝑥 ) }

Assume 𝑓 : R𝑛 × R𝑚 → R𝑛 is locally Lipschitz in 𝑥 and
continuous in 𝑢 and U = U(𝑥 ) for all 𝑥 ∈ R𝑛 is compact
or that U(𝑥 ) = 𝐵𝑐 |𝑥 | (0) for 𝑐 > 0. Then 𝐹 satisfies the
basic condition and 𝐹 is Lipschitz.
Here, 𝑢 can represent a disturbance or an input.
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• If 𝜙𝑖 (𝑇; 𝑥0 ) = ±∞ for 𝑇 < 0 and 𝑖 ∈ {1, . . . , 𝑛},
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Solutions which satisfy |𝜙 (𝑡; 𝑥0 ) | < ∞ for all 𝑡 ∈ R≥0 are
called forward complete.
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Differential inclusions (Time Scaling)

Consider

¤𝑥 ∈ 𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛

Set of solutions S(𝑥0 )
If 𝜙 ( ·; 𝑥0 ) ∈ S(𝑥0 ) , 𝜙 ( ·; 𝑥0 ) : R→ R𝑛 ∪ {±∞}𝑛, then

𝜓 (𝑡; 𝑥0 ) = 𝜙 (−𝑡; 𝑥0 )
is a solution of (time reversed inclusion)

¤𝑥 ∈ −𝐹 (𝑥 ) 𝑥0 ∈ R𝑛

For a positive continuous function 𝜂 : R≥0 → R>0,
consider the scaled differential inclusion

¤𝑥 ∈ 𝐹𝜂 (𝑥 ) = 𝜂 ( |𝑥 | )𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛. (1)

with set of solutions S𝜂 ( ·) .
(Note that 𝜂 (0) > 0.)
𝐹 satisfies basic assumpt. ⇐⇒ 𝐹𝜂 satisfies basic assumpt.

Theorem (Positive scaling of differential inclusions)
Consider ¤𝑥 ∈ 𝐹 (𝑥 ) satisfying the basic assumption. Consider
the scaled differential inclusion (1).
For all 𝑥0 ∈ R𝑛 and for all 𝜙 ( ·; 𝑥0 ) ∈ S(𝑥0 ) with

|𝜙 (𝑡; 𝑥0 ) | < ∞, ∀ 𝑡 < 𝑇 and |𝜙 (𝑡; 𝑥0 ) | = ∞ ∀ 𝑡 ≥ 𝑇,

𝑇 ∈ R>0 ∪ {∞}, there exist a continuous strictly increasing
function 𝛼 : [0, 𝑇 ) → [0, 𝑀 ) and 𝑀 ∈ R>0 ∪ {∞} with
𝛼(0) = 0 such that

𝜙𝜂 ( ·; 𝑥0 ) = 𝜙 (𝛼( ·); 𝑥0 ) ∈ S𝜂 (𝑥0 ) .
Conversely, if 𝜙𝜂 ( ·; 𝑥0 ) ∈ S𝜂 (𝑥0 ) then

𝜙𝜂 (𝛼−1 ( ·); 𝑥0 ) ∈ S(𝑥0 )
is satisfied. Moreover, in the limit, the solutions satisfy

lim
𝑡→𝑇

|𝜙 (𝑡; 𝑥0 ) | = lim
𝑡→𝑀

|𝜙𝜂 (𝑡; 𝑥0 ) |.

{ In particular, stability properties are preserved.
{ If 𝑇 = 𝑀 = ∞ both solutions are forward complete (𝛼 ∈ K∞ )

P. Braun (ANU) (In-)Stability of Differential Inclusions 5 / 25



Differential inclusions (Time Scaling)

Consider

¤𝑥 ∈ 𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛

Set of solutions S(𝑥0 )
If 𝜙 ( ·; 𝑥0 ) ∈ S(𝑥0 ) , 𝜙 ( ·; 𝑥0 ) : R→ R𝑛 ∪ {±∞}𝑛, then

𝜓 (𝑡; 𝑥0 ) = 𝜙 (−𝑡; 𝑥0 )
is a solution of (time reversed inclusion)

¤𝑥 ∈ −𝐹 (𝑥 ) 𝑥0 ∈ R𝑛

For a positive continuous function 𝜂 : R≥0 → R>0,
consider the scaled differential inclusion

¤𝑥 ∈ 𝐹𝜂 (𝑥 ) = 𝜂 ( |𝑥 | )𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛. (1)

with set of solutions S𝜂 ( ·) .
(Note that 𝜂 (0) > 0.)
𝐹 satisfies basic assumpt. ⇐⇒ 𝐹𝜂 satisfies basic assumpt.

Theorem (Positive scaling of differential inclusions)
Consider ¤𝑥 ∈ 𝐹 (𝑥 ) satisfying the basic assumption. Consider
the scaled differential inclusion (1).
For all 𝑥0 ∈ R𝑛 and for all 𝜙 ( ·; 𝑥0 ) ∈ S(𝑥0 ) with

|𝜙 (𝑡; 𝑥0 ) | < ∞, ∀ 𝑡 < 𝑇 and |𝜙 (𝑡; 𝑥0 ) | = ∞ ∀ 𝑡 ≥ 𝑇,

𝑇 ∈ R>0 ∪ {∞}, there exist a continuous strictly increasing
function 𝛼 : [0, 𝑇 ) → [0, 𝑀 ) and 𝑀 ∈ R>0 ∪ {∞} with
𝛼(0) = 0 such that

𝜙𝜂 ( ·; 𝑥0 ) = 𝜙 (𝛼( ·); 𝑥0 ) ∈ S𝜂 (𝑥0 ) .
Conversely, if 𝜙𝜂 ( ·; 𝑥0 ) ∈ S𝜂 (𝑥0 ) then

𝜙𝜂 (𝛼−1 ( ·); 𝑥0 ) ∈ S(𝑥0 )
is satisfied. Moreover, in the limit, the solutions satisfy

lim
𝑡→𝑇

|𝜙 (𝑡; 𝑥0 ) | = lim
𝑡→𝑀

|𝜙𝜂 (𝑡; 𝑥0 ) |.

{ In particular, stability properties are preserved.
{ If 𝑇 = 𝑀 = ∞ both solutions are forward complete (𝛼 ∈ K∞ )

P. Braun (ANU) (In-)Stability of Differential Inclusions 5 / 25



Differential inclusions (Time Scaling, 2)

Corollary

Consider ¤𝑥 ∈ 𝐹 (𝑥 ) satisfying the basic assumption. Then there
exists a continuous positive function 𝜂 : R≥0 → R>0 such that

𝜂 ( |𝑥 | )𝐹 (𝑥 ) ⊂ 𝐵1 (0) ∀ 𝑥 ∈ R𝑛

Moreover 𝜂 ( | · | )𝐹 ( ·) : R𝑛 ⇒ R𝑛 satisfies the basic assumption
and all solutions of the scaled differential equation are forward
complete.

In particular, we can define

𝜂 (𝑟 ) = 1
𝜈 (𝑟 ) + 1

where 𝜈 is continuous and

𝜈 (𝑟 ) ≥ 𝜈̃ (𝑟 ) = max
𝑦∈𝐹 (𝑥) , |𝑥 |=𝑟

|𝑦 |

Key takeaway:
If we want to establish asymptotic stability properties of the
origin of ¤𝑥 ∈ 𝐹 (𝑥 ) we can assume forward completeness
of solutions without loss of generality by considering an
appropriate scaling.

Robust/Strong stability Weak stability

Robust (complete) instability Weak (complete) instability
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(In)stability characterizations for ordinary differential equations
We start with differential equations

¤𝑥 = 𝑓 (𝑥 ) , 𝑥0 ∈ R𝑛

𝑓 : R𝑛 → R𝑛 locally Lipschitz
𝑓 (0) = 0
for each 𝑥0 ∈ R𝑛, S(𝑥0 ) contains a single element

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists 𝛿 ∈ K∞ such that
for all 𝜀 ≥ 0,

|𝜙 (𝑡; 𝑥0 ) | ≤ 𝜀 whenever |𝑥0 | ≤ 𝛿 (𝜀) and 𝑡 ≥ 0.

Theorem (Lyapunov stability theorem)

Given ¤𝑥 = 𝑓 (𝑥 ) , suppose there exist a smooth Lyapunov function
𝑉 : R𝑛 → R≥0 and 𝛼1, 𝛼2 ∈ K∞ such that, ∀ 𝑥 ∈ R𝑛,

𝛼1 ( |𝑥 | ) ≤ 𝑉 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ,
⟨∇𝑉 (𝑥 ) , 𝑓 (𝑥 ) ⟩ ≤ 0.

Then the origin is (globally) stable.

Definition ((Global) asymptotic stability)

The origin is asymptotically stable if it is stable and if ∀ 𝑥0 ∈ R𝑛,

|𝜙 (𝑡; 𝑥0 ) | → 0 for 𝑡 → ∞.

Theorem (Lyapunov asymptotic stability theorem)

Given ¤𝑥 = 𝑓 (𝑥 ) suppose there exist a smooth Lyapunov function
𝑉 : R𝑛 → R≥0, 𝛼1, 𝛼2 ∈ K∞, and 𝜌 ∈ P such that, ∀𝑥 ∈ R𝑛

𝛼1 ( |𝑥 | ) ≤ 𝑉 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ,
⟨∇𝑉 (𝑥 ) , 𝑓 (𝑥 ) ⟩ ≤ −𝜌( |𝑥 | ) .

Then the origin is (globally) asymptotically stable.

Definition (Instability)

The origin is unstable for the system if it is not stable.

{ There are many different types of instability
{ Here, we focus on complete instability
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We start with differential equations

¤𝑥 = 𝑓 (𝑥 ) , 𝑥0 ∈ R𝑛

𝑓 : R𝑛 → R𝑛 locally Lipschitz
𝑓 (0) = 0
for each 𝑥0 ∈ R𝑛, S(𝑥0 ) contains a single element
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(In)stability characterizations for ordinary differential equations (2)

We start with differential equations

¤𝑥 = 𝑓 (𝑥 ) , 𝑥0 ∈ R𝑛

𝑓 : R𝑛 → R𝑛 locally Lipschitz, 𝑓 (0) = 0

Definition ((Global) complete instability)

The origin is completely unstable if there exists 𝛼 ∈ K∞ such
that for all 𝛿 > 0 the condition 𝑥0 ∈ R𝑛\𝐵𝛼(𝛿) (0) implies

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝛿 ∀ 𝑡 ∈ R≥0,

|𝜙 (𝑡; 𝑥0 ) | → ∞ for 𝑡 → ∞.

Theorem (Lyapunov complete instability theorem)

Suppose there exist a smooth Chetaev function 𝐶 : R𝑛 → R≥0,
𝛼1, 𝛼2 ∈ K∞, and 𝜌 ∈ P such that, ∀ 𝑥 ∈ R𝑛,

𝛼1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ,
⟨∇𝐶 (𝑥 ) , 𝑓 (𝑥 ) ⟩≥𝜌( |𝑥 | ) .

Then the origin is (globally) completely unstable.

Theorem (Chetaev’s theorem)

Assume there exists a smooth Chetaev function 𝐶 : R𝑛 → R with
𝐶 (0) = 0 and

O𝑟 = {𝑥 ∈ 𝐵𝑟 (0) : 𝐶 (𝑥 ) > 0} ≠ ∅ ∀ 𝑟 > 0.

If for certain 𝑟 > 0,

⟨∇𝐶 (𝑥 ) , 𝑓 (𝑥 ) ⟩ > 0 ∀ 𝑥 ∈ O𝑟

then the origin is unstable.

Remark
Note that, as stated, the definition and characterizations are
essentially global as they are stated for all all 𝑥 ∈ R𝑛 and for all
𝜀 > 0. Local versions are easily obtained by restricting 𝜀 and by
restricting the attention to a domain around the origin.
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(In)stability characterizations for ordinary differential equations (A simple example)
Consider the three linear differential equations and their solutions

𝑓1 (𝑥 ) =
[

𝑥1
𝑥2

]
, 𝜙1 (𝑡; 𝑥0 ) =

[
𝑥1,0𝑒

𝑡

𝑥2,0𝑒
𝑡

]
,

𝑓2 (𝑥 ) =
[

−𝑥1
𝑥2

]
, 𝜙2 (𝑡; 𝑥0 ) =

[
𝑥1,0𝑒

−𝑡

𝑥2,0𝑒
𝑡

]
,

𝑓3 (𝑥 ) =
[

−𝑥1
−𝑥2

]
, 𝜙3 (𝑡; 𝑥0 ) =

[
𝑥1,0𝑒

−𝑡

𝑥2,0𝑒
−𝑡

]
.

Chetaev function for complete instability: 𝐶1 (𝑥 ) = 𝑥𝑇 𝑥

⟨∇𝐶1, 𝑓1 (𝑥 ) ⟩ = 2𝑥𝑇 𝑥

Chetaev function for instability: 𝐶2 (𝑥 ) = −𝑥2
1 + 𝑥2

2

⟨∇𝐶2, 𝑓2 (𝑥 ) ⟩ = 2𝑥𝑇 𝑥

Lyapunov function for asymptotic stability: 𝑉3 (𝑥 ) = 𝑥𝑇 𝑥

⟨∇𝑉3, 𝑓3 (𝑥 ) ⟩ = −2𝑥𝑇 𝑥
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Simple observation:
¤𝑥 = 𝑓 (𝑥 ) , 0 is asymptotically stable ⇐⇒ ¤𝑥 = − 𝑓 (𝑥 ) , 0 is completely unstable

⟨∇𝑉 (𝑥 ) , 𝑓 (𝑥 ) ⟩ ≤ −𝜌( |𝑥 | ) 𝑉=𝐶⇐⇒ ⟨∇𝐶 (𝑥 ) , − 𝑓 (𝑥 ) ⟩ ≥ 𝜌( |𝑥 | )
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(In)stability characterizations for ordinary differential equations (Local complete instability)

Recall the definition:

Definition ((Global) complete instability)
The origin is completely unstable if there exists 𝛼 ∈ K∞ such
that for all 𝛿 > 0 the condition 𝑥0 ∈ R𝑛\𝐵𝛼(𝛿) (0) implies

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝛿 ∀ 𝑡 ∈ R≥0, (2)
|𝜙 (𝑡; 𝑥0 ) | → ∞ for 𝑡 → ∞.

{ Is the condition (2) necessary?

Example

Consider the two dimensional dynamics

¤𝑥1 = (𝑐2 − 𝑥2
2 )𝑥1 + 𝑥2

¤𝑥2 = (𝑐2 − 𝑥2
2 )𝑥2

with parameter 𝑐 ∈ R>0.
For 𝑥2

2 = 𝑐2 the dynamics reduce to ¤𝑥1 = 𝑥2 and ¤𝑥2 = 0.
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Note that:
𝛼 ∈ K∞ is necessary to ensure that solutions starting
arbitrarily far away from 0 stay arbitrarily far away from 0
∀𝑡 ∈ R≥0 for global complete instability.
If we restrict our analysis of complete instability of 0 to
𝐵 1

2 𝑐
(0) , then 0 is locally completely unstable.

{ Is the condition (2) necessary for local complete instability?
(I don’t know.)
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(In)stability characterizations for ordinary differential equations (Attractive but not stable)

Example (Vinograd’s example)

¤𝑥 = 𝑓 (𝑥 ) = 1
|𝑥 |22 (1 + |𝑥 |42 )

[
𝑥2

1 (𝑥2 − 𝑥1 ) + 𝑥5
2

𝑥2
2 (𝑥2 − 2𝑥1 )

] Classical example of a system with globally attractive origin
(but not stable), i.e., the origin is not asymptotically stable.
The origin of time reversal dynamics ¤𝑥 = − 𝑓 (𝑥 ) is not
completely unstable
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(In)stability characterizations for ordinary differential equations (The Dini derivative)

Consider 𝜑 : R𝑛 → R

The Dini derivative at 𝑥 in direction 𝑤 ∈ R𝑛 are defined as:

𝐷+𝜑 (𝑥;𝑤) = lim sup
𝑣→𝑤; 𝑡↘0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑣) − 𝜑 (𝑥 ) ) ,

𝐷+𝜑 (𝑥;𝑤) = lim inf
𝑣→𝑤; 𝑡↘0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑣) − 𝜑 (𝑥 ) ) ,

𝐷−𝜑 (𝑥;𝑤) = lim sup
𝑣→𝑤; 𝑡↗0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑣) − 𝜑 (𝑥 ) ) ,

𝐷−𝜑 (𝑥;𝑤) = lim inf
𝑣→𝑤; 𝑡↗0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑣) − 𝜑 (𝑥 ) ) .

(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions 𝜑:
The upper right Dini derivative simplifies to

𝐷+𝜑 (𝑥;𝑤) = lim sup
𝑡↘0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑤) − 𝜑 (𝑥 ) ) .

(The remaining Dini derivatives simplify in the same way.)
The Dini derivative is finite
The Dini derivatives can all be different

If 𝜑 is differentiable in 𝑥 ∈ R𝑛, then

⟨∇𝜑 (𝑥 ) , 𝑤⟩ = 𝐷+𝜑 (𝑥;𝑤)

For 𝜙 ( ·; 𝑥0 ) : R≥0 → R𝑛 smooth and 𝑉 : R𝑛 → R≥0 smooth,
¤𝑉 (𝜙 (𝑡; 𝑥0 ) ) = ⟨∇𝑉 (𝜙 (𝑡; 𝑥0 ) ) , ¤𝜙 (𝑡; 𝑥0 ) ⟩. (3)

indicates the derivative of 𝑉 along the function 𝜙. If 𝜙 is
absolutely continuous and 𝑉 is Lipschitz continuous, then (3)
holds for almost all 𝑡 ∈ R.
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Consider 𝜑 : R𝑛 → R

The Dini derivative at 𝑥 in direction 𝑤 ∈ R𝑛 are defined as:

𝐷+𝜑 (𝑥;𝑤) = lim sup
𝑣→𝑤; 𝑡↘0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑣) − 𝜑 (𝑥 ) ) ,

𝐷+𝜑 (𝑥;𝑤) = lim inf
𝑣→𝑤; 𝑡↘0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑣) − 𝜑 (𝑥 ) ) ,

𝐷−𝜑 (𝑥;𝑤) = lim sup
𝑣→𝑤; 𝑡↗0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑣) − 𝜑 (𝑥 ) ) ,

𝐷−𝜑 (𝑥;𝑤) = lim inf
𝑣→𝑤; 𝑡↗0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑣) − 𝜑 (𝑥 ) ) .

(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions 𝜑:
The upper right Dini derivative simplifies to

𝐷+𝜑 (𝑥;𝑤) = lim sup
𝑡↘0

1
𝑡
(𝜑 (𝑥 + 𝑡𝑤) − 𝜑 (𝑥 ) ) .

(The remaining Dini derivatives simplify in the same way.)
The Dini derivative is finite
The Dini derivatives can all be different

If 𝜑 is differentiable in 𝑥 ∈ R𝑛, then

⟨∇𝜑 (𝑥 ) , 𝑤⟩ = 𝐷+𝜑 (𝑥;𝑤)

For 𝜙 ( ·; 𝑥0 ) : R≥0 → R𝑛 smooth and 𝑉 : R𝑛 → R≥0 smooth,
¤𝑉 (𝜙 (𝑡; 𝑥0 ) ) = ⟨∇𝑉 (𝜙 (𝑡; 𝑥0 ) ) , ¤𝜙 (𝑡; 𝑥0 ) ⟩. (3)

indicates the derivative of 𝑉 along the function 𝜙. If 𝜙 is
absolutely continuous and 𝑉 is Lipschitz continuous, then (3)
holds for almost all 𝑡 ∈ R.
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Strong KL-stability and Lyapunov functions

Consider: ¤𝑥 ∈ 𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛

Assume 𝐹 satisfies the basic conditions

Definition (Global asymptotic stability)

The differential inclusion is uniformly globally asymptotically
stable with respect to 0 ∈ R𝑛 if the following properties are
satisfied. There exists a function 𝛿 ∈ K∞ such that for all 𝜀 ≥ 0
and for all 𝜙 ∈ S(𝑥0 ) ,

|𝜙 (𝑡; 𝑥0 ) | ≤ 𝜀 whenever |𝑥0 | ≤ 𝛿 (𝜀) and 𝑡 ≥ 0,
|𝜙 (𝑡; 𝑥0 ) | → 0 for 𝑡 → ∞.

Definition ((Strong) KL-stability)

The differential inclusion is strongly KL-stable with respect to
0 ∈ R𝑛 if there exists 𝛽 ∈ KL, such that for all 𝑥0 ∈ R𝑛 every
solution 𝜙 ∈ S(𝑥0 ) satisfies

|𝜙 (𝑡; 𝑥0 ) | ≤ 𝛽 ( |𝑥0 | , 𝑡 ) , ∀ 𝑡 ∈ R≥0.

Theorem

The differential inclusion is uniformly globally asymptotically
stable with respect to 0 if and only if it is (strongly) KL-stable.

Definition ((Robust) Lyapunov function)

A continuous function 𝑉 : R𝑛 → R is called a (robust) Lyapunov
function if there exist 𝛼1, 𝛼2 ∈ K∞ and 𝜌 ∈ P such that

𝛼1 ( |𝑥 | ) ≤ 𝑉 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀𝑥 ∈ R𝑛

max
𝑤∈𝐹 (𝑥)

𝐷+𝑉 (𝑥;𝑤) ≤ −𝜌( |𝑥 | ) ∀𝑥 ∈ R𝑛

Theorem (Stability characterization)

The following are equivalent.
The differential inclusion is strongly KL-stable with
respect to the origin.
There exists a smooth Lyapunov function
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K∞K∞-instability and Chetaev functions

Consider: ¤𝑥 ∈ 𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛

Assume 𝐹 satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 ∈ R𝑛 if the following properties are satisfied. There
exists a function 𝛿 ∈ K∞ such that for all 𝜀 > 0 and for all
solutions 𝜙 ∈ S(𝑥0 ) ,

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝜀 for all 𝑡 ≥ 0,
|𝜙 (𝑡; 𝑥0 ) | → ∞ for 𝑡 → ∞,

whenever |𝑥0 | ≥ 𝛿 (𝜀) .

Definition (K∞K∞-functions)

Consider the continuous function 𝜅 : R2
≥0 → R≥0.

𝜅 is said to be of class K∞K∞ (𝜅 ∈ K∞K∞) if
𝜅 ( ·, 𝑠) ∈ K∞ ∀ 𝑠 ∈ R≥0 and 𝜅 (𝑠, · ) − 𝜅 (𝑠, 0) ∈ K∞
∀ 𝑠 ∈ R>0.

Example:
𝜅 (𝑠, 𝑡 ) = 𝑐𝑒𝜆𝑡 𝑠 ∈ K∞K∞ if 𝜆 > 0, 𝑐 > 0
𝜅 (𝑠, 𝑡 ) = (𝑡 + 1)𝑠 ∈ K∞K∞

Definition (Strong K∞K∞-instability)

The differential inclusion is strongly K∞K∞-unstable with
respect to 0 ∈ R𝑛 if there exists 𝜅 ∈ K∞K∞ such that, for all
𝑥0 ∈ R𝑛 every solution 𝜙 ∈ S(𝑥0 ) satisfies

|𝜙 (𝑡; 𝑥0 ) |≥𝜅 ( |𝑥0 | , 𝑡 ) , ∀ 𝑡 ∈ R≥0.
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K∞K∞-instability and Chetaev functions (2)

Consider: ¤𝑥 ∈ 𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛

Assume 𝐹 satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 ∈ R𝑛 if the following properties are satisfied. There
exists a function 𝛿 ∈ K∞ such that for all 𝜀 > 0 and for all
solutions 𝜙 ∈ S(𝑥0 ) ,

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝜀 for all 𝑡 ≥ 0,
|𝜙 (𝑡; 𝑥0 ) | → ∞ for 𝑡 → ∞,

whenever |𝑥0 | ≥ 𝛿 (𝜀) .

Definition (Strong K∞K∞-instability)

The differential inclusion is strongly K∞K∞-unstable with respect
to 0 ∈ R𝑛 if there exists 𝜅 ∈ K∞K∞ such that, for all 𝑥0 ∈ R𝑛
every solution 𝜙 ∈ S(𝑥0 ) satisfies

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝜅 ( |𝑥0 | , 𝑡 ) , ∀ 𝑡 ∈ R≥0.

Theorem

The differential inclusion is strongly completely unstable with
respect to 0 if and only if the origin is strongly K∞K∞-unstable.

Definition ((Robust) Chetaev function)

A continuous function 𝐶 : R𝑛 → R is called a Chetaev function
for the differential inclusion if there exist 𝛼1, 𝛼2 ∈ K∞ and
𝜌 ∈ P such that

𝛼1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤)≥𝜌( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

Theorem (Instability characterization)
The following are equivalent.

The differential inclusion is strongly K∞K∞-unstable.
There exists a smooth Chetaev function.
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Relations between Chetaev and Lyapunov functions & scaling

Lemma

Consider ¤𝑥 ∈ 𝐹 (𝑥 ) satisfying the basic condition and
¤𝑥 ∈ 𝜂 ( |𝑥 | )𝐹 (𝑥 ) for a Lipschitz 𝜂 : R≥0 → R>0.

Assume 𝑉 is a smooth Lyapunov function for ¤𝑥 ∈ 𝐹 (𝑥 ) .
Then 𝑉 is a smooth Lyapunov function of ¤𝑥 ∈ 𝜂 ( |𝑥 | )𝐹 (𝑥 ) .
Assume 𝐶 is a smooth Chetaev function for ¤𝑥 ∈ 𝐹 (𝑥 ) .
Then 𝐶 is a smooth Chetaev function of ¤𝑥 ∈ 𝜂 ( |𝑥 | )𝐹 (𝑥 ) .

Proof.
Let 𝑉 denote a smooth Lyapunov function. Then there exists
𝜌 ∈ P such that

max
𝑤∈𝐹 (𝑥)

⟨∇𝑉 (𝑥 ) , 𝑤⟩ ≤ −𝜌( |𝑥 | ) 𝑥 ∈ R𝑛.

max
𝑤∈𝜂 ( |𝑥 |)𝐹 (𝑥)

⟨∇𝑉 (𝑥 ) , 𝑤⟩ = max
𝑤∈𝐹 (𝑥)

⟨∇𝑉 (𝑥 ) , 𝜂 ( |𝑥 | )𝑤⟩

≤ −𝜂 ( |𝑥 | )𝜌( |𝑥 | ) = 𝜌̃( |𝑥 | )
□

{ Solutions are forward complete w.l.o.g.

Corollary

Consider ¤𝑥 ∈ 𝐹 (𝑥 ) satisfying basic conditions together with
¤𝑥 ∈ −𝐹 (𝑥 )

Let 𝑉 be a smooth Lyapunov function for ¤𝑥 ∈ 𝐹 (𝑥 ) . Then
𝐶 = 𝑉 is a smooth Chetaev function for ¤𝑥 ∈ −𝐹 (𝑥 ) .
Let 𝐶 be a smooth Chetaev function for ¤𝑥 ∈ 𝐹 (𝑥 ) . Then
𝑉 = 𝐶 is a smooth Lyapunov function for ¤𝑥 ∈ −𝐹 (𝑥 ) .

Proof.
Let 𝑉 denote a smooth Lyapunov function for ¤𝑥 ∈ 𝐹 (𝑥 ) . Then
there exists 𝜌 ∈ P such that

−𝜌( |𝑥 | ) ≥ max
𝑤∈𝐹 (𝑥)

⟨∇𝑉 (𝑥 ) , 𝑤⟩ = − min
𝑤∈𝐹 (𝑥)

−⟨∇𝑉 (𝑥 ) , 𝑤⟩

for all 𝑥 ∈ R𝑛. Equivalently

𝜌( |𝑥 | ) ≥ min
𝑤∈𝐹 (𝑥)

−⟨∇𝑉 (𝑥 ) , 𝑤⟩ = min
𝑤∈−𝐹 (𝑥)

⟨∇𝑉 (𝑥 ) , 𝑤⟩

i.e., 𝐶 = 𝑉 is a Chetaev function for ¤𝑥 ∈ −𝐹 (𝑥 ) . □
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Weak (in)stability of differential inclusions & Lyapunov characterizations

Weak KL-stability and control Lyapunov functions

Definition (Global asymptotic stabilizability)

¤𝑥 ∈ 𝐹 (𝑥 ) is uniformly globally asymptotically stabilizable with
respect to 0 if the following are satisfied. There exists a function
𝛿 ∈ K∞ such that for all 𝜀 ≥ 0 and all 𝑥0 ∈ R𝑛 with
|𝑥0 | ≤ 𝛿 (𝜀) there exists 𝜙 ∈ S(𝑥0 ) with

|𝜙 (𝑡; 𝑥0 ) | ≤ 𝜀 for all 𝑡 ≥ 0 and
|𝜙 (𝑡; 𝑥0 ) | → 0 for 𝑡 → ∞.

Definition (Weak KL-stability)
¤𝑥 ∈ 𝐹 (𝑥 ) is weakly KL-stable with respect to the equilibrium 0
if there exists 𝛽 ∈ KL such that, for all 𝑥0 ∈ R𝑛 there exists
𝜙 ∈ S(𝑥0 ) with

|𝜙 (𝑡; 𝑥0 ) | ≤ 𝛽 ( |𝑥0 | , 𝑡 ) , ∀ 𝑡 ∈ R≥0.

Corollary

Consider ¤𝑥 ∈ 𝐹 (𝑥 ) satisfying the basic conditions. ¤𝑥 ∈ 𝐹 (𝑥 ) is
globally asymptotically stabilizable with respect to 0 if and only if
it is is weakly KL-stable.

Definition (Control Lyapunov function)

A continuous function 𝑉 : R𝑛 → R is called control Lyapunov
function for ¤𝑥 ∈ 𝐹 (𝑥 ) if there exist 𝛼1, 𝛼2 ∈ K∞ and 𝜌 ∈ P and

𝛼1 ( |𝑥 | ) ≤ 𝑉 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝑉 (𝑥;𝑤) ≤ −𝜌( |𝑥 | ) ∀𝑥 ∈ R𝑛

Theorem

Suppose 𝐹 satisfies the basic conditions and is Lipschitz. Then
the following are equivalent.

¤𝑥 ∈ 𝐹 (𝑥 ) is weakly KL-stable.
There exists a Lipschitz control Lyapunov function.
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Weak (in)stability of differential inclusions & Lyapunov characterizations

Weak KL-stability and control Lyapunov functions
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Weak K∞K∞-instability and control Chetaev functions

Definition (Weak complete instability)

¤𝑥 ∈ 𝐹 (𝑥 ) is weakly completely unstable with respect to 0 if the
following properties are satisfied. There exists a function
𝛿 ∈ K∞ such that for all 𝜀 > 0 and all 𝑥0 ∈ R𝑛 with
|𝑥0 | ≥ 𝛿 (𝜀) there exists 𝜙 ∈ S(𝑥0 ) with

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝜀 for all 𝑡 ≥ 0 and
|𝜙 (𝑡; 𝑥0 ) | → ∞ for 𝑡 → ∞.

Definition (Weak K∞K∞-instability)

¤𝑥 ∈ 𝐹 (𝑥 ) is weakly K∞K∞-unstable with respect to 0 if there
exists 𝜅 ∈ K∞K∞ such that, for all 𝑥0 ∈ R𝑛 there exists
𝜙 ∈ S(𝑥0 ) so that

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝜅 ( |𝑥0 | , 𝑡 ) for all 𝑡 ≥ 0.

Corollary

Consider ¤𝑥 ∈ 𝐹 (𝑥 ) satisfying the basic conditions. ¤𝑥 ∈ 𝐹 (𝑥 ) is
weakly completely unstable with respect to 0 if and only if it is is
weakly K∞K∞-unstable.

Definition (Control Chetaev function)

A continuous function 𝐶 : R𝑛 → R is called control Chetaev
function for ¤𝑥 ∈ 𝐹 (𝑥 ) if there exist 𝛼1, 𝛼2 ∈ K∞ and 𝜌 ∈ P
such that

𝛼1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀𝑥 ∈ R𝑛

max
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ∀𝑥 ∈ R𝑛

Theorem

Suppose 𝐹 satisfies the basic conditions and is Lipschitz. Then
the following are equivalent.

The origin of ¤𝑥 ∈ 𝐹 (𝑥 ) is weakly K∞K∞-unstable.
There exists a continuous control Chetaev function.
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When are nonsmooth control Lyapunov/Chetaev functions necessary? (Examples)

Consider the differential inclusion

¤𝑥 ∈ 𝐹 (𝑥 ) = conv{ 𝑓 (𝑥, 𝑢) |𝑢 ∈ U(𝑥 ) }
where 𝑓 (𝑥, 𝑢) and U are defined as

𝑓 (𝑥, 𝑢) =
[

1 0
0 −1

]
𝑥 +

[
1
0

]
𝑢 and

U(𝑥 ) = [−2 |𝑥 | , 2 |𝑥 | ] .
Assume there exists a smooth control Chetaev function 𝐶.

Then, 𝑉 = 𝐶 is a CLF for ¤𝑥 = − 𝑓 (𝑥, 𝑢):
sup

𝑢∈U(𝑥)
⟨∇𝐶 (𝑥 ) , 𝑓 (𝑥, 𝑢) ⟩ ≥ 𝜌( |𝑥 | ) ⇐⇒

min
𝑢∈U(𝑥)

⟨∇𝐶 (𝑥 ) , − 𝑓 (𝑥, 𝑢) ⟩ ≤ −𝜌( |𝑥 | ) .

The second component 𝑥2 of − 𝑓 , is not stabilizable to the
origin, i.e., a smooth CLF cannot exist and thus a smooth
CCF cannot exist
However, intuitively it should be clear that the origin is
weakly completely unstable

Nonsmooth control Chetaev function:

𝐶 (𝑥 ) = 2 |𝑥1 | + |𝑥2 |

-2 -1 0 1 2

-2

-1

0

1

2

Corollary
There are differential inclusions satisfying basic conditions and
𝐹 locally Lipschitz which are weakly K∞K∞-unstable and which
do not admit smooth control Chetaev functions.
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Relations between control Chetaev functions, control Lyapunov functions, and scaling

Note that
Results on the positive scaling ¤𝑥 ∈ 𝜂 ( |𝑥 | )𝐹 (𝑥 ) remain
valid in the weak setting
The connections between ¤𝑥 ∈ 𝐹 (𝑥 ) and ¤𝑥 ∈ −𝐹 (𝑥 )
established in the strong setting are in general not satisfied
in the weak setting

In particular, let 𝑉 be a control Lyapunov function for ¤𝑥 ∈ 𝐹 (𝑥 ) ,
i.e., for 𝜌 ∈ P for all 𝑥 ∈ R𝑛

−𝜌( |𝑥 | ) ≥ min
𝑤∈𝐹 (𝑥)

𝐷+𝑉 (𝑥;𝑤)

This implies that

𝜌( |𝑥 | ) ≤ max
𝑤∈𝐹 (𝑥)

−𝐷+𝑉 (𝑥;𝑤)

= max
𝑤∈𝐹 (𝑥)

(
− lim inf

𝑣→𝑤; 𝑡↘0
1
𝑡
(𝑉 (𝑥 + 𝑡𝑣) − 𝑉 (𝑥 ) )

)
= max

𝑤∈𝐹 (𝑥)
lim sup

𝑣→𝑤; 𝑡↘0
− 1

𝑡
(𝑉 (𝑥 + 𝑡𝑣) − 𝑉 (𝑥 ) )

= max
𝑤∈𝐹 (𝑥)

lim sup
𝑣→𝑤; 𝑡↗0

1
𝑡
(𝑉 (𝑥 − 𝑡𝑣) − 𝑉 (𝑥 ) )

= max
𝑤∈−𝐹 (𝑥)

lim sup
𝑣→𝑤; 𝑡↗0

1
𝑡
(𝑉 (𝑥 + 𝑡𝑤) − 𝑉 (𝑥 ) )

= max
𝑤∈−𝐹 (𝑥)

𝐷−𝑉 (𝑥;𝑤) .

{ The left Dini derivative cannot be used to define a CCF for
¤𝑥 ∈ −𝐹 (𝑥 ) .
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Relations between control Chetaev functions, control Lyapunov functions (Artstein’s Circles)

Consider (𝑢 ∈ [−1, 1] = U)

¤𝑥1 (𝑡 ) =
(
−𝑥1 (𝑡 )2 + 𝑥2 (𝑡 )2

)
𝑢(𝑡 ) ,

¤𝑥2 (𝑡 ) = (−2𝑥1 (𝑡 )𝑥2 (𝑡 ) ) 𝑢(𝑡 )
(the origin is weakly KL-stable)
Control Lyapunov function:

𝑉 (𝑥 ) =
√︃

4𝑥2
1 + 3𝑥2

2 − |𝑥1 |

-1 -0.5 0 0.5 1

-1

-0.5

0

0.5

1

-4 -2 0 2 4

-4

-2

0

2

4

-4 -2 0 2 4

-4

-2

0

2

4

All solutions corresponding to 𝑥0 ∈ R2\(R × {0}) are
bounded

{ The origin is not weakly K∞K∞-unstable.

Corollary

Weak KL-stability of the origin for ¤𝑥 ∈ 𝐹 (𝑥 ) is not equivalent
to weak K∞K∞-instability of the origin for ¤𝑥 ∈ −𝐹 (𝑥 ) .
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Relations between control Chetaev functions, control Lyapunov functions (Brockett integrator)

Example
Consider the dynamics of the Brockett integrator,

𝐹 (𝑥 ) = conv{ 𝑓 (𝑥, 𝑢) |𝑢 ∈ U}
defined through

𝑓 (𝑥, 𝑢) =


𝑢1
𝑢2

𝑥1𝑢2 − 𝑥2𝑢1

 and U = [−1, 1]2 .

(Note that the dynamics in forward time are equivalent to the dynamics in backward time.)
It can be shown that

𝑉 (𝑥 ) = 𝑥2
1 + 𝑥2

2 + 2𝑥2
3 − 2 |𝑥3 |

√︃
𝑥2

1 + 𝑥2
2

is CLF but not a CCF.
It can be shown that

𝐶 (𝑥 ) = |𝑥1 | + |𝑥2 | + |𝑥3 |
is a CCF but not a CLF
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Comparison to control barrier function results

Consider the control affine system

¤𝑥 = 𝑓 (𝑥 ) + 𝑔 (𝑥 )𝑢
𝑓 , 𝑔 locally Lipschitz
C ⊂ R𝑛 is called forward invariant if for every 𝑥0 ∈ C,

𝜙 (𝑡; 𝑥0 ) ∈ C, ∀𝑡 ∈ R≥0
▶ (in the strong sense) ∀𝜙 ∈ S(𝑥0 )
▶ (in the weak sense) ∃𝜙 ∈ S(𝑥0 )

For 𝑢 = 𝑘 (𝑥 ) Lipschitz, ¤𝑥 = 𝑓 (𝑥 ) + 𝑔 (𝑥 )𝑘 (𝑥 ) is called
safe with respect to C if C is forward invariant.

Definition (Control barrier function (CBF))

Let C ⊂ R𝑛 be the superlevel set

C = {𝑥 ∈ R𝑛 | 𝐵(𝑥 ) ≥ 0}.
of a smooth function 𝐵 : R𝑛 → R. Then 𝐵 is a CBF if there
exists an extended class K∞ function 𝛿 : R→ R such that

sup
𝑢∈U

(
⟨∇𝐵(𝑥 ) , 𝑓 (𝑥 ) ⟩ + ⟨∇𝐵(𝑥 ) , 𝑔 (𝑥 ) ⟩𝑢

)
≥ −𝛿 (𝐵(𝑥 ) ) (4)

𝛿, extended K∞ function if there exist 𝛼1, 𝛼2 ∈ K∞ so
that 𝛿 (𝑟 ) = 𝛼1 (𝑟 ) and 𝛿 (−𝑟 ) = −𝛼2 (𝑟 ) for all 𝑟 ∈ R≥0.
If 𝐵(𝑥 ) is a control barrier function, then C is safe and
asymptotically stable with respect to ¤𝑥 = 𝑓 (𝑥 ) + 𝑔 (𝑥 )𝑢
and a control law 𝑢 = 𝑘 (𝑥 ) satisfying inequality (4).
Note that, if 𝐵(𝑥 ) is large, (4) is not restrictive.
Note that, for 𝑥 ∈ {𝑥 ∈ R𝑛 | 𝐵(𝑥 ) = 0}, (4) is restrictive
CBFs are usually used in the context of invariance (not
(in)stability)

In combination with CLFs 𝑉 :

𝑢 = 𝑘 (𝑥 ) = argmin𝑢
(𝑢,𝛾) ∈U×R

𝑢𝑇𝑢 + 𝛾2

subject to ⟨∇𝑉 (𝑥 ) , 𝑓 (𝑥 ) + 𝑔 (𝑥 )𝑢⟩ ≤ −𝜌( |𝑥 | ) + 𝛾

⟨∇𝐵(𝑥 ) , 𝑓 (𝑥 ) + 𝑔 (𝑥 )𝑢⟩ ≥ −𝛿 (𝐵(𝑥 ) ) ,
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Complete control Lyapunov functions: Stability & Avoidance

Definition (Weak KL-stab. with avoidance prop.)
Let O ⊂ R𝑛, 0 ∉ O, be open. ¤𝑥 ∈ 𝐹 (𝑥 ) is weakly KL-stable
with respect to 0 with avoidance property with respect to O, if
there exists 𝛽 ∈ KL such that, for each 𝑥0 ∈ R𝑛\O, there exists
𝜙 ( ·; 𝑥0 ) ∈ S(𝑥0 ) so that

|𝜙 (𝑡; 𝑥0 ) | ≤ 𝛽 ( |𝑥0 | , 𝑡 ) and 𝜙 (𝑡; 𝑥0 ) ∉ O ∀ 𝑡 ≥ 0.

Consider the special case: O =
⋃𝑁

𝑖=1 O𝑖 for O1, . . . , O𝑁 open and
for simplicity assume 𝑁 = 1 in the following.

0 1 2
-1.5

-1

-0.5

0

0.5

1

1.5

Definition (Complete control Lyapunov function)

Suppose 𝐹 satisfies the basic condition and is Lipschitz. Let
O1 ⊂ R𝑛 define an open set and let 𝑉𝐶 : R𝑛 → R be a cont.
function. Assume there exist 𝛼1, 𝛼2 ∈ K∞ and 𝜌 ∈ P such that
the following are satisfied. There exists 𝑐1 ∈ R>0 such that

𝑉𝐶 (𝑥 ) = 𝑐1 ∀𝑥 ∈ 𝜕O1 and 𝑐1 ≤ inf
𝑥∈O1

𝑉𝐶 (𝑥 ) .

𝛼1 ( |𝑥 | ) ≤ 𝑉𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) , ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝑉𝐶 (𝑥;𝑤) ≤ −𝜌(𝑥 ) , ∀ 𝑥 ∈ R𝑛\O1.

Then 𝑉𝐶 is called complete control Lyapunov function.

Theorem

Consider ¤𝑥 ∈ 𝐹 (𝑥 ) satisfying the basic conditions and assume
𝐹 is Lipschitz. Let O1 be open and let 𝑉𝐶 : R𝑛 → R be a
complete control Lyapunov function. Then ¤𝑥 ∈ 𝐹 (𝑥 ) is weakly
KL-stable with respect to the origin and has the avoidance
property with respect to O1.

{ If O1 is bounded, 𝑉𝐶 is necessarily nonsmooth.
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Overview

¤𝑥 ∈ 𝜂 ( |𝑥 | )𝐹 (𝑥 )
𝜂 : R≥0 → R>0

¤𝑥 ∈ 𝐹 (𝑥 ) ¤𝑥 ∈ −𝐹 (𝑥 )

strong complete
instability

strong complete
instability

(strong) asymptotic
stability

∃ 𝜅 ∈ K∞K∞
strong K∞K∞-instability

∃ 𝛽 ∈ KL
(strong) KL-stability

∃ 𝐶 : R𝑛 → R≥0
smooth Chetaev fcn.

∃ 𝑉 : R𝑛 → R≥0
smooth Lyapunov fcn.

weak complete
instability

weak complete
instability

asymptotic
stabilizability

∃ 𝜅 ∈ K∞K∞
weak K∞K∞-instability

∃ 𝛽 ∈ KL
weak KL-stability

∃ 𝐶 : R𝑛 → R≥0
control Chetaev fcn.

∃ 𝑉 : R𝑛 → R≥0
control Lyapunov fcn.

𝐶 = 𝑉

\ \

\ \

\ \
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K∞K∞-instability and Chetaev functions
Consider: ¤𝑥 ∈ 𝐹 (𝑥 ) , 𝑥0 ∈ R𝑛

Assume 𝐹 satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 ∈ R𝑛 if the following properties are satisfied. There
exists a function 𝛿 ∈ K∞ such that for all 𝜀 > 0 and for all
solutions 𝜙 ∈ S(𝑥0 ) ,

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝜀 for all 𝑡 ≥ 0,
|𝜙 (𝑡; 𝑥0 ) | → ∞ for 𝑡 → ∞,

whenever |𝑥0 | ≥ 𝛿 (𝜀) .

Definition (K∞K- and K∞K∞-functions)

Consider the continuous function 𝜅 : R2
≥0 → R≥0.

𝜅 is said to be of class K∞K (𝜅 ∈ K∞K) if 𝜅 ( ·, 𝑠) ∈ K∞
∀ 𝑠 ∈ R≥0 and 𝜅 (𝑠, · ) − 𝜅 (𝑠, 0) ∈ K ∀ 𝑠 ∈ R>0.
𝜅 is said to be of class K∞K∞ (𝜅 ∈ K∞K∞) if
𝜅 ( ·, 𝑠) ∈ K∞ ∀ 𝑠 ∈ R≥0 and 𝜅 (𝑠, · ) − 𝜅 (𝑠, 0) ∈ K∞
∀ 𝑠 ∈ R>0.

Example:
𝜅 (𝑠, 𝑡 ) = 𝑐𝑒𝜆𝑡 𝑠 ∈ K∞K∞ if 𝜆 > 0, 𝑐 > 0
𝜅 (𝑠, 𝑡 ) = (𝑡 + 1)𝑠 ∈ K∞K∞

Definition (Strong K∞K∞-instability)

The differential inclusion is strongly K∞K∞-unstable with
respect to 0 ∈ R𝑛 if there exists 𝜅 ∈ K∞K∞ such that, for all
𝑥0 ∈ R𝑛 every solution 𝜙 ∈ S(𝑥0 ) satisfies

|𝜙 (𝑡; 𝑥0 ) |≥𝜅 ( |𝑥0 | , 𝑡 ) , ∀ 𝑡 ∈ R≥0.
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𝑥0 ∈ R𝑛 every solution 𝜙 ∈ S(𝑥0 ) satisfies

|𝜙 (𝑡; 𝑥0 ) |≥𝜅 ( |𝑥0 | , 𝑡 ) , ∀ 𝑡 ∈ R≥0.

Can 𝜅 ∈ K∞K∞ be replaced by 𝜅 ∈ K∞K in the Definition?

Example (Counterexample)
Consider ¤𝑥 = 0 which has 0 as a stable equilibrium. Assume that
𝜅 ∈ K∞K is used to define complete instability and consider

𝜅 (𝑟 , 𝑡 ) = 1
2 𝑟 (2 − 𝑒−𝑡 ) ∈ K∞K \ K∞K∞.

For all 𝑥0 ∈ R𝑛 and for all 𝑡 ∈ R≥0 it holds that

|𝜙 (𝑡; 𝑥0 ) | = |𝑥0 | ≥ 1
2 |𝑥0 | (2 − 𝑒−𝑡 ) = 𝜅 ( |𝑥0 | , 𝑡 )
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|𝜙 (𝑡; 𝑥0 ) |≥𝜅 ( |𝑥0 | , 𝑡 ) , ∀ 𝑡 ∈ R≥0.

Definition (Local Strong K∞K∞-instability)

Let 0 ∈ O ⊂ R𝑛 be an open neighborhood. 0 ∈ R𝑛 is locally
strongly completely unstable with respect to the differential
inclusion and O if there exists a 𝜅 ∈ K∞K∞ such that, for all
𝑥0 ∈ O every solution 𝜙 ∈ S(𝑥0 ) satisfies

|𝜙 (𝑡; 𝑥0 ) | ≥ 𝜅 ( |𝑥0 | , 𝑡 ) ,
for all 𝑡 ∈ R≥0 such that 𝜙 (𝑡; 𝑥0 ) ∈ O.
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KL-stability with respect to (two) measures

Consider two measures 𝜔1, 𝜔2 : G → R≥0, i.e., two
positive functions from an open set G ⊂ R𝑛 to the positive
real numbers.
Then ¤𝑥 ∈ 𝐹 (𝑥 ) is called KL-stable with respect to
(𝜔1, 𝜔2 ) on G if there exists a KL-function 𝛽 such that
for all 𝑥 ∈ G,

𝜔1 (𝜙 (𝑡; 𝑥0 ) ) ≤ 𝛽 (𝜔2 (𝑥0 ) , 𝑡 ) ∀ 𝑡 ≥ 0
and 𝜙 (𝑡; 𝑥0 ) ∈ G ∀𝜙 ∈ S(𝑥0 ) ∀ 𝑡 ≥ 0.

Note that:
For G = R𝑛 and 𝜔1 (𝑥 ) = 𝜔2 (𝑥 ) = |𝑥 |, the definition of
(string) KL-stability of the origin is recovered.
For G ⊂ R𝑛\{0} excluding the origin, the measures
𝜔1 (𝑥 ) = 𝜔2 (𝑥 ) = 1

|𝑥 | ensure certain instability properties.
In particular, the bound

|𝜙 (𝑡; 𝑥0 ) | ≥
(
𝛽

(��� 1
𝑥0

��� , 𝑡))−1

is obtained.

In the context of Lyapunov functions:
A Lyapunov function characterizing KL-stability with
respect to (𝜔1, 𝜔2 ) , needs to satisfy

𝛼1 (𝜔1 (𝑥 ) ) ≤ 𝑉 (𝑥 ) ≤ 𝛼2 (𝜔2 (𝑥 ) ) .

For 𝜔1 (𝑥 ) = 𝜔2 (𝑥 ) = |𝑥 |−1 this implies
1
|𝑥 | ≤ 𝑉 (𝑥 ) ≤ 1

|𝑥 |
and for 𝜔1 (𝑥 ) = 𝜔2 (𝑥 ) = |𝑥 | this implies

|𝑥 | ≤ 𝑉 (𝑥 ) ≤ |𝑥 |

As an example
▶ 𝑉 (𝑥 ) = 𝑥2 characterizes stability of ¤𝑥 = −𝑥
▶ 𝑉 (𝑥 ) = 𝑥−2 characterizes instability of ¤𝑥 = 𝑥

{ 𝑉 behaves different close to the origin
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Relations between Chetaev and Lyapunov functions & scaling (2)
Scaling of Lyapunov/Chetaev functions:

A Chetaev function satisfies:

𝛼1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

For 𝜌̂ = 𝜌 ◦ 𝛼−1
2 ∈ P, it holds that

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ≥ 𝜌(𝛼−1
2 (𝐶 (𝑥 ) ) )

= 𝜌̂(𝐶 (𝑥 ) ) .

Select 𝛼̂ ∈ K∞ continuously differentiable such that

𝛼̂′ (𝑠) > 0 and 𝜌̂(𝑠) 𝛼̂′ (𝑠) ≥ 𝛼̂(𝑠) ∀ 𝑠 ∈ R>0,

Note that for 𝐶 (𝑥 ) = 𝛼̂(𝐶 (𝑥 ) ):

𝐷+𝐶 (𝑥;𝑤) = 𝛼̂′ (𝐶 (𝑥 ) )𝐷+𝐶 (𝑥;𝑤) ∀ 𝑤 ∈ R𝑛.
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In particular the conditions
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min
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Relations between Chetaev and Lyapunov functions & scaling (2)
Scaling of Lyapunov/Chetaev functions:

A Chetaev function satisfies:

𝛼1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

For 𝜌̂ = 𝜌 ◦ 𝛼−1
2 ∈ P, it holds that

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ≥ 𝜌(𝛼−1
2 (𝐶 (𝑥 ) ) )

= 𝜌̂(𝐶 (𝑥 ) ) .

Select 𝛼̂ ∈ K∞ continuously differentiable such that

𝛼̂′ (𝑠) > 0 and 𝜌̂(𝑠) 𝛼̂′ (𝑠) ≥ 𝛼̂(𝑠) ∀ 𝑠 ∈ R>0,

Note that for 𝐶 (𝑥 ) = 𝛼̂(𝐶 (𝑥 ) ):

𝐷+𝐶 (𝑥;𝑤) = 𝛼̂′ (𝐶 (𝑥 ) )𝐷+𝐶 (𝑥;𝑤) ∀ 𝑤 ∈ R𝑛.
(chain rule with respect to the Dini derivative) and thus

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝛼̂′ (𝐶 (𝑥 ) ) 𝜌̂(𝐶 (𝑥 ) )

≥ 𝛼̂(𝐶 (𝑥 ) ) = 𝐶 (𝑥 )

As a last step define

𝛼̂1 = 𝛼̂ ◦ 𝛼1 and 𝛼̂2 = 𝛼̂ ◦ 𝛼2

which satisfies

𝛼̂1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼̂2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛 ,

In particular the conditions

𝛼1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

are equivalent to

𝛼̂1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼̂2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝐶 (𝑥 ) ∀ 𝑥 ∈ R𝑛

P. Braun (ANU) (In-)Stability of Differential Inclusions 29 / 25



Relations between Chetaev and Lyapunov functions & scaling (2)
Scaling of Lyapunov/Chetaev functions:

A Chetaev function satisfies:

𝛼1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

For 𝜌̂ = 𝜌 ◦ 𝛼−1
2 ∈ P, it holds that

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ≥ 𝜌(𝛼−1
2 (𝐶 (𝑥 ) ) )

= 𝜌̂(𝐶 (𝑥 ) ) .

Select 𝛼̂ ∈ K∞ continuously differentiable such that

𝛼̂′ (𝑠) > 0 and 𝜌̂(𝑠) 𝛼̂′ (𝑠) ≥ 𝛼̂(𝑠) ∀ 𝑠 ∈ R>0,

Note that for 𝐶 (𝑥 ) = 𝛼̂(𝐶 (𝑥 ) ):

𝐷+𝐶 (𝑥;𝑤) = 𝛼̂′ (𝐶 (𝑥 ) )𝐷+𝐶 (𝑥;𝑤) ∀ 𝑤 ∈ R𝑛.
(chain rule with respect to the Dini derivative) and thus

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝛼̂′ (𝐶 (𝑥 ) ) 𝜌̂(𝐶 (𝑥 ) )

≥ 𝛼̂(𝐶 (𝑥 ) ) = 𝐶 (𝑥 )

As a last step define

𝛼̂1 = 𝛼̂ ◦ 𝛼1 and 𝛼̂2 = 𝛼̂ ◦ 𝛼2

which satisfies

𝛼̂1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼̂2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛 ,

In particular the conditions

𝛼1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝜌( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

are equivalent to

𝛼̂1 ( |𝑥 | ) ≤ 𝐶 (𝑥 ) ≤ 𝛼̂2 ( |𝑥 | ) ∀ 𝑥 ∈ R𝑛

min
𝑤∈𝐹 (𝑥)

𝐷+𝐶 (𝑥;𝑤) ≥ 𝐶 (𝑥 ) ∀ 𝑥 ∈ R𝑛

P. Braun (ANU) (In-)Stability of Differential Inclusions 29 / 25


	Appendix

