(In-)Stability of Differential Inclusions

- Notions, Equivalences & Lyapunov-like Characterizations -

Philipp Braun

School of Engineering,

Australian National University, Canberra, Australia

In Collaboration with:

- L. Grüne: University of Bayreuth, Bayreuth, Germany
- C. M. Kellett: School of Engineering, Australian National University, Canberra, Australia
- L. Zaccarian: Dipartimento di Ingegneria Industriale, University of Trento, Italy, and LAAS-CNRS, Université de Toulouse, France

Content

Mathematical Setting & Motivation

- Differential inclusions
- (In)stability characterizations for ordinary differential equations
- The Dini derivative

Strong (in)stability of differential inclusions & Lyapunov characterizations

- Strong \mathcal{KL} -stability and Lyapunov functions
- $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and Chetaev functions
- Relations between Chetaev functions, Lyapunov functions & scaling
- \mathcal{KL} -stability with respect to (two) measures

Weak (in)stability of differential inclusions & Lyapunov characterizations

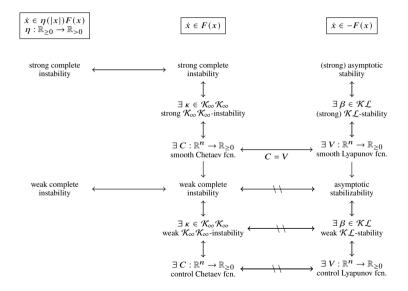
- Weak \mathcal{KL} -stability and control Lyapunov functions
- Weak $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and control Chetaev functions
- Relations between control Chetaev functions, control Lyapunov functions and scaling
- Comparison to control barrier function results

Outlook & Further Topics

- Complete control Lyapunov functions
- Combined stabilizing and destabilizing controller design using hybrid systems

	SPRINGER BRIEFS IN MATHEMATICS
l	Philipp Braun Lars Grüne Christopher M. Kellett
	(In-)Stability of Differential Inclusions Notions, Equivalences, and Lyapunov-like Characterizations
	(bcam) 🖉 Springer

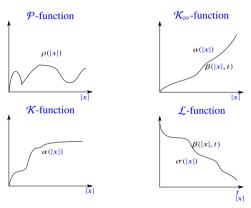
Overview



Notation: Comparison functions

A continuous function ρ : ℝ_{≥0} → ℝ_{≥0} is said to be of class
 P (ρ ∈ P) if ρ(0) = 0, and ρ(s) > 0 for all s > 0.

- A function $\alpha \in \mathcal{P}$ is said to be of class $\mathcal{K} (\alpha \in \mathcal{K})$ if it is strictly increasing.
- A function α ∈ K is said to be of class K_∞ (α ∈ K_∞) if lim_{s→∞} α(s) = ∞.
- A continuous function σ : ℝ_{≥0} → ℝ_{≥0} is said to be of class L (σ ∈ L), if it is strictly decreasing, and lim_{s→∞} σ(s) = 0.
- A continuous function β : ℝ²_{≥0} → ℝ_{≥0} is said to be of class *KL* (β ∈ *KL*) if β(·, s) ∈ *K*_∞ for all s ∈ ℝ_{≥0} and β(s, ·) ∈ *L* for all s ∈ ℝ_{≥0}.



Setting:

Differential inclusion

 $\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$

- defined through set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- we are interested in stability properties of the origin, i.e., $0 \in F(0)$ without loss of generality.

Setting:

Differential inclusion

 $\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$

- defined through set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- we are interested in stability properties of the origin, i.e., 0 ∈ F(0) without loss of generality.

Assumption (Basic conditions)

The set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ with $0 \in F(0)$ has nonempty, compact, and convex values on \mathbb{R}^n , and it is upper semicont.

Upper semicontinuity:

- For each x ∈ ℝⁿ and for all ε > 0 there exists a δ > 0 such that for all ξ ∈ B_δ(x) we have F(ξ) ⊂ F(x) + B_ε(0).
- Example:

$$F(x) = \begin{cases} [0,1], & x = 0\\ 1, & x \neq 0 \end{cases}$$

Assumption (Lipschitz continuity)

The set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ with $0 \in F(0)$ is locally Lipschitz continuous on $\mathbb{R}^n \setminus \{0\}$.

Lipschitz continuity:

• If there exists a constant L > 0 and a neighborhood $O \subset \mathbb{R}^n$ of $x \in \mathbb{R}^n \setminus \{0\}$ such that

 $F(x_1) \subset F(x_2) + B_{L|x_1 - x_2|}(0) \qquad \forall \; x_1, x_2 \in O$

Setting:

Differential inclusion

 $\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$

- defined through set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- we are interested in stability properties of the origin, i.e., 0 ∈ F(0) without loss of generality.

Assumption (Basic conditions)

The set-valued map $F : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ with $0 \in F(0)$ has nonempty, compact, and convex values on \mathbb{R}^n , and it is upper semicont.

Upper semicontinuity:

- For each x ∈ ℝⁿ and for all ε > 0 there exists a δ > 0 such that for all ξ ∈ B_δ(x) we have F(ξ) ⊂ F(x) + B_ε(0).
- Example:

$$F(x) = \begin{cases} [0,1], & x = 0\\ 1, & x \neq 0 \end{cases}$$

Assumption (Lipschitz continuity)

The set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ with $0 \in F(0)$ is locally Lipschitz continuous on $\mathbb{R}^n \setminus \{0\}$.

Lipschitz continuity:

If there exists a constant L > 0 and a neighborhood
 O ⊂ ℝⁿ of x ∈ ℝⁿ \{0} such that

 $F(x_1) \subset F(x_2) + B_{L|x_1 - x_2|}(0) \qquad \forall \; x_1, x_2 \in O$

Why do we care about differential inclusions?

• Consider the control system

 $\dot{x} = f(x, u), \qquad x_0 \in \mathbb{R}^n, \qquad u \in \mathcal{U}(x) \subset \mathbb{R}^m$

• Define the set-valued map

 $F(x) = \overline{\operatorname{conv}} \{ f(x, u) \in \mathbb{R}^n | u \in \mathcal{U}(x) \}$

- Assume f: ℝⁿ × ℝ^m → ℝⁿ is locally Lipschitz in x and continuous in u and U = U(x) for all x ∈ ℝⁿ is compact or that U(x) = B_{c|x|}(0) for c > 0. Then F satisfies the basic condition and F is Lipschitz.
- Here, *u* can represent a disturbance or an input.

Setting:

Differential inclusion

 $\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$

- defined through set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$
- we are interested in stability properties of the origin, i.e.,
 0 ∈ F(0) without loss of generality.

Assumption (Basic conditions)

The set-valued map $F : \mathbb{R}^n \Rightarrow \mathbb{R}^n$ with $0 \in F(0)$ has nonempty, compact, and convex values on \mathbb{R}^n , and it is upper semicont.

Upper semicontinuity:

- For each x ∈ ℝⁿ and for all ε > 0 there exists a δ > 0 such that for all ξ ∈ B_δ(x) we have F(ξ) ⊂ F(x) + B_ε(0).
- Example:

 $F(x) = \begin{cases} [0,1], & x = 0\\ 1, & x \neq 0 \end{cases}$

Assumption (Lipschitz continuity)

The set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}^n$ with $0 \in F(0)$ is locally Lipschitz continuous on $\mathbb{R}^n \setminus \{0\}$.

Lipschitz continuity:

• If there exists a constant L > 0 and a neighborhood $O \subset \mathbb{R}^n$ of $x \in \mathbb{R}^n \setminus \{0\}$ such that

 $F(x_1) \subset F(x_2) + B_{L|x_1 - x_2|}(0) \qquad \forall \; x_1, x_2 \in O$

Note that:

• Solutions of the differential inclusion:

Absolutely continuous functions $\phi(\cdot; x_0) : [0, T) \to \mathbb{R}^n$, $(T \in \mathbb{R}_{>0} \cup \{\infty\})$ with $\dot{\phi}(\cdot; x_0) \in F(\phi(\cdot; x_0))$ for almost all $t \in [0, T)$.

- \rightsquigarrow Solutions exist for any initial value $x_0 \in \mathbb{R}^n$ under the basic condition.
- Set of solutions (with $\phi(0; x_0) = x_0$): $S(x_0)$.
- Solutions as extended real valued functions $\phi(\cdot; x_0)$:
 - If $\phi_i(T; x_0) = \pm \infty$ for T > 0 and $i \in \{1, \dots, n\}$, then $\phi_i(t; x_0) = \pm \infty$ for all $t \ge T$.
 - If $\phi_i(T; x_0) = \pm \infty$ for T < 0 and $i \in \{1, \dots, n\}$, then $\phi_i(t; x_0) = \pm \infty$ for all $t \le T$.
- Solutions which satisfy |φ(t; x₀)| < ∞ for all t ∈ ℝ_{≥0} are called forward complete.

Differential inclusions (Time Scaling)

Consider

$$\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$$

• Set of solutions $S(x_0)$

• If
$$\phi(\cdot; x_0) \in \mathcal{S}(x_0), \, \phi(\cdot; x_0) : \mathbb{R} \to \mathbb{R}^n \cup \{\pm \infty\}^n$$
, then

 $\psi(t;x_0) = \phi(-t;x_0)$

is a solution of (time reversed inclusion)

$$\dot{x} \in -F(x)$$
 $x_0 \in \mathbb{R}^n$

For a positive continuous function η : ℝ_{≥0} → ℝ_{>0}, consider the scaled differential inclusion

$$\dot{x} \in F_{\eta}(x) = \eta(|x|)F(x), \qquad x_0 \in \mathbb{R}^n.$$
(1)

with set of solutions $S_{\eta}(\cdot)$. (Note that $\eta(0) > 0$.)

• F satisfies basic assumpt. \iff F_{η} satisfies basic assumpt.

Differential inclusions (Time Scaling)

Consider

 $\dot{x} \in F(x), \qquad x_0 \in \mathbb{R}^n$

• Set of solutions $S(x_0)$

• If
$$\phi(\cdot; x_0) \in \mathcal{S}(x_0), \phi(\cdot; x_0) : \mathbb{R} \to \mathbb{R}^n \cup \{\pm \infty\}^n$$
, then
 $\psi(t; x_0) = \phi(-t; x_0)$

is a solution of (time reversed inclusion)

$$\dot{x} \in -F(x)$$
 $x_0 \in \mathbb{R}^n$

For a positive continuous function η : ℝ_{≥0} → ℝ_{>0}, consider the scaled differential inclusion

$$\dot{x} \in F_{\eta}(x) = \eta(|x|)F(x), \qquad x_0 \in \mathbb{R}^n.$$
(1)

with set of solutions $S_{\eta}(\cdot)$. (Note that $\eta(0) > 0$.)

• F satisfies basic assumpt. $\iff F_{\eta}$ satisfies basic assumpt.

Theorem (Positive scaling of differential inclusions)

Consider $\dot{x} \in F(x)$ satisfying the basic assumption. Consider the scaled differential inclusion (1).

For all $x_0 \in \mathbb{R}^n$ and for all $\phi(\cdot; x_0) \in \mathcal{S}(x_0)$ with

 $|\phi(t;x_0)| < \infty, \quad \forall t < T \quad and \quad |\phi(t;x_0)| = \infty \quad \forall t \ge T,$

 $T \in \mathbb{R}_{>0} \cup \{\infty\}$, there exist a continuous strictly increasing function $\alpha : [0, T) \rightarrow [0, M)$ and $M \in \mathbb{R}_{>0} \cup \{\infty\}$ with $\alpha(0) = 0$ such that

$$\phi_{\eta}(\cdot;x_0) = \phi(\alpha(\cdot);x_0) \in \mathcal{S}_{\eta}(x_0).$$

Conversely, if $\phi_{\eta}(\cdot; x_0) \in S_{\eta}(x_0)$ then

$$\phi_{\eta}(\alpha^{-1}(\cdot);x_0) \in \mathcal{S}(x_0)$$

is satisfied. Moreover, in the limit, the solutions satisfy

$$\lim_{t\to T} |\phi(t;x_0)| = \lim_{t\to M} |\phi_\eta(t;x_0)|.$$

→ In particular, stability properties are preserved. → If $T = M = \infty$ both solutions are forward complete ($\alpha \in \mathcal{K}_{\infty}$)

Corollary

Consider $\dot{x} \in F(x)$ satisfying the basic assumption. Then there exists a continuous positive function $\eta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$ such that

 $\eta(|x|)F(x)\subset \overline{B}_1(0)\qquad \forall \ x\in \mathbb{R}^n$

Moreover $\eta(|\cdot|)F(\cdot): \mathbb{R}^n \Rightarrow \mathbb{R}^n$ satisfies the basic assumption and all solutions of the scaled differential equation are forward complete.

In particular, we can define

$$\eta(r) = \frac{1}{\nu(r) + 1}$$

where ν is continuous and

$$\nu(r) \ge \tilde{\nu}(r) = \max_{y \in F(x), |x|=r} |y|$$

Key takeaway:

If we want to establish asymptotic stability properties of the origin of *x* ∈ *F*(*x*) we can assume forward completeness of solutions without loss of generality by considering an appropriate scaling.

Corollary

Consider $\dot{x} \in F(x)$ *satisfying the basic assumption. Then there exists a continuous positive function* $\eta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$ *such that*

 $\eta(|x|)F(x) \subset \overline{B}_1(0) \qquad \forall \ x \in \mathbb{R}^n$

Moreover $\eta(|\cdot|)F(\cdot): \mathbb{R}^n \Rightarrow \mathbb{R}^n$ satisfies the basic assumption and all solutions of the scaled differential equation are forward complete.

In particular, we can define

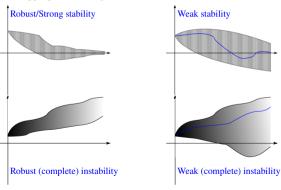
$$\eta(r) = \frac{1}{\nu(r) + 1}$$

where ν is continuous and

$$\nu(r) \ge \tilde{\nu}(r) = \max_{y \in F(x), |x|=r} |y|$$

Key takeaway:

If we want to establish asymptotic stability properties of the origin of *x* ∈ *F*(*x*) we can assume forward completeness of solutions without loss of generality by considering an appropriate scaling.



$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

- $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz
- f(0) = 0
- for each $x_0 \in \mathbb{R}^n$, $\mathcal{S}(x_0)$ contains a single element

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$,

 $|\phi(t; x_0)| \le \varepsilon$ whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$.

Theorem (Lyapunov stability theorem)

Given $\dot{x} = f(x)$, suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, $\forall x \in \mathbb{R}^n$, $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$, $\langle \nabla V(x), f(x) \rangle \leq 0$.

Then the origin is (globally) stable.

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

- $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz
- f(0) = 0
- for each $x_0 \in \mathbb{R}^n$, $\mathcal{S}(x_0)$ contains a single element

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$,

 $|\phi(t; x_0)| \le \varepsilon$ whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$.

Theorem (Lyapunov stability theorem)

Given $\dot{x} = f(x)$, suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, $\forall x \in \mathbb{R}^n$, $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|)$, $\langle \nabla V(x), f(x) \rangle \leq 0$.

Then the origin is (globally) stable.

Definition ((Global) asymptotic stability)

The origin is asymptotically stable if it is stable and if $\forall x_0 \in \mathbb{R}^n$,

 $|\phi(t; x_0)| \to 0$ for $t \to \infty$.

Theorem (Lyapunov asymptotic stability theorem)

Given $\dot{x} = f(x)$ suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \ \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}, \ and \ \rho \in \mathcal{P} \ such that, \ \forall x \in \mathbb{R}^n$ $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|),$ $\langle \nabla V(x), f(x) \rangle \le -\rho(|x|).$

Then the origin is (globally) asymptotically stable.

$$\dot{x}=f(x),\qquad x_0\in\mathbb{R}^n$$

- $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz
- f(0) = 0
- for each $x_0 \in \mathbb{R}^n$, $\mathcal{S}(x_0)$ contains a single element

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$,

 $|\phi(t; x_0)| \le \varepsilon$ whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$.

Theorem (Lyapunov stability theorem)

Given $\dot{x} = f(x)$, suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ and $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ such that, $\forall x \in \mathbb{R}^n$,

$$\begin{split} &\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|), \\ &\langle \nabla V(x), f(x) \rangle \leq 0. \end{split}$$

Then the origin is (globally) stable.

Definition ((Global) asymptotic stability)

The origin is asymptotically stable if it is stable and if $\forall x_0 \in \mathbb{R}^n$,

 $|\phi(t; x_0)| \to 0$ for $t \to \infty$.

Theorem (Lyapunov asymptotic stability theorem)

Given $\dot{x} = f(x)$ suppose there exist a smooth Lyapunov function $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}, \ \alpha_1, \alpha_2 \in \mathcal{K}_{\infty}, and \ \rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$ $\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|),$ $\langle \nabla V(x), f(x) \rangle \leq -\rho(|x|).$

Then the origin is (globally) asymptotically stable.

Definition (Instability)

The origin is unstable for the system if it is not stable.

- \rightsquigarrow There are many different types of instability
- \rightsquigarrow Here, we focus on complete instability

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

• $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz, f(0) = 0

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \setminus B_{\alpha(\delta)}(0)$ implies

 $\begin{aligned} |\phi(t;x_0)| &\geq \delta & \forall t \in \mathbb{R}_{\geq 0}, \\ |\phi(t;x_0)| &\to \infty & \text{ for } t \to \infty. \end{aligned}$

Theorem (Lyapunov complete instability theorem)

Suppose there exist a smooth Chetaev function $C : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$,

 $\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|), \\ &\langle \nabla C(x), f(x) \rangle \geq \rho(|x|). \end{aligned}$

Then the origin is (globally) completely unstable.

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

• $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz, f(0) = 0

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \setminus B_{\alpha(\delta)}(0)$ implies

$$\begin{split} |\phi(t;x_0)| &\geq \delta \qquad \forall \ t \in \mathbb{R}_{\geq 0}, \\ |\phi(t;x_0)| &\to \infty \qquad \text{for } t \to \infty. \end{split}$$

Theorem (Chetaev's theorem)

Assume there exists a smooth Chetaev function $C : \mathbb{R}^n \to \mathbb{R}$ with C(0) = 0 and

$$O_r = \{ x \in B_r(0) : C(x) > 0 \} \neq \emptyset \qquad \forall r > 0.$$

If for certain r > 0,

$$\langle \nabla C(x), f(x) \rangle > 0 \quad \forall x \in O_r$$

then the origin is unstable.

Theorem (Lyapunov complete instability theorem)

Suppose there exist a smooth Chetaev function $C : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$,

 $\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|), \\ &\langle \nabla C(x), f(x) \rangle \geq \rho(|x|). \end{aligned}$

Then the origin is (globally) completely unstable.

$$\dot{x} = f(x), \qquad x_0 \in \mathbb{R}^n$$

• $f: \mathbb{R}^n \to \mathbb{R}^n$ locally Lipschitz, f(0) = 0

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \setminus B_{\alpha(\delta)}(0)$ implies

$$\begin{split} |\phi(t;x_0)| &\geq \delta \qquad \forall \ t \in \mathbb{R}_{\geq 0}, \\ |\phi(t;x_0)| &\to \infty \qquad \text{for } \ t \to \infty. \end{split}$$

Theorem (Lyapunov complete instability theorem)

Suppose there exist a smooth Chetaev function $C : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$, $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$, and $\rho \in \mathcal{P}$ such that, $\forall x \in \mathbb{R}^n$,

 $\begin{aligned} &\alpha_1(|x|) \leq C(x) \leq \alpha_2(|x|), \\ &\langle \nabla C(x), f(x) \rangle \geq \rho(|x|). \end{aligned}$

Then the origin is (globally) completely unstable.

Theorem (Chetaev's theorem)

Assume there exists a smooth Chetaev function $C : \mathbb{R}^n \to \mathbb{R}$ with C(0) = 0 and

$$O_r = \{ x \in B_r(0) : C(x) > 0 \} \neq \emptyset \qquad \forall r > 0$$

If for certain r > 0,

$$\langle \nabla C(x), f(x) \rangle > 0 \quad \forall x \in O_r$$

then the origin is unstable.

Remark

Note that, as stated, the definition and characterizations are essentially global as they are stated for all all $x \in \mathbb{R}^n$ and for all $\varepsilon > 0$. Local versions are easily obtained by restricting ε and by restricting the attention to a domain around the origin.

(In)stability characterizations for ordinary differential equations (A simple example)

Consider the three linear differential equations and their solutions

$$f_{1}(x) = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \qquad \phi_{1}(t;x_{0}) = \begin{bmatrix} x_{1,0}e^{t} \\ x_{2,0}e^{t} \end{bmatrix},$$
$$f_{2}(x) = \begin{bmatrix} -x_{1} \\ x_{2} \end{bmatrix}, \qquad \phi_{2}(t;x_{0}) = \begin{bmatrix} x_{1,0}e^{-t} \\ x_{2,0}e^{t} \end{bmatrix},$$
$$f_{3}(x) = \begin{bmatrix} -x_{1} \\ -x_{2} \end{bmatrix}, \qquad \phi_{3}(t;x_{0}) = \begin{bmatrix} x_{1,0}e^{-t} \\ x_{2,0}e^{-t} \end{bmatrix}.$$

• Chetaev function for complete instability: $C_1(x) = x^T x$

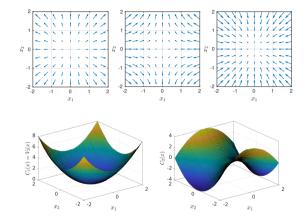
$$\langle \nabla C_1, f_1(x) \rangle = 2x^T x$$

• Chetaev function for instability: $C_2(x) = -x_1^2 + x_2^2$

$$\langle \nabla C_2, f_2(x) \rangle = 2x^T x$$

• Lyapunov function for asymptotic stability: $V_3(x) = x^T x$

$$\langle \nabla V_3, f_3(x) \rangle = -2x^T x$$



(In)stability characterizations for ordinary differential equations (A simple example)

Consider the three linear differential equations and their solutions

$$f_{1}(x) = \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix}, \qquad \phi_{1}(t;x_{0}) = \begin{bmatrix} x_{1,0}e^{t} \\ x_{2,0}e^{t} \end{bmatrix},$$
$$f_{2}(x) = \begin{bmatrix} -x_{1} \\ x_{2} \end{bmatrix}, \qquad \phi_{2}(t;x_{0}) = \begin{bmatrix} x_{1,0}e^{-t} \\ x_{2,0}e^{t} \end{bmatrix},$$
$$f_{3}(x) = \begin{bmatrix} -x_{1} \\ -x_{2} \end{bmatrix}, \qquad \phi_{3}(t;x_{0}) = \begin{bmatrix} x_{1,0}e^{-t} \\ x_{2,0}e^{-t} \end{bmatrix}.$$

• Chetaev function for complete instability: $C_1(x) = x^T x$

$$\langle \nabla C_1, f_1(x) \rangle = 2x^T x$$

• Chetaev function for instability: $C_2(x) = -x_1^2 + x_2^2$

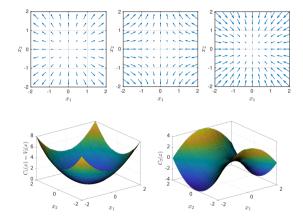
$$\langle \nabla C_2, f_2(x) \rangle = 2x^T x$$

• Lyapunov function for asymptotic stability: $V_3(x) = x^T x$

$$\left<\nabla V_3, f_3(x)\right> = -2x^T x$$

Simple observation:

$$\dot{x} = f(x), \ 0$$
 is asymptotically stable
 $\langle \nabla V(x), f(x) \rangle \leq -\rho(|x|)$



 $\begin{array}{ll} \longleftrightarrow & \dot{x} = -f(x), \ 0 \ \text{is completely unstable} \\ \stackrel{V=C}{\longleftrightarrow} & \langle \nabla C(x), -f(x) \rangle \geq \rho(|x|) \end{array}$

P. Braun (ANU)

Recall the definition:

Definition ((Global) complete instability)				
The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \setminus B_{\alpha(\delta)}(0)$ implies				
$ \phi(t;x_0) \ge \delta$	$\forall \ t \in \mathbb{R}_{\geq 0},$	(2)		
$ \phi(t;x_0) \to \infty$	for $t \to \infty$.			

 \rightsquigarrow Is the condition (2) necessary?

(In)stability characterizations for ordinary differential equations (Local complete instability)

Recall the definition:

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \setminus B_{\alpha(\delta)}(0)$ implies

 $\begin{aligned} |\phi(t;x_0)| &\geq \delta & \forall t \in \mathbb{R}_{\geq 0}, \\ |\phi(t;x_0)| &\to \infty & \text{for } t \to \infty. \end{aligned}$ (2)

 \sim Is the condition (2) necessary?

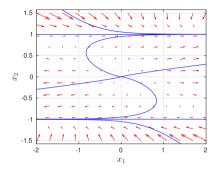
Example

Consider the two dimensional dynamics

$$\dot{x}_1 = (c^2 - x_2^2)x_1 + x_2$$
$$\dot{x}_2 = (c^2 - x_2^2)x_2$$

with parameter $c \in \mathbb{R}_{>0}$.

• For $x_2^2 = c^2$ the dynamics reduce to $\dot{x}_1 = x_2$ and $\dot{x}_2 = 0$.



(In)stability characterizations for ordinary differential equations (Local complete instability)

Recall the definition:

Definition ((Global) complete instability)

The origin is completely unstable if there exists $\alpha \in \mathcal{K}_{\infty}$ such that for all $\delta > 0$ the condition $x_0 \in \mathbb{R}^n \setminus B_{\alpha(\delta)}(0)$ implies

 $\begin{aligned} |\phi(t;x_0)| &\geq \delta \qquad \forall \ t \in \mathbb{R}_{\geq 0}, \\ |\phi(t;x_0)| &\to \infty \qquad \text{for } t \to \infty. \end{aligned}$

 \sim Is the condition (2) necessary?

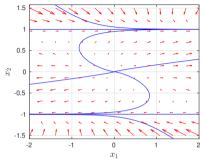
Example

Consider the two dimensional dynamics

$$\dot{x}_1 = (c^2 - x_2^2)x_1 + x_1$$
$$\dot{x}_2 = (c^2 - x_2^2)x_2$$

with parameter $c \in \mathbb{R}_{>0}$.

• For $x_2^2 = c^2$ the dynamics reduce to $\dot{x}_1 = x_2$ and $\dot{x}_2 = 0$.

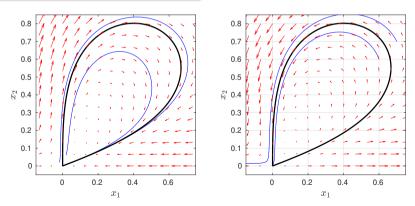


Note that:

- α ∈ K_∞ is necessary to ensure that solutions starting arbitrarily far away from 0 stay arbitrarily far away from 0 ∀t ∈ ℝ_{≥0} for global complete instability.
- If we restrict our analysis of complete instability of 0 to $B_{\frac{1}{2}c}(0)$, then 0 is locally completely unstable.
- → Is the condition (2) necessary for local complete instability? (I don't know.)

Example (Vinograd's example) $\dot{x} = f(x) = \frac{1}{|x|_2^2(1+|x|_2^4)} \begin{bmatrix} x_1^2(x_2-x_1)+x_2^5 \\ x_2^2(x_2-2x_1) \end{bmatrix}$

- Classical example of a system with globally attractive origin (but not stable), i.e., the origin is not asymptotically stable.
- The origin of time reversal dynamics $\dot{x} = -f(x)$ is not completely unstable



(In)stability characterizations for ordinary differential equations (The Dini derivative)

Consider $\varphi : \mathbb{R}^n \to \mathbb{R}$

The Dini derivative at x in direction $w \in \mathbb{R}^n$ are defined as:

$$D^{+}\varphi(x;w) = \limsup_{v \to w; t \searrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D_{+}\varphi(x;w) = \liminf_{v \to w; t \searrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D^{-}\varphi(x;w) = \limsup_{v \to w; t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D_{-}\varphi(x;w) = \liminf_{v \to w; t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right).$$

(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions φ :

• The upper right Dini derivative simplifies to

$$D^+\varphi(x;w) = \limsup_{t\searrow 0} \frac{1}{t} \left(\varphi(x+tw) - \varphi(x)\right).$$

(The remaining Dini derivatives simplify in the same way.)

- The Dini derivative is finite
- The Dini derivatives can all be different

If φ is differentiable in $x \in \mathbb{R}^n$, then

$$\langle \nabla \varphi(x), w \rangle = D^+ \varphi(x; w)$$

Consider $\varphi:\mathbb{R}^n\to\mathbb{R}$

The Dini derivative at x in direction $w \in \mathbb{R}^n$ are defined as:

$$D^{+}\varphi(x;w) = \limsup_{v \to w; t \searrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D_{+}\varphi(x;w) = \liminf_{v \to w; t \searrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D^{-}\varphi(x;w) = \limsup_{v \to w; t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D_{-}\varphi(x;w) = \liminf_{v \to w; t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right).$$

(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions φ :

• The upper right Dini derivative simplifies to

$$D^+\varphi(x;w) = \limsup_{t\searrow 0} \frac{1}{t} \left(\varphi(x+tw) - \varphi(x)\right).$$

(The remaining Dini derivatives simplify in the same way.)

- The Dini derivative is finite
- The Dini derivatives can all be different

If φ is differentiable in $x \in \mathbb{R}^n$, then

$$\langle \nabla \varphi(x), w \rangle = D^+ \varphi(x; w)$$

For
$$\phi(\cdot; x_0) : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$$
 smooth and $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ smooth,
 $\dot{V}(\phi(t; x_0)) = \langle \nabla V(\phi(t; x_0)), \dot{\phi}(t; x_0) \rangle.$ (3)

indicates the derivative of V along the function ϕ . If ϕ is absolutely continuous and V is Lipschitz continuous, then (3) holds for almost all $t \in \mathbb{R}$.

Consider $\varphi:\mathbb{R}^n\to\mathbb{R}$

The Dini derivative at x in direction $w \in \mathbb{R}^n$ are defined as:

$$D^{+}\varphi(x;w) = \limsup_{v \to w; t \searrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D_{+}\varphi(x;w) = \liminf_{v \to w; t \searrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D^{-}\varphi(x;w) = \limsup_{v \to w; t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right),$$

$$D_{-}\varphi(x;w) = \liminf_{v \to w; t \nearrow 0} \frac{1}{t} \left(\varphi(x+tv) - \varphi(x)\right).$$

(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions φ :

• The upper right Dini derivative simplifies to

$$D^+\varphi(x;w) = \limsup_{t\searrow 0} \frac{1}{t} \left(\varphi(x+tw) - \varphi(x)\right).$$

(The remaining Dini derivatives simplify in the same way.)

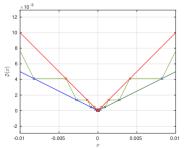
- The Dini derivative is finite
- The Dini derivatives can all be different

If φ is differentiable in $x \in \mathbb{R}^n$, then

$$\langle \nabla \varphi(x), w \rangle = D^+ \varphi(x; w)$$

For
$$\phi(\cdot; x_0) : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$$
 smooth and $V : \mathbb{R}^n \to \mathbb{R}_{\geq 0}$ smooth,
 $\dot{V}(\phi(t; x_0)) = \langle \nabla V(\phi(t; x_0)), \dot{\phi}(t; x_0) \rangle.$ (3)

indicates the derivative of V along the function ϕ . If ϕ is absolutely continuous and V is Lipschitz continuous, then (3) holds for almost all $t \in \mathbb{R}$.



Strong \mathcal{KL} -stability and Lyapunov functions

Consider: $\dot{x} \in F(x)$, $x_0 \in \mathbb{R}^n$

• Assume F satisfies the basic conditions

Definition (Global asymptotic stability)

The differential inclusion is uniformly globally asymptotically stable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$ and for all $\phi \in \mathcal{S}(x_0)$,

 $|\phi(t; x_0)| \le \varepsilon$ whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$, $|\phi(t; x_0)| \to 0$ for $t \to \infty$.

Definition ((Strong) \mathcal{KL} -stability)

The differential inclusion is *strongly* \mathcal{KL} -stable with respect to $0 \in \mathbb{R}^n$ if there exists $\beta \in \mathcal{KL}$, such that for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

 $|\phi(t; x_0)| \leq \beta(|x_0|, t), \quad \forall t \in \mathbb{R}_{>0}.$

Theorem

The differential inclusion is uniformly globally asymptotically stable with respect to 0 if and only if it is (strongly) KL-stable.

Strong \mathcal{KL} -stability and Lyapunov functions

Consider: $\dot{x} \in F(x)$, $x_0 \in \mathbb{R}^n$

• Assume F satisfies the basic conditions

Definition (Global asymptotic stability)

The differential inclusion is uniformly globally asymptotically stable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \geq 0$ and for all $\phi \in \mathcal{S}(x_0)$.

 $|\phi(t; x_0)| \le \varepsilon$ whenever $|x_0| \le \delta(\varepsilon)$ and $t \ge 0$, $|\phi(t; x_0)| \to 0$ for $t \to \infty$.

Definition ((Strong) \mathcal{KL} -stability)

The differential inclusion is *strongly* \mathcal{KL} -stable with respect to $0 \in \mathbb{R}^n$ if there exists $\beta \in \mathcal{KL}$, such that for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

 $|\phi(t; x_0)| \leq \beta(|x_0|, t), \quad \forall t \in \mathbb{R}_{>0}.$

Theorem

The differential inclusion is uniformly globally asymptotically stable with respect to 0 if and only if it is (strongly) KL-stable.

Definition ((Robust) Lyapunov function)

A continuous function $V : \mathbb{R}^n \to \mathbb{R}$ is called a (robust) Lyapunov function if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ such that

> $\alpha_1(|x|) \le V(x) \le \alpha_2(|x|) \qquad \forall x \in \mathbb{R}^n$ $\max D^+ V(x; w) \le -\rho(|x|) \qquad \forall x \in \mathbb{R}^n$ $w \in F(x)$

Theorem (Stability characterization)

The following are equivalent.

- The differential inclusion is strongly *KL*-stable with respect to the origin.
- There exists a smooth Lyapunov function

$\mathcal{K}_\infty\mathcal{K}_\infty\text{-instability}$ and Chetaev functions

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

• Assume *F* satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$\begin{split} |\phi(t;x_0)| &\geq \varepsilon \qquad \text{for all } t \geq 0, \\ |\phi(t;x_0)| &\to \infty \qquad \text{for } t \to \infty, \end{split}$$

whenever $|x_0| \ge \delta(\varepsilon)$.

$\mathcal{K}_\infty\mathcal{K}_\infty\text{-instability}$ and Chetaev functions

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

• Assume *F* satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

 $\begin{aligned} |\phi(t;x_0)| &\geq \varepsilon & \text{for all } t \geq 0, \\ |\phi(t;x_0)| &\to \infty & \text{for } t \to \infty, \end{aligned}$

whenever $|x_0| \geq \delta(\varepsilon)$.

Definition ($\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -functions)

Consider the continuous function $\kappa : \mathbb{R}^2_{>0} \to \mathbb{R}_{\geq 0}$.

• κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ ($\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty} \forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) - \kappa(s, 0) \in \mathcal{K}_{\infty} \forall s \in \mathbb{R}_{> 0}$.

Example:

• $\kappa(s,t) = c e^{\lambda t} s \in \mathcal{K}_{\infty} \mathcal{K}_{\infty} \text{ if } \lambda > 0, c > 0$

•
$$\kappa(s,t) = (t+1)s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$$

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

 $|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}.$

$\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and Chetaev functions (2)

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

• Assume *F* satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$ \phi(t;x_0) \geq \varepsilon$	for all $t \ge 0$,
$ \phi(t;x_0) \to \infty$	for $t \to \infty$,

whenever $|x_0| \ge \delta(\varepsilon)$.

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

 $|\phi(t;x_0)| \geq \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\geq 0}.$

Theorem

The differential inclusion is strongly completely unstable with respect to 0 if and only if the origin is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.

Definition ((Robust) Chetaev function)

A continuous function $C : \mathbb{R}^n \to \mathbb{R}$ is called a Chetaev function for the differential inclusion if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ such that

 $\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|) \qquad \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ C(x; w) \geq \rho(|x|) \qquad \forall \ x \in \mathbb{R}^n \end{aligned}$

Theorem (Instability characterization)

The following are *equivalent*.

- The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.
- There exists a smooth Chetaev function.

Relations between Chetaev and Lyapunov functions & scaling

Lemma

Consider $\dot{x} \in F(x)$ satisfying the basic condition and $\dot{x} \in \eta(|x|)F(x)$ for a Lipschitz $\eta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$.

- Assume V is a smooth Lyapunov function for $\dot{x} \in F(x)$. Then V is a smooth Lyapunov function of $\dot{x} \in \eta(|x|)F(x)$.
- Assume C is a smooth Chetaev function for $\dot{x} \in F(x)$. Then C is a smooth Chetaev function of $\dot{x} \in \eta(|x|)F(x)$.

Proof.

Let V denote a smooth Lyapunov function. Then there exists $\rho \in \mathcal{P}$ such that

$$\max_{w \in F(x)} \langle \nabla V(x), w \rangle \le -\rho(|x|) \qquad x \in \mathbb{R}^n.$$

$$\max_{w \in \eta(|x|)F(x)} \langle \nabla V(x), w \rangle = \max_{w \in F(x)} \langle \nabla V(x), \eta(|x|)w \rangle$$
$$\leq -\eta(|x|)\rho(|x|) = \tilde{\rho}(|x|)$$

 \rightsquigarrow Solutions are forward complete w.l.o.g.

Relations between Chetaev and Lyapunov functions & scaling

Lemma

Consider $\dot{x} \in F(x)$ satisfying the basic condition and $\dot{x} \in \eta(|x|)F(x)$ for a Lipschitz $\eta : \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$.

- Assume V is a smooth Lyapunov function for $\dot{x} \in F(x)$. Then V is a smooth Lyapunov function of $\dot{x} \in \eta(|x|)F(x)$.
- Assume C is a smooth Chetaev function for $\dot{x} \in F(x)$. Then C is a smooth Chetaev function of $\dot{x} \in \eta(|x|)F(x)$.

Proof.

Let *V* denote a smooth Lyapunov function. Then there exists $\rho \in \mathcal{P}$ such that

$$\max_{w \in F(x)} \langle \nabla V(x), w \rangle \le -\rho(|x|) \qquad x \in \mathbb{R}^n.$$

$$\max_{w \in \eta(|x|)F(x)} \langle \nabla V(x), w \rangle = \max_{w \in F(x)} \langle \nabla V(x), \eta(|x|)w \rangle$$

$$\leq -\eta(|x|)\rho(|x|) = \tilde{\rho}(|x|)$$

Corollary

Consider $\dot{x} \in F(x)$ satisfying basic conditions together with $\dot{x} \in -F(x)$

- Let V be a smooth Lyapunov function for $\dot{x} \in F(x)$. Then C = V is a smooth Chetaev function for $\dot{x} \in -F(x)$.
- Let C be a smooth Chetaev function for $\dot{x} \in F(x)$. Then V = C is a smooth Lyapunov function for $\dot{x} \in -F(x)$.

Proof.

Let *V* denote a smooth Lyapunov function for $\dot{x} \in F(x)$. Then there exists $\rho \in \mathcal{P}$ such that

$$-\rho(|x|) \geq \max_{w \in F(x)} \langle \nabla V(x), w \rangle = -\min_{w \in F(x)} - \langle \nabla V(x), w \rangle$$

for all
$$x \in \mathbb{R}^n$$
. Equivalently
 $\rho(|x|) \ge \min_{w \in F(x)} -\langle \nabla V(x), w \rangle = \min_{w \in -F(x)} \langle \nabla V(x), w \rangle$
i.e., $C = V$ is a Chetaev function for $\dot{x} \in -F(x)$.

 \rightsquigarrow Solutions are forward complete w.l.o.g.

Weak (in)stability of differential inclusions & Lyapunov characterizations

Weak \mathcal{KL} -stability and control Lyapunov functions

Weak (in)stability of differential inclusions & Lyapunov characterizations

Weak \mathcal{KL} -stability and control Lyapunov functions

Definition (Global asymptotic stabilizability)

 $\dot{x} \in F(x)$ is uniformly globally asymptotically stabilizable with respect to 0 if the following are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon \ge 0$ and all $x_0 \in \mathbb{R}^n$ with $|x_0| \le \delta(\varepsilon)$ there exists $\phi \in \mathcal{S}(x_0)$ with

> $|\phi(t; x_0)| \le \varepsilon$ for all $t \ge 0$ and $|\phi(t; x_0)| \to 0$ for $t \to \infty$.

Definition (Weak \mathcal{KL} -stability)

 $\dot{x} \in F(x)$ is *weakly* \mathcal{KL} -stable with respect to the equilibrium 0 if there exists $\beta \in \mathcal{KL}$ such that, for all $x_0 \in \mathbb{R}^n$ there exists $\phi \in \mathcal{S}(x_0)$ with

$$|\phi(t;x_0)| \le \beta(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}$$

Corollary

Consider $\dot{x} \in F(x)$ satisfying the basic conditions. $\dot{x} \in F(x)$ is globally asymptotically stabilizable with respect to 0 if and only if it is is weakly \mathcal{KL} -stable.

Definition (Control Lyapunov function)

A continuous function $V : \mathbb{R}^n \to \mathbb{R}$ is called control Lyapunov function for $\dot{x} \in F(x)$ if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ and

 $\begin{aligned} &\alpha_1(|x|) \leq V(x) \leq \alpha_2(|x|) & \forall x \in \mathbb{R}^n \\ &\min_{w \in F(x)} D_+ V(x;w) \leq -\rho(|x|) & \forall x \in \mathbb{R}^n \end{aligned}$

Theorem

Suppose F satisfies the basic conditions and is Lipschitz. Then the following are equivalent.

- $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable.
- There exists a Lipschitz control Lyapunov function.

Weak $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability and control Chetaev functions

Definition (Weak complete instability)

 $\dot{x} \in F(x)$ is weakly completely unstable with respect to 0 if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and all $x_0 \in \mathbb{R}^n$ with $|x_0| \ge \delta(\varepsilon)$ there exists $\phi \in \mathcal{S}(x_0)$ with

 $|\phi(t; x_0)| \ge \varepsilon$ for all $t \ge 0$ and $|\phi(t; x_0)| \to \infty$ for $t \to \infty$.

Definition (Weak $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

 $\dot{x} \in F(x)$ is weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to 0 if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ there exists $\phi \in S(x_0)$ so that

```
|\phi(t; x_0)| \ge \kappa(|x_0|, t) for all t \ge 0.
```

Corollary

Consider $\dot{x} \in F(x)$ satisfying the basic conditions. $\dot{x} \in F(x)$ is weakly completely unstable with respect to 0 if and only if it is is weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.

Definition (Control Chetaev function)

A continuous function $C : \mathbb{R}^n \to \mathbb{R}$ is called control Chetaev function for $\dot{x} \in F(x)$ if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ such that

$$\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|) \qquad \forall x \in \mathbb{R}^n \\ \max_{v \in F(x)} D^+ C(x; w) &\geq \rho(|x|) \qquad \forall x \in \mathbb{R}^n \end{aligned}$$

Theorem

Suppose F satisfies the basic conditions and is Lipschitz. Then the following are equivalent.

- The origin of $\dot{x} \in F(x)$ is weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.
- There exists a continuous control Chetaev function.

When are nonsmooth control Lyapunov/Chetaev functions necessary? (Examples)

Consider the differential inclusion

$$\dot{x} \in F(x) = \overline{\operatorname{conv}} \{ f(x, u) | u \in \mathcal{U}(x) \}$$

where f(x, u) and \mathcal{U} are defined as

$$f(x, u) = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u \quad \text{and}$$
$$\mathcal{U}(x) = \begin{bmatrix} -2|x|, 2|x| \end{bmatrix}.$$

Assume there exists a smooth control Chetaev function C.

• Then, V = C is a CLF for $\dot{x} = -f(x, u)$:

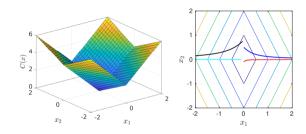
$$\sup_{u \in \mathcal{U}(x)} \langle \nabla C(x), f(x, u) \rangle \ge \rho(|x|) \quad \Longleftrightarrow \quad$$

 $\min_{u \in \mathcal{U}(x)} \langle \nabla C(x), -f(x,u) \rangle \leq -\rho(|x|).$

- The second component x₂ of − f, is not stabilizable to the origin, i.e., a smooth CLF cannot exist and thus a smooth CCF cannot exist
- However, intuitively it should be clear that the origin is weakly completely unstable

Nonsmooth control Chetaev function:

 $C(x) = 2|x_1| + |x_2|$



Corollary

There are differential inclusions satisfying basic conditions and F locally Lipschitz which are weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable and which do not admit smooth control Chetaev functions.

Relations between control Chetaev functions, control Lyapunov functions, and scaling

Note that

- Results on the positive scaling $\dot{x} \in \eta(|x|)F(x)$ remain valid in the weak setting
- The connections between ẋ ∈ F(x) and ẋ ∈ −F(x) established in the strong setting are in general not satisfied in the weak setting

Relations between control Chetaev functions, control Lyapunov functions, and scaling

Note that

- Results on the positive scaling $\dot{x} \in \eta(|x|)F(x)$ remain valid in the weak setting
- The connections between ẋ ∈ F(x) and ẋ ∈ −F(x) established in the strong setting are in general not satisfied in the weak setting

In particular, let *V* be a control Lyapunov function for $\dot{x} \in F(x)$, i.e., for $\rho \in \mathcal{P}$ for all $x \in \mathbb{R}^n$

$$-\rho(|x|) \ge \min_{w \in F(x)} D_+ V(x;w)$$

This implies that

$$\begin{split} \rho(|x|) &\leq \max_{w \in F(x)} -D_+ V(x;w) \\ &= \max_{w \in F(x)} \left(-\liminf_{v \to w; t \searrow 0} \frac{1}{t} (V(x+tv) - V(x)) \right) \\ &= \max_{w \in F(x)} \limsup_{v \to w; t \searrow 0} -\frac{1}{t} (V(x+tv) - V(x)) \\ &= \max_{w \in F(x)} \limsup_{v \to w; t \nearrow 0} \frac{1}{t} (V(x-tv) - V(x)) \\ &= \max_{w \in -F(x)} \limsup_{v \to w; t \nearrow 0} \frac{1}{t} (V(x+tw) - V(x)) \\ &= \max_{w \in -F(x)} \max_{v \to w; t \nearrow 0} \frac{1}{t} (V(x+tw) - V(x)) \end{split}$$

→ The left Dini derivative cannot be used to define a CCF for $\dot{x} \in -F(x)$.

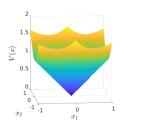
Relations between control Chetaev functions, control Lyapunov functions (Artstein's Circles)

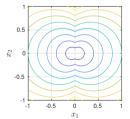
• Consider $(u \in [-1, 1] = \mathcal{U})$ $\dot{x}_1(t) = (-x_1(t)^2 + x_2(t)^2)u(t),$ $\dot{x}_2(t) = (-2x_1(t)x_2(t))u(t)$

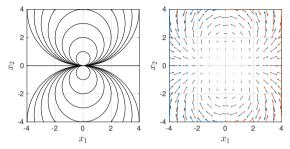
(the origin is weakly \mathcal{KL} -stable)

• Control Lyapunov function:

$V(x) = \sqrt{4x_1^2 + 3x_2^2} - |x_1|$







- All solutions corresponding to x₀ ∈ ℝ²\(ℝ × {0}) are bounded
- \rightsquigarrow The origin is not weakly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable.

Corollary

Weak $\mathcal{K}\mathcal{L}$ -stability of the origin for $\dot{x} \in F(x)$ is not equivalent to weak $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability of the origin for $\dot{x} \in -F(x)$.

Example

Consider the dynamics of the Brockett integrator,

$$F(x) = \overline{\operatorname{conv}} \{ f(x, u) | u \in \mathcal{U} \}$$

defined through

$$f(x, u) = \begin{bmatrix} u_1 \\ u_2 \\ x_1 u_2 - x_2 u_1 \end{bmatrix} \text{ and } \mathcal{U} = [-1, 1]^2.$$

(Note that the dynamics in forward time are equivalent to the dynamics in backward time.)

• It can be shown that

$$V(x) = x_1^2 + x_2^2 + 2x_3^2 - 2|x_3|\sqrt{x_1^2 + x_2^2}$$

is CLF but not a CCF.

• It can be shown that

$$C(x) = |x_1| + |x_2| + |x_3|$$

is a CCF but not a CLF

Comparison to control barrier function results

Consider the control affine system

$$\dot{x} = f(x) + g(x)u$$

- f, g locally Lipschitz
- $C \subset \mathbb{R}^n$ is called forward invariant if for every $x_0 \in C$,

 $\phi(t;x_0)\in C,\qquad \forall t\in\mathbb{R}_{\geq 0}$

- (in the strong sense) $\forall \phi \in \mathcal{S}(x_0)$
- (in the weak sense) $\exists \phi \in \mathcal{S}(x_0)$
- For u = k(x) Lipschitz, $\dot{x} = f(x) + g(x)k(x)$ is called safe with respect to *C* if *C* is forward invariant.

Consider the control affine system

$$\dot{x} = f(x) + g(x)u$$

- f, g locally Lipschitz
- $C \subset \mathbb{R}^n$ is called forward invariant if for every $x_0 \in C$,

 $\phi(t;x_0)\in C,\qquad \forall t\in\mathbb{R}_{\geq 0}$

- (in the strong sense) $\forall \phi \in \mathcal{S}(x_0)$
- (in the weak sense) $\exists \phi \in \mathcal{S}(x_0)$
- For u = k(x) Lipschitz, $\dot{x} = f(x) + g(x)k(x)$ is called safe with respect to *C* if *C* is forward invariant.

Definition (Control barrier function (CBF))

Let $C \subset \mathbb{R}^n$ be the superlevel set

 $C = \{ x \in \mathbb{R}^n | B(x) \ge 0 \}.$

of a smooth function $B : \mathbb{R}^n \to \mathbb{R}$. Then B is a CBF if there exists an extended class \mathcal{K}_{∞} function $\delta : \mathbb{R} \to \mathbb{R}$ such that

 $\sup_{u \in \mathcal{U}} \left(\langle \nabla B(x), f(x) \rangle + \langle \nabla B(x), g(x) \rangle u \right) \ge -\delta(B(x))$ (4)

- δ , extended \mathcal{K}_{∞} function if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that $\delta(r) = \alpha_1(r)$ and $\delta(-r) = -\alpha_2(r)$ for all $r \in \mathbb{R}_{\geq 0}$.
- If B(x) is a control barrier function, then *C* is safe and asymptotically stable with respect to $\dot{x} = f(x) + g(x)u$ and a control law u = k(x) satisfying inequality (4).
- Note that, if B(x) is large, (4) is not restrictive.
- Note that, for $x \in \{x \in \mathbb{R}^n | B(x) = 0\}$, (4) is restrictive
- CBFs are usually used in the context of invariance (not (in)stability)

Consider the control affine system

$$\dot{x} = f(x) + g(x)u$$

• f, g locally Lipschitz

• $C \subset \mathbb{R}^n$ is called forward invariant if for every $x_0 \in C$,

 $\phi(t;x_0)\in C,\qquad \forall t\in\mathbb{R}_{\geq 0}$

- (in the strong sense) $\forall \phi \in \mathcal{S}(x_0)$
- (in the weak sense) $\exists \phi \in \mathcal{S}(x_0)$
- For u = k(x) Lipschitz, $\dot{x} = f(x) + g(x)k(x)$ is called safe with respect to *C* if *C* is forward invariant.

Definition (Control barrier function (CBF))

Let $C \subset \mathbb{R}^n$ be the superlevel set

 $C = \{ x \in \mathbb{R}^n | B(x) \ge 0 \}.$

of a smooth function $B : \mathbb{R}^n \to \mathbb{R}$. Then B is a CBF if there exists an extended class \mathcal{K}_{∞} function $\delta : \mathbb{R} \to \mathbb{R}$ such that

 $\sup_{u \in \mathcal{U}} \left(\langle \nabla B(x), f(x) \rangle + \langle \nabla B(x), g(x) \rangle u \right) \ge -\delta(B(x))$ (4)

- δ , extended \mathcal{K}_{∞} function if there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ so that $\delta(r) = \alpha_1(r)$ and $\delta(-r) = -\alpha_2(r)$ for all $r \in \mathbb{R}_{\geq 0}$.
- If B(x) is a control barrier function, then *C* is safe and asymptotically stable with respect to $\dot{x} = f(x) + g(x)u$ and a control law u = k(x) satisfying inequality (4).
- Note that, if B(x) is large, (4) is not restrictive.
- Note that, for $x \in \{x \in \mathbb{R}^n | B(x) = 0\}$, (4) is restrictive
- CBFs are usually used in the context of invariance (not (in)stability)

In combination with CLFs *V*:

$$\begin{split} u &= k(x) = \underset{(u,\gamma) \in \mathcal{U} \times \mathbb{R}}{\operatorname{argmin}_{u}} u^{T} u + \gamma^{2} \\ \text{subject to} \quad \langle \nabla V(x), f(x) + g(x)u \rangle \leq -\rho(|x|) + \gamma \\ \quad \langle \nabla B(x), f(x) + g(x)u \rangle \geq -\delta(B(x)), \end{split}$$

Definition (Weak \mathcal{KL} -stab. with avoidance prop.)

Let $O \subset \mathbb{R}^n$, $0 \notin O$, be open. $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable with respect to 0 with avoidance property with respect to O, if there exists $\beta \in \mathcal{KL}$ such that, for each $x_0 \in \mathbb{R}^n \setminus O$, there exists $\phi(\cdot; x_0) \in S(x_0)$ so that

 $|\phi(t;x_0)| \le \beta(|x_0|,t)$ and $\phi(t;x_0) \notin O$ $\forall t \ge 0$.

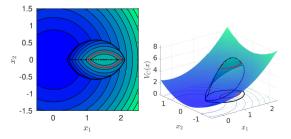
Consider the special case: $O = \bigcup_{i=1}^{N} O_i$ for O_1, \ldots, O_N open and for simplicity assume N = 1 in the following.

Definition (Weak KL-stab. with avoidance prop.)

Let $O \subset \mathbb{R}^n$, $0 \notin O$, be open. $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable with respect to 0 with avoidance property with respect to O, if there exists $\beta \in \mathcal{KL}$ such that, for each $x_0 \in \mathbb{R}^n \setminus O$, there exists $\phi(\cdot; x_0) \in S(x_0)$ so that

 $|\phi(t;x_0)| \le \beta(|x_0|,t)$ and $\phi(t;x_0) \notin O$ $\forall t \ge 0$.

Consider the special case: $O = \bigcup_{i=1}^{N} O_i$ for O_1, \ldots, O_N open and for simplicity assume N = 1 in the following.



Definition (Complete control Lyapunov function)

Suppose *F* satisfies the basic condition and is Lipschitz. Let $O_1 \subset \mathbb{R}^n$ define an open set and let $V_C : \mathbb{R}^n \to \mathbb{R}$ be a cont. function. Assume there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ such that the following are satisfied. There exists $c_1 \in \mathbb{R}_{>0}$ such that

$$\begin{split} V_C(x) &= c_1 \quad \forall x \in \partial O_1 \text{ and } c_1 \leq \inf_{x \in O_1} V_C(x). \\ \alpha_1(|x|) &\leq V_C(x) \leq \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ V_C(x;w) \leq -\rho(x), \quad \forall x \in \mathbb{R}^n \backslash O_1. \end{split}$$

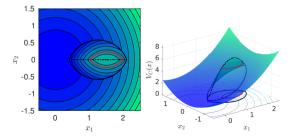
Then V_C is called complete control Lyapunov function.

Definition (Weak *KL*-stab. with avoidance prop.)

Let $O \subset \mathbb{R}^n$, $0 \notin O$, be open. $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable with respect to 0 with avoidance property with respect to O, if there exists $\beta \in \mathcal{KL}$ such that, for each $x_0 \in \mathbb{R}^n \setminus O$, there exists $\phi(\cdot; x_0) \in S(x_0)$ so that

 $|\phi(t; x_0)| \le \beta(|x_0|, t)$ and $\phi(t; x_0) \notin O$ $\forall t \ge 0$.

Consider the special case: $O = \bigcup_{i=1}^{N} O_i$ for O_1, \ldots, O_N open and for simplicity assume N = 1 in the following.



Definition (Complete control Lyapunov function)

Suppose *F* satisfies the basic condition and is Lipschitz. Let $O_1 \subset \mathbb{R}^n$ define an open set and let $V_C : \mathbb{R}^n \to \mathbb{R}$ be a cont. function. Assume there exist $\alpha_1, \alpha_2 \in \mathcal{K}_{\infty}$ and $\rho \in \mathcal{P}$ such that the following are satisfied. There exists $c_1 \in \mathbb{R}_{>0}$ such that

$$\begin{split} V_C(x) &= c_1 \quad \forall x \in \partial O_1 \text{ and } c_1 \leq \inf_{x \in O_1} V_C(x). \\ \alpha_1(|x|) &\leq V_C(x) \leq \alpha_2(|x|), \quad \forall x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ V_C(x; w) \leq -\rho(x), \quad \forall x \in \mathbb{R}^n \setminus O_1. \end{split}$$

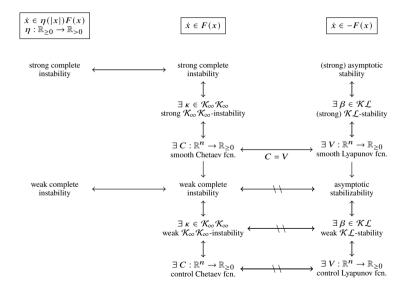
Then V_C is called complete control Lyapunov function.

Theorem

Consider $\dot{x} \in F(x)$ satisfying the basic conditions and assume F is Lipschitz. Let O_1 be open and let $V_C : \mathbb{R}^n \to \mathbb{R}$ be a complete control Lyapunov function. Then $\dot{x} \in F(x)$ is weakly \mathcal{KL} -stable with respect to the origin and has the avoidance property with respect to O_1 .

 \sim If O_1 is bounded, V_C is necessarily nonsmooth.

Overview



(In-)Stability of Differential Inclusions

- Notions, Equivalences & Lyapunov-like Characterizations -

Philipp Braun

School of Engineering,

Australian National University, Canberra, Australia

In Collaboration with:

- L. Grüne: University of Bayreuth, Bayreuth, Germany
- C. M. Kellett: School of Engineering, Australian National University, Canberra, Australia
- L. Zaccarian: Dipartimento di Ingegneria Industriale, University of Trento, Italy, and LAAS-CNRS, Université de Toulouse, France

Consider: $\dot{x} \in F(x)$, $x_0 \in \mathbb{R}^n$

• Assume *F* satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

 $|\phi(t; x_0)| \ge \varepsilon$ for all $t \ge 0$, $|\phi(t; x_0)| \to \infty$ for $t \to \infty$,

whenever $|x_0| \geq \delta(\varepsilon)$.

Consider: $\dot{x} \in F(x)$, $x_0 \in \mathbb{R}^n$

• Assume *F* satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$\begin{split} |\phi(t;x_0)| &\geq \varepsilon \qquad \text{for all } t \geq 0, \\ |\phi(t;x_0)| &\to \infty \qquad \text{for } t \to \infty, \end{split}$$

whenever $|x_0| \ge \delta(\varepsilon)$.

Definition ($\mathcal{K}_{\infty}\mathcal{K}$ - and $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -functions)

Consider the continuous function $\kappa : \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0}$.

- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}(\kappa \in \mathcal{K}_{\infty}\mathcal{K})$ if $\kappa(\cdot, s) \in \mathcal{K}_{\infty}$ $\forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) - \kappa(s, 0) \in \mathcal{K} \ \forall s \in \mathbb{R}_{> 0}$.
- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ ($\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty} \forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) \kappa(s, 0) \in \mathcal{K}_{\infty} \forall s \in \mathbb{R}_{> 0}$.

Example:

- $\kappa(s,t) = c e^{\lambda t} s \in \mathcal{K}_{\infty} \mathcal{K}_{\infty} \text{ if } \lambda > 0, c > 0$
- $\kappa(s,t) = (t+1)s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

 $|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}.$

Consider: $\dot{x} \in F(x), \quad x_0 \in \mathbb{R}^n$

• Assume *F* satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$\begin{split} |\phi(t;x_0)| &\geq \varepsilon & \text{ for all } t \geq 0, \\ |\phi(t;x_0)| &\to \infty & \text{ for } t \to \infty, \end{split}$$

whenever $|x_0| \ge \delta(\varepsilon)$.

Definition ($\mathcal{K}_{\infty}\mathcal{K}$ - and $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -functions)

Consider the continuous function $\kappa : \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0}$.

- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}(\kappa \in \mathcal{K}_{\infty}\mathcal{K})$ if $\kappa(\cdot, s) \in \mathcal{K}_{\infty}$ $\forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) - \kappa(s, 0) \in \mathcal{K} \ \forall s \in \mathbb{R}_{> 0}$.
- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ ($\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty} \forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) \kappa(s, 0) \in \mathcal{K}_{\infty} \forall s \in \mathbb{R}_{> 0}$.

Example:

- $\kappa(s,t) = c e^{\lambda t} s \in \mathcal{K}_{\infty} \mathcal{K}_{\infty} \text{ if } \lambda > 0, c > 0$
- $\kappa(s,t) = (t+1)s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

 $|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall t \in \mathbb{R}_{\ge 0}.$

Can $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ be replaced by $\kappa \in \mathcal{K}_{\infty}\mathcal{K}$ in the Definition?

Example (Counterexample)

Consider $\dot{x} = 0$ which has 0 as a stable equilibrium. Assume that $\kappa \in \mathcal{K}_{\infty}\mathcal{K}$ is used to define complete instability and consider

 $\kappa(r,t) = \frac{1}{2}r(2-e^{-t}) \in \mathcal{K}_{\infty}\mathcal{K} \setminus \mathcal{K}_{\infty}\mathcal{K}_{\infty}.$

For all $x_0 \in \mathbb{R}^n$ and for all $t \in \mathbb{R}_{\geq 0}$ it holds that

 $|\phi(t;x_0)| = |x_0| \ge \frac{1}{2} |x_0| (2-e^{-t}) = \kappa(|x_0|,t)$

Consider: $\dot{x} \in F(x)$, $x_0 \in \mathbb{R}^n$

• Assume *F* satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with respect to $0 \in \mathbb{R}^n$ if the following properties are satisfied. There exists a function $\delta \in \mathcal{K}_{\infty}$ such that for all $\varepsilon > 0$ and for all solutions $\phi \in \mathcal{S}(x_0)$,

$$\begin{split} |\phi(t;x_0)| &\geq \varepsilon \qquad \text{for all } t \geq 0, \\ |\phi(t;x_0)| &\to \infty \qquad \text{for } t \to \infty, \end{split}$$

whenever $|x_0| \ge \delta(\varepsilon)$.

Definition ($\mathcal{K}_{\infty}\mathcal{K}$ - and $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -functions)

Consider the continuous function $\kappa : \mathbb{R}^2_{\geq 0} \to \mathbb{R}_{\geq 0}$.

- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}(\kappa \in \mathcal{K}_{\infty}\mathcal{K})$ if $\kappa(\cdot, s) \in \mathcal{K}_{\infty}$ $\forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) - \kappa(s, 0) \in \mathcal{K} \ \forall s \in \mathbb{R}_{> 0}$.
- κ is said to be of class $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ ($\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$) if $\kappa(\cdot, s) \in \mathcal{K}_{\infty} \forall s \in \mathbb{R}_{\geq 0}$ and $\kappa(s, \cdot) \kappa(s, 0) \in \mathcal{K}_{\infty} \forall s \in \mathbb{R}_{> 0}$.

Example:

- $\kappa(s,t) = c e^{\lambda t} s \in \mathcal{K}_{\infty} \mathcal{K}_{\infty} \text{ if } \lambda > 0, c > 0$
- $\kappa(s,t) = (t+1)s \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$

Definition (Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

The differential inclusion is strongly $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -unstable with respect to $0 \in \mathbb{R}^n$ if there exists $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in \mathbb{R}^n$ every solution $\phi \in \mathcal{S}(x_0)$ satisfies

 $|\phi(t;x_0)| \ge \kappa(|x_0|,t), \quad \forall \ t \in \mathbb{R}_{\ge 0}.$

Definition (Local Strong $\mathcal{K}_{\infty}\mathcal{K}_{\infty}$ -instability)

Let $0 \in O \subset \mathbb{R}^n$ be an open neighborhood. $0 \in \mathbb{R}^n$ is locally strongly completely unstable with respect to the differential inclusion and *O* if there exists a $\kappa \in \mathcal{K}_{\infty}\mathcal{K}_{\infty}$ such that, for all $x_0 \in O$ every solution $\phi \in S(x_0)$ satisfies

 $|\phi(t;x_0)| \geq \kappa(|x_0|,t),$

for all $t \in \mathbb{R}_{\geq 0}$ such that $\phi(t; x_0) \in O$.

\mathcal{KL} -stability with respect to (two) measures

- Consider two measures ω₁, ω₂ : G → ℝ_{≥0}, i.e., two positive functions from an open set G ⊂ ℝⁿ to the positive real numbers.
- Then x ∈ F(x) is called KL-stable with respect to
 (ω₁, ω₂) on G if there exists a KL-function β such that
 for all x ∈ G,

$$\begin{split} & \omega_1(\phi(t;x_0)) \leq \beta(\omega_2(x_0),t) \qquad \forall \ t \geq 0 \\ \text{and} \qquad & \phi(t;x_0) \in \mathcal{G} \quad \forall \phi \in \mathcal{S}(x_0) \quad \forall \ t \geq 0. \end{split}$$

Note that:

- For G = ℝⁿ and ω₁(x) = ω₂(x) = |x|, the definition of (string) *KL*-stability of the origin is recovered.
- For G ⊂ ℝⁿ\{0} excluding the origin, the measures ω₁(x) = ω₂(x) = 1/|x| ensure certain instability properties. In particular, the bound

$$|\phi(t; x_0)| \ge \left(\beta\left(\left|\frac{1}{x_0}\right|, t\right)\right)^{-1}$$

is obtained.

\mathcal{KL} -stability with respect to (two) measures

- Consider two measures ω₁, ω₂ : G → ℝ_{≥0}, i.e., two positive functions from an open set G ⊂ ℝⁿ to the positive real numbers.
- Then x ∈ F(x) is called KL-stable with respect to
 (ω₁, ω₂) on G if there exists a KL-function β such that
 for all x ∈ G,

$$\begin{split} & \omega_1(\phi(t;x_0)) \leq \beta(\omega_2(x_0),t) \qquad \forall \ t \geq 0 \\ \text{and} \qquad & \phi(t;x_0) \in \mathcal{G} \quad \forall \phi \in \mathcal{S}(x_0) \quad \forall \ t \geq 0. \end{split}$$

Note that:

- For G = ℝⁿ and ω₁(x) = ω₂(x) = |x|, the definition of (string) *KL*-stability of the origin is recovered.
- For G ⊂ ℝⁿ\{0} excluding the origin, the measures ω₁(x) = ω₂(x) = ¹/_{|x|} ensure certain instability properties. In particular, the bound

$$|\phi(t; x_0)| \ge \left(\beta\left(\left|\frac{1}{x_0}\right|, t\right)\right)^{-1}$$

is obtained.

In the context of Lyapunov functions:

 A Lyapunov function characterizing *KL*-stability with respect to (ω₁, ω₂), needs to satisfy

 $\alpha_1(\omega_1(x)) \le V(x) \le \alpha_2(\omega_2(x)).$

• For
$$\omega_1(x) = \omega_2(x) = |x|^{-1}$$
 this implies

$$\frac{1}{|x|} \le V(x) \le \frac{1}{|x|}$$

and for $\omega_1(x) = \omega_2(x) = |x|$ this implies

$$|x| \le V(x) \le |x|$$

- As an example
 - $V(x) = x^2$ characterizes stability of $\dot{x} = -x$
 - $V(x) = x^{-2}$ characterizes instability of $\dot{x} = x$
- \rightsquigarrow V behaves different close to the origin

Scaling of Lyapunov/Chetaev functions:

• A Chetaev function satisfies:

$$\begin{aligned} &\alpha_1(|x|) \leq C(x) \leq \alpha_2(|x|) & \forall x \in \mathbb{R}^n \\ &\min_{w \in F(x)} D_+ C(x; w) \geq \rho(|x|) & \forall x \in \mathbb{R}^n \end{aligned}$$

• For $\hat{\rho} = \rho \circ \alpha_2^{-1} \in \mathcal{P}$, it holds that

 $\min_{w \in F(x)} D_{+}C(x;w) \ge \rho(|x|) \ge \rho(\alpha_{2}^{-1}(C(x)))$ $= \hat{\rho}(C(x)).$

- Select $\hat{\alpha} \in \mathcal{K}_{\infty}$ continuously differentiable such that $\hat{\alpha}'(s) > 0$ and $\hat{\rho}(s)\hat{\alpha}'(s) \ge \hat{\alpha}(s) \quad \forall s \in \mathbb{R}_{>0},$
- Note that for $\widehat{C}(x) = \widehat{\alpha}(C(x))$:

$$D_+\widehat{C}(x;w)=\hat{\alpha}'(C(x))D_+C(x;w)\qquad \forall\,w\in\mathbb{R}^n.$$

(chain rule with respect to the Dini derivative) and thus

$$\min_{w \in F(x)} D_{+}\widehat{C}(x;w) \ge \hat{\alpha}'(C(x))\hat{\rho}(C(x))$$

$$\geq \hat{\alpha}(C(x)) = \hat{C}(x)$$

Scaling of Lyapunov/Chetaev functions:

• A Chetaev function satisfies:

$$\begin{aligned} &\alpha_1(|x|) \leq C(x) \leq \alpha_2(|x|) & \forall x \in \mathbb{R}^n \\ &\min_{w \in F(x)} D_+ C(x;w) \geq \rho(|x|) & \forall x \in \mathbb{R}^n \end{aligned}$$

• For $\hat{\rho} = \rho \circ \alpha_2^{-1} \in \mathcal{P}$, it holds that

 $\min_{w \in F(x)} D_{+}C(x;w) \ge \rho(|x|) \ge \rho(\alpha_{2}^{-1}(C(x)))$ $= \hat{\rho}(C(x)).$

Select
$$\hat{\alpha} \in \mathcal{K}_{\infty}$$
 continuously differentiable such that
 $\hat{\alpha}'(s) > 0$ and $\hat{\rho}(s)\hat{\alpha}'(s) \ge \hat{\alpha}(s) \quad \forall s \in \mathbb{R}_{>0}$,

• Note that for $\widehat{C}(x) = \widehat{\alpha}(C(x))$:

6

$$D_+\widehat{C}(x;w)=\hat{\alpha}'(C(x))D_+C(x;w)\qquad \forall\,w\in\mathbb{R}^n.$$

(chain rule with respect to the Dini derivative) and thus

$$\min_{w \in F(x)} D_{+} \widehat{C}(x; w) \ge \hat{\alpha}'(C(x))\hat{\rho}(C(x))$$

$$\geq \hat{\alpha}(C(x)) = \widehat{C}(x)$$

• As a last step define

$$\hat{\alpha}_1 = \hat{\alpha} \circ \alpha_1$$
 and $\hat{\alpha}_2 = \hat{\alpha} \circ \alpha_2$

which satisfies

$$\hat{\alpha}_1(|x|) \leq \widehat{C}(x) \leq \hat{\alpha}_2(|x|) \qquad \forall x \in \mathbb{R}^n,$$

Scaling of Lyapunov/Chetaev functions:

- A Chetaev function satisfies:
 - $\begin{aligned} \alpha_1(|x|) &\leq C(x) \leq \alpha_2(|x|) \qquad \forall \ x \in \mathbb{R}^n \\ \min_{w \in F(x)} D_+ C(x; w) \geq \rho(|x|) \qquad \forall \ x \in \mathbb{R}^n \end{aligned}$
- For $\hat{\rho} = \rho \circ \alpha_2^{-1} \in \mathcal{P}$, it holds that

 $\min_{w \in F(x)} D_{+}C(x;w) \ge \rho(|x|) \ge \rho(\alpha_{2}^{-1}(C(x)))$

 $= \hat{\rho}(C(x)).$

- Select $\hat{\alpha} \in \mathcal{K}_{\infty}$ continuously differentiable such that $\hat{\alpha}'(s) > 0$ and $\hat{\rho}(s)\hat{\alpha}'(s) \ge \hat{\alpha}(s) \quad \forall s \in \mathbb{R}_{>0},$
- Note that for $\widehat{C}(x) = \widehat{\alpha}(C(x))$:

$$D_+\widehat{C}(x;w)=\hat{\alpha}'(C(x))D_+C(x;w)\qquad\forall\,w\in\mathbb{R}^n.$$

(chain rule with respect to the Dini derivative) and thus

$$\min_{w \in F(x)} D_{+} \widehat{C}(x; w) \ge \hat{\alpha}'(C(x))\hat{\rho}(C(x))$$

$$\geq \hat{\alpha}(C(x)) = \widehat{C}(x)$$

• As a last step define

$$\hat{\alpha}_1 = \hat{\alpha} \circ \alpha_1$$
 and $\hat{\alpha}_2 = \hat{\alpha} \circ \alpha_2$

which satisfies

$$\hat{\alpha}_1(|x|) \leq \widehat{C}(x) \leq \hat{\alpha}_2(|x|) \qquad \forall x \in \mathbb{R}^n,$$

In particular the conditions

$$\alpha_{1}(|x|) \leq C(x) \leq \alpha_{2}(|x|) \qquad \forall x \in \mathbb{R}^{n}$$
$$\min_{w \in F(x)} D_{+}C(x;w) \geq \rho(|x|) \qquad \forall x \in \mathbb{R}^{n}$$

are equivalent to

$$\hat{\alpha}_1(|x|) \le \widehat{C}(x) \le \hat{\alpha}_2(|x|) \qquad \forall \ x \in \mathbb{R}^{t} \\ \min_{w \in F(x)} D_+ \widehat{C}(x; w) \ge \widehat{C}(x) \qquad \forall \ x \in \mathbb{R}^n$$