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Notation: Comparison functions

@ A continuous function p : Ry9 — Ry is said to be of class
P (p e P)if p(0) =0, and p(s) > 0 forall s > 0.

@ A function @ € P is said to be of class K (@ € K) ifitis
strictly increasing.

@ A function @ € K is said to be of class Ko (@ € Kw) if
limg—0 @(s) = 0.

@ A continuous function o : Ryg — Ry is said to be of
class L (o € L), if it is strictly decreasing, and
limge0 0 (s) =0.
@ A continuous function S : ]R2>0 — Ry is said to be of class
KL (BeKL) fB(,s) € K forall s € Ryq and
B(s, ) € Lforall s € Ryg.
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Differential inclusions

Setting:
@ Differential inclusion

x € F(x), xp € R"

@ defined through set-valued map F : R =3 R”

@ we are interested in stability properties of the origin, i.e.,
0 € F(0) without loss of generality.
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Differential inclusions

Setting: Lipschitz continuity:

@ Di ial i i . .
Differential inclusion @ If there exists a constant L > 0 and a neighborhood

x € F(x), xp € R" O c R" of x € R™\{0} such that
@ defined through set-valued map F : R =3 R” F(x1) € F(x2) + BL|x;-x,|(0) Yxi,x €0

@ we are interested in stability properties of the origin, i.e.,
0 € F(0) without loss of generality.

Assumption (Basic conditions)

The set-valued map F : R =3 R" with 0 € F(0) has nonempty,
compact, and convex values on R”, and it is upper semicont.

Upper semicontinuity:
@ For each x € R and for all & > 0 there exists a § > 0 such
that for all & € Bs(x) we have F (&) € F(x) + Bz(0).

@ Example: [0,1], x=0

F(x):{ 1, x#0

Assumption (Lipschitz continuity)

The set-valued map F : R =3 R” with 0 € F(0) is locally
Lipschitz continuous on R\ {0}.
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Differential inclusions

Settmgil o . Lipschitz continuity:
@ Differential inclusion @ If there exists a constant L > 0 and a neighborhood

x € F(x), xp € R" O c R" of x € R™\{0} such that
@ defined through set-valued map F : R =3 R” F(x1) € F(x2) + BL|x;-x,|(0) Yxi,x €0
@ we are interested in stability properties of the origin, i.e., Why do we care about differential inclusions?
0 € F(0) without loss of generality. o Consider the control system
Assumption (Basic conditions) %= f(x,u) xg € R ue U(x) cR™
The set-valued map F : R"™ =3 R" with 0 € F(0) has nonempty, @ Define the set-valued map

compact, and convex values on R”, and it is upper semicont.
F(x)=conv{f(x,u) e R"|lu e U(x)}

Upper semicontinuity:
@ Assume f : R"™ X R™ — R" is locally Lipschitz in x and

continuous in u and U = U(x) for all x € R" is compact
or that U (x) = B|x|(0) for ¢ > 0. Then F satisfies the

@ For each x € R and for all & > 0 there exists a § > 0 such
that for all & € Bs(x) we have F (&) € F(x) + Bz(0).

@ Example: [0,1], x=0 basic condition and F is Lipschitz.
Fx) = > 1,
(x) { L, x#0 @ Here, u can represent a disturbance or an input.
Assumption (Lipschitz continuity)

The set-valued map F : R =3 R” with 0 € F(0) is locally
Lipschitz continuous on R\ {0}.
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Differential inclusions

Setting:
@ Differential inclusion
x € F(x), xp € R"
@ defined through set-valued map F : R =3 R”

@ we are interested in stability properties of the origin, i.e.,
0 € F(0) without loss of generality.

Assumption (Basic conditions)

The set-valued map F : R =3 R" with 0 € F(0) has nonempty,
compact, and convex values on R”, and it is upper semicont.

Upper semicontinuity:

@ For each x € R and for all & > 0 there exists a § > 0 such
that for all & € Bs(x) we have F (&) € F(x) + Bz(0).

@ Example: [0,1], x=0

F(x):{ 1, x#0

Assumption (Lipschitz continuity)

The set-valued map F : R =3 R” with 0 € F(0) is locally
Lipschitz continuous on R\ {0}.

Lipschitz continuity:

@ If there exists a constant L > 0 and a neighborhood
O c R" of x € R™\{0} such that

F(x1) C F(x2) + BLjx|-x,|(0) VY x1,x€0

Note that:

@ Solutions of the differential inclusion:
Absolutely continuous functions ¢ (-; xg) : [0,7) — R,
(T € R>q U {oo}) with ¢ (- x0) € F(¢(+;x0)) for almost
allr € [0, 7).

~> Solutions exist for any initial value xo € R under the basic

condition.
@ Set of solutions (with ¢ (0; xg) = xp): S(xp)-
@ Solutions as extended real valued functions ¢ (-; xo):

o If ¢;(T;x0) =xcoforT >0andi € {1,...,n},
then ¢; (¢;x0) = +oo forall # > T.

o If ;i (T;x9) =xcoforT <Oandi € {1,...,n},
then ¢; (t; x9) = +coforallt < T.

@ Solutions which satisfy | ¢ (2; xg)| < co forall # € Ry are
called forward complete.
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Differential inclusions (Time Scaling)

Consider

X € F(x), xg € R

@ Set of solutions S(xg)
@ If ¢p(-;x0) € S(xp), #(-;x9) : R > R™ U {£o0}", then
Y (t;x0) = ¢(—15x0)
is a solution of (time reversed inclusion)
x € —-F(x) xp € R"?

@ For a positive continuous function 77 : Ryo — R,
consider the scaled differential inclusion
X € Fp(x) =n(lx|)F(x), xo €R". (1)
with set of solutions Sy, (-).
(Note that 77(0) > 0.)

@ F satisfies basic assumpt. < F7; satisfies basic assumpt.

P. Braun (ANU) (In-)Stability of Differential Inclusions
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Differential inclusions (Time Scaling)

Consider Theorem (Positive scaling of differential inclusions)

X € F(x), xg € R Consider x € F(x) satisfying the basic assumption. Consider
the scaled differential inclusion (1).

For all xy € R™ and for all ¢(-;x9) € S(xp) with
|d(t;x0)] <o, VE<T and |¢(t;x0)| =00 V=T,

@ Set of solutions S(xq)

@ If ¢(-3x0) € S(x0), ¢(-5x0) : R = R™ U {£c0}", then
T € Ro U {co}, there exist a continuous strictly increasing

Y (t:x0) = ¢(=;x0) function @ : [0, T) — [0, M) and M € Rsq U {oo} with
is a solution of (time reversed inclusion) a(0) = 0 such that
x€-F(x) xo€eR" #n(5x0) = ¢p(a(-);x0) € Sy (x0)-
@ For a positive continuous function 77 : Ryo — R, Conversely, if ¢, (-;x0) € Sy(x0) then

consider the scaled differential inclusion

x € Fy(x)=n(xF(x), xeR". (1)

by (@™ ();x0) € S(x0)

is satisfied. Moreover, in the limit, the solutions satisfy
with set of solutions Sy, (-).

(Note that 77(0) > 0.)

@ F satisfies basic assumpt. < F7; satisfies basic assumpt.

Jim |@(tx0)| = lim |y (1:%0)].

~> In particular, stability properties are preserved.
~> If T = M = oo both solutions are forward complete (@ € Kw)
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Differential inclusions (Time Scaling, 2)

Key takeaway:
@ If we want to establish asymptotic stability properties of the

Corollary origin of x € F(x) we can assume forward completeness
of solutions without loss of generality by considering an
Consider X € F(x) satisfying the basic assumption. Then there appropriate scaling.

exists a continuous positive function n : R>o — R~ such that
n(Ix])F(x) c Bi(0) VxeR"

Moreover n(| - |)F(-) : R"™ =3 R" satisfies the basic assumption
and all solutions of the scaled differential equation are forward
complete.

In particular, we can define
r)y= —
n(r) v(r)+1
where v is continuous and

v(r) 2 v(r) = [yl

max
yeF (x),|x|=r
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Differential inclusions (Time Scaling, 2)

Key takeaway:
@ If we want to establish asymptotic stability properties of the

Corollary origin of x € F(x) we can assume forward completeness
of solutions without loss of generality by considering an
Consider X € F(x) satisfying the basic assumption. Then there appropriate scaling.

exists a continuous positive function 1 : R>o — Rxq such that
Robust/Strong stability Weak stability

7(]x)F(x) < B1(0) Y x eR" |

I

ey 77(| ey s L =S Rn satt:sﬁes 23 b G on I “” ‘||||||\HHMH!“““”‘““”mN||||||H||||||||HI
and all solutions of the scaled differential equation are forward R ||I|II|I|I||I|I|||I||||||||||| i B 1 ||\IiiiilHHiiiii"m"mmm
complete

In particular, we can define

n(r) =

v(r)+1
where v is continuous and
v(r) 2v(r) = max
(r) > v(r) yeF(x),|x|=r|y|

Robust (complete) instability Weak (complete) instability
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(In)stability characterizations for ordinary differential equations

We start with differential equations
x = f(x), xp € R"
@ f :R"™ — R" locally Lipschitz
e f(0)=0

@ foreach xp € R™, S(x¢) contains a single element

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists § € K such that
forall € > 0,

|d(t;x0)| < & whenever |xp| < 6(&) and ¢ > 0.

Theorem (Lyapunov stability theorem)

Given x = f(x), suppose there exist a smooth Lyapunov function
V :R" - Rygand ay, ap € K such that, ¥V x € R™,

a1 (|x]) S V(x) < ax(lx]),

(VV(x), f(x)) <0.

Then the origin is (globally) stable.
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(In)stability characterizations for ordinary differential equations

We start with differential equations
x=f(x),
@ f :R"™ — R" locally Lipschitz
e f(0)=0

@ foreach xp € R™, S(x¢) contains a single element

X0 eR"

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists § € K such that
forall € > 0,

|d(t;x0)| < & whenever |xp| < 6(&) and ¢ > 0.

Theorem (Lyapunov stability theorem)

Given x = f(x), suppose there exist a smooth Lyapunov function
V :R" - Rygand ay, ap € K such that, ¥V x € R™,

a1 (|x]) S V(x) < ax(lx]),

(VV(x), f(x)) <0.

Then the origin is (globally) stable.

Definition ((Global) asymptotic stability)

The origin is asymptotically stable if it is stable and if V xy € R",

| (t;x0)] = 0 for t — co.

Theorem (Lyapunov asymptotic stability theorem)

Given x = f(x) suppose there exist a smooth Lyapunov function
V :R" - Ry, @1, @ € Ke, and p € P such that, Vx € R"
a1(]x]) < V(x) < az(lx]),

(VV(x), f(x)) < —p(Ix]).
Then the origin is (globally) asymptotically stable.

e i -
P. Braun (ANU) (In-)Stability of Differential Inclusions 7125



(In)stability characterizations for ordinary differential equations

We start with differential equations
x=f(x),
@ f :R"™ — R" locally Lipschitz
e f(0)=0

@ foreach xp € R™, S(x¢) contains a single element

X0 eR"

Definition ((Global) stability)

The origin is (Lyapunov) stable if there exists § € K such that
forall € > 0,

|d(t;x0)| < & whenever |xp| < 6(&) and ¢ > 0.

Theorem (Lyapunov stability theorem)

Given x = f(x), suppose there exist a smooth Lyapunov function
V :R" - Rygand ay, ap € K such that, ¥V x € R™,

a1 (|x]) S V(x) < ax(lx]),

(VV(x), f(x)) <0.

Then the origin is (globally) stable.

Definition ((Global) asymptotic stability)

The origin is asymptotically stable if it is stable and if V xy € R",

| (t;x0)] = 0 for t — co.

Theorem (Lyapunov asymptotic stability theorem)
Given x = f(x) suppose there exist a smooth Lyapunov function
V :R" - Ry, @1, @ € Ke, and p € P such that, Vx € R"
a1(]x]) < V(x) < az(lx]),
(VV(x), f(x)) < =p(lx]).
Then the origin is (globally) asymptotically stable.

Definition (Instability)

The origin is unstable for the system if it is not stable.

~> There are many different types of instability

~> Here, we focus on complete instability

R iitikii i i i i SBB Bl a il
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(In)stability characterizations for ordinary differential equations (2)

We start with differential equations
X = f(x), xp € R"

@ f:R"™ — R"locally Lipschitz, £(0) =0

Definition ((Global) complete instability)

The origin is completely unstable if there exists @ € K such
that for all & > 0 the condition xo € R"™\B 4 (s)(0) implies

|¢(t;x0)| = & Yt € Ry,
|#(t;x0)] — 00 for £ — oco.

Theorem (Lyapunov complete instability theorem)
Suppose there exist a smooth Chetaev function C : R™ — Ry,
a1, @ € K, and p € P such that, ¥V x € R",

a1(]x]) < C(x) < ea(|x]),

(VC(x), f(x))zp(|x]).
Then the origin is (globally) completely unstable.
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(In)stability characterizations for ordinary differential equations (2)

We start with differential equations
X = f(x), xp € R"

@ f:R"™ — R"locally Lipschitz, £(0) =0

Definition ((Global) complete instability)

The origin is completely unstable if there exists @ € K such
that for all & > 0 the condition xo € R"™\B 4 (s)(0) implies

|¢(t;x0)| = & Yt € Ry,
|#(t;x0)] — 00 for £ — oco.

Theorem (Lyapunov complete instability theorem)
Suppose there exist a smooth Chetaev function C : R™ — Ry,
a1, @ € K, and p € P such that, ¥V x € R",

a1(]x]) < C(x) < ea(|x]),

(VC(x), f(x))zp(|x]).
Then the origin is (globally) completely unstable.

Theorem (Chetaev’s theorem)

Assume there exists a smooth Chetaev function C : R"™ — R with
C(0) =0and

Or={x€B,y(0):C(x)>0}#0 Vr>0.
If for certain r > 0,
(VC(x), f(x))>0 VxeO

then the origin is unstable.
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(In)stability characterizations for ordinary differential equations (2)

We start with differential equations
x=f(x),
@ f:R"™ — R"locally Lipschitz, £(0) =0

X0 eR"

Definition ((Global) complete instability)

The origin is completely unstable if there exists @ € K such
that for all & > 0 the condition xo € R"™\B 4 (s)(0) implies

|¢(t;x0)| = & Yt € Ry,
|#(t;x0)] — 00 for £ — oco.

Theorem (Lyapunov complete instability theorem)
Suppose there exist a smooth Chetaev function C : R™ — Ry,
a1, @ € K, and p € P such that, ¥V x € R",

a1(]x]) < C(x) < ea(|x]),

(VC(x), f(x))zp(|x]).
Then the origin is (globally) completely unstable.

v

Theorem (Chetaev’s theorem)

Assume there exists a smooth Chetaev function C : R"™ — R with
C(0) =0and

Or={x€B,y(0):C(x)>0}#0 Vr>0.
If for certain r > 0,
(VC(x), f(x))>0 VxeO

then the origin is unstable.

Remark

Note that, as stated, the definition and characterizations are
essentially global as they are stated for all all x € R" and for all
& > 0. Local versions are easily obtained by restricting £ and by
restricting the attention to a domain around the origin.
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(In)stability characterizations for ordinary differential equations (A simple example)

Consider the three linear differential equations and their solutions

t 2 2 2

X X1,0€ N\ /7 PP ANANY NNNVITTV 7
fi(x) = ! B d1(t;x0) = l’Ot s NN s PP EEENNNN \\\\\f/////
x x2,0€ O T S B R S ) S R s
. R N S S I IS S A R B NN A Sl
—X1 . X1,0€ e e e I
fz(x)=[ Y ] ¢2(l,x0)=[x o BRSO I e B
2 2,0 N NI B R R B A AR RN
—t S/ 1 VN NN NNNN VS /////;\\\\\

fy=] #3(t:x0) = | *1:0¢ /LA IANNN] NNV oA, ARER
3 —Xx3 ’ 35 X0 XZOe_t 2 Bl 0 1 2 2 1 0 1 2 2 1 0 1 2
’ 51 N R

@ Chetaev function for complete instability: Cy(x) = xTx
(VC1, fi(x)) =2x"x

@ Chetaev function for instability: C(x) = —x% + x%

Ci(z) = Vi(z)
NO N B o ®
Co(x)

NE N o N a

(VCs, fo(x)) = 2x"x
@ Lyapunov function for asymptotic stability: V3(x) = xT x ) 22

(VV3, f3(x)) = —2x7 x
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(In)stability characterizations for ordinary differential equations (A simple example)

Consider the three linear differential equations and their solutions

t 2 2
X X1,0€ NSRRI AR NN EEEAAA
fl(x)z ! B ¢l(t§x0)= l’Ot s NNANAN s VO RAERRNNNN \iiitfijii/
X2 X2,0€ L S SN A H= S R SN NS B SN AR
_t O N A I N e < <
X . X1,0€ o e i it - et B B H o T
fz(x)=[ Y ] ¢2(l,x0)=[x o JESR VR U B i SRR U SO i) P
2 2,0 P A A NN RN R e 7|//”"\\\\\
X X1 et S/ VN NN NNV s /;;;;;ti:‘\\\
—X1 1
f3(x) = , PGE O ,0 _ LA L ANNN NN A, JERERN
—X2 X2,0€ 2 -1 0 1 2 2 -1 0 1 2 2 -1 0 1 2
ry Ty z

@ Chetaev function for complete instability: Cy(x) = xTx
(VC1, fi(x)) =2x"x

@ Chetaev function for instability: C(x) = —x% + x%

Ci(x) = Vs(x)
NoO N B oo ®
Ci(x)

NE N o N a

(VCa, fo(x)) =2x"x
@ Lyapunov function for asymptotic stability: V3 (x) = xTx 272

(VV3, f3(x)) = —2x7 x

Simple observation:
X = f(x), 0isasymptotically stable = X =—f(x), 0iscompletely unstable

(VV(x), f(x)) < —p(lx]) & (VC(x), =f(x)) z p(Ix])
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(In)stability characterizations for ordinary differential equations (Local complete instability)

Recall the definition:

Definition ((Global) complete instability)

The origin is completely unstable if there exists @ € K such
that for all & > 0 the condition xo € R\ B 4 (s)(0) implies

lp(t;x0)| = & V1 € R, %))
|¢(t;x0)] — 00 for £ — oco.

~> Is the condition (2) necessary?
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(In)stability characterizations for ordinary differential equations (Local complete instability)

1. ! T T
Recall the definition: R NN
1 ——
Definition ((Global) complete instability)
0.5
The origin is completely unstable if there exists @ € K such
that for all & > 0 the condition xo € R\ B 4 (s)(0) implies 2 0
|p(t;x0)| = 6 V't eRsp, 2) 05
[¢(t;x0)| = o0 for t — oco.
4 — - -
~> Is the condition (2) necessary? A A A I NN NN
-2 -1 0 1 2
Example @

Consider the two dimensional dynamics
X = (02 - x%)xl + X7
X = (2 -x)x;
with parameter ¢ € R..

@ For x% = 2 the dynamics reduce to x; = x, and x, = 0.

v
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(In)stability characterizations for ordinary differential equations (Local complete instability)

Recall the definition:

Definition ((Global) complete instability)

The origin is completely unstable if there exists @ € K such
that for all & > 0 the condition xo € R\ B 4 (s)(0) implies

|¢(t;5x0)| = 6 ¥t e Ry, 2
|¢(t;x0)| = e for t — co.
~> Is the condition (2) necessary?
Example
Consider the two dimensional dynamics
x| = (62 - x%)xl + X7
X =(c? - x3)x2
with parameter ¢ € R..
@ For x% = ¢? the dynamics reduce to X; = x and % = 0.
D

P. Braun (ANU) (In-)Stability of Differential Inclusions

_ENNN NNV

1= = = ———

Note that:

@ a € K is necessary to ensure that solutions starting
arbitrarily far away from O stay arbitrarily far away from 0
Vt € Ry for global complete instability.

@ If we restrict our analysis of complete instability of O to
B .(0), then 0 is locally completely unstable.
2

~» Is the condition (2) necessary for local complete instability?
(I don’t know.)
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(In)stability characterizations for ordinary differential equations (Attractive but not stable)

Example (Vinograd’s example) @ Classical example of a system with globally attractive origin
(but not stable), i.e., the origin is not asymptotically stable.
. 1 X2 (xy — x1) + x5 @ The origin of time reversal dynamics X = — f (x) is not
P GeN = o 0 ? letely unstabl
|x|%(1+|x|421) xz(x2 - 2x1) completely unstable
/
0.8 0.8
/7 /
o7t/ / 07 {/
11 /
0.6 0.6
/! /
05/ | 05 /
noall ! soal !
S04 ' goay
031 034 !
fo /o
0.2 02y
/ 1
01t o1 '
0r- 0F
0 0.2 0.4 0.6 0 0.2 0.4 0.6
x| Ty
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(In)stability characterizations for ordinary differential equations (The Dini derivative)

Consider ¢ : R - R If ¢ is differentiable in x € R", then
The Dini derivative at x in direction w € R” are defined as: (Vo(x),w)=D*o(x;w)

D¥p(x;w) = limsup 1 (p(x+1v) - o(x)),
vow; t\0

Dig(x;w) = liminf 1 (p(x+1v) - ¢(x)),
vow; 1\ 0

D™ ¢(x;w) = limsup % (p(x+1tv) — @(x)),

vow;t,/0
D_¢(x;w) = liminf % (p(x+tv) —p(x)).
vow;t,/0
(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions ¢:
@ The upper right Dini derivative simplifies to

D*¢(x;w) = limsup % (p(x+1tw) — p(x)).
\,0
(The remaining Dini derivatives simplify in the same way.)

@ The Dini derivative is finite

@ The Dini derivatives can all be different
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(In)stability characterizations for ordinary differential equations (The Dini derivative)

Consider ¢ : R - R If ¢ is differentiable in x € R", then
The Dini derivative at x in direction w € R” are defined as: (Vo(x),w)=D*o(x;w)

D*¢(x;w) = limsup  (¢(x+1v) — (x)),
—w; 0
VWIS For ¢(-;x0) : R>o — R smooth and V : R" — R smooth,
Dig(x;w) = “mi“{o% (p(x+1v) - @(x)),
vow;t

V(¢(t:x0)) = (VV(¢(1:x0)), $(1:x0))- 3
D™ ¢(x;w) = limsup % (p(x+1v) —p(x)), indicates the derivative of V along the function ¢. If ¢ is
vow;£/0 absolutely continuous and V is Lipschitz continuous, then (3)
D_p(x;w) = liminf_1 (p(x+1v) - ¢(x)). holds for almost all ¢ € R.
vow;t,/0

(Upper right, lower right, upper left, and lower left Dini derivative)

The Dini derivatives for Lipschitz functions ¢:
@ The upper right Dini derivative simplifies to

D*¢(x;w) = limsup % (p(x+1tw) — p(x)).
\,0
(The remaining Dini derivatives simplify in the same way.)

@ The Dini derivative is finite

@ The Dini derivatives can all be different
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Strong K L-stability and Lyapunov functions

Consider: x € F(x),

@ Assume F satisfies the basic conditions

X0 eR"

Definition (Global asymptotic stability)

The differential inclusion is uniformly globally asymptotically
stable with respect to 0 € R” if the following properties are
satisfied. There exists a function 6 € K such that for all £ > 0
and for all ¢ € S(xg),

[p(t:x0)| < £
[¢(t:x0)| — 0

whenever |xg| < 6(&) andt > 0,

for t — oo.

Definition ((Strong) K L-stability)

The differential inclusion is strongly K L-stable with respect to
0 € R™ if there exists 8 € KL, such that for all xy € R every
solution ¢ € S(xq) satisfies

|9 (2;x0)| < B(Ixol,2), V1 €Rso.

P. Braun (ANU)

Theorem

The differential inclusion is uniformly globally asymptotically
stable with respect to 0 if and only if it is (strongly) K L-stable.
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Strong K L-stability and Lyapunov functions

Consider: x € F(x),

@ Assume F satisfies the basic conditions

X0 e R"

Definition (Global asymptotic stability)

The differential inclusion is uniformly globally asymptotically
stable with respect to 0 € R" if the following properties are
satisfied. There exists a function 6 € K such that for all £ > 0
and for all ¢ € S(xg),

[p(t:x0)| < £
[¢(t:x0)| — 0

whenever |xg| < 6(&) andt > 0,

for t — oo.

Definition ((Strong) K L-stability)

The differential inclusion is strongly K L-stable with respect to
0 € R™ if there exists 8 € KL, such that for all xy € R every
solution ¢ € S(xq) satisfies

[p(t;x0)| < B(Ixol, 1), V1t €Rsp.

4

P. Braun (ANU) (In-)Stability of Differential Inclusions

Theorem

The differential inclusion is uniformly globally asymptotically
stable with respect to 0 if and only if it is (strongly) K L-stable.

Definition ((Robust) Lyapunov function)

A continuous function V : R — R is called a (robust) Lyapunov
function if there exist a1, @y € K and p € P such that

a;(|x]) < V(x) < ax(|x]) Vx e R"

max D'V (x;w) < —p(|x|) Vx € R
weF (x)

Theorem (Stability characterization)

The following are equivalent.

@ The differential inclusion is strongly K L-stable with
respect to the origin.

@ There exists a smooth Lyapunov function

13725



Koo Keo-instability and Chetaev functions

Consider: x € F(x), xp € R

@ Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 € R if the following properties are satisfied. There
exists a function § € K such that for all £ > 0 and for all
solutions ¢ € S(xgp),

|d(t;x0)| > & forallt > 0,
| (t;x0)| = o0 fort — oo,

whenever |xg| > 6(&).

P. Braun (ANU) (In-)Stability of Differential Inclusions 14/25



Koo Keo-instability and Chetaev functions

Consider: x € F(x), xp € R
@ Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 € R if the following properties are satisfied. There
exists a function § € K such that for all £ > 0 and for all
solutions ¢ € S(xgp),

|d(t;x0)| > & forallt > 0,
| (t;x0)| = o0 fort — oo,

whenever |xg| > 6(&).

Definition (Ko Ke-functions)

Consider the continuous function « : Rzzo — Ryo.
@ « is said to be of class Koo Koo (k € Koo Koo) if
k(-,5) € Ko Vs € Rypand k(s, ) — «(s5,0) € Koo
Vse R>().

Example:
0 k(s,1) =cells € KK if 1> 0,¢ >0
0 k(s,2)=(t+1)s € KKoo

Definition (Strong Ko Keo-instability)

The differential inclusion is strongly Ko Keo-unstable with
respect to 0 € R” if there exists k € Ko Koo such that, for all
xo € R every solution ¢ € S(x) satisfies

[ (t;x0) [ =K (x0l,2), V1t €Rs.

P. Braun (ANU) (In-)Stability of Differential Inclusions
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Koo Keo-instability and Chetaev functions (2)

Consider: x € F(x), xp € R"?

@ Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 € R" if the following properties are satisfied. There
exists a function & € Ko such that for all £ > 0 and for all
solutions ¢ € S(xgp),

[¢(t;x0)| = & forallz > 0,
|¢(t;x0)] > 00 fort — oo,

whenever |xg| > 6(&).

4 min D,C(x;w)>p(|x|) VxeR"
weF (x)
v
Definition (Strong K K-instability)
. o L . Theorem (Instability characterization
The differential inclusion is strongly Ko Kso-unstable with respect eorem (Instability characterization)
to 0 € R™ if there exists k € Ko Koo such that, for all xg € R™ The following are equivalent.
every solution ¢ € S(xo) satisfies @ The differential inclusion is strongly Koo Keo-unstable.
[@(t;x0)| = k(|x0l,2), V¥t €Rsp. ) @ There exists a smooth Chetaev function.

Theorem

The differential inclusion is strongly completely unstable with

respect to 0 if and only if the origin is strongly Koo Koo-unstable.
o

Definition ((Robust) Chetaev function)

A continuous function C : R’ — R is called a Chetaev function

for the differential inclusion if there exist @, @y € K« and
p € P such that

a(Ix]) < C(x) < ax(lx]) VxeR"

P. Braun (ANU) (In-)Stability of Differential Inclusions
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Relations between Chetaev and Lyapunov functions & scaling

Lemma

Consider x € F(x) satisfying the basic condition and
x € n(|x|)F (x) for a Lipschitz  : Rso — Rxo.
@ Assume V is a smooth Lyapunov function for x € F(x).
Then V is a smooth Lyapunov function of x € n(|x|)F (x).

@ Assume C is a smooth Chetaev function for x € F(x).
Then C is a smooth Chetaev function of x € n(|x|)F (x).
v

Proof.

Let V denote a smooth Lyapunov function. Then there exists
p € P such that

max (VV(x),w) < —p(|x]|) x € R™.
weF (x)
VV(x), = VV(x),
et TV )= B TV ()

< —n(lxDp(lx]) = 4(1x])

~> Solutions are forward complete w.l.o.g.
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Relations between Chetaev and Lyapunov functions & scaling

Lemma

Consider x € F(x) satisfying the basic condition and
x € n(|x|)F (x) for a Lipschitz  : Rso — Rxo.

@ Assume V is a smooth Lyapunov function for x € F(x).

Then V is a smooth Lyapunov function of x € n(|x|)F (x).

@ Assume C is a smooth Chetaev function for x € F(x).

Then C is a smooth Chetaev function of x € n(|x|)F (x). )

Corollary

Consider x € F(x) satisfying basic conditions together with
x € —F(x)

@ Let V be a smooth Lyapunov function for x € F(x). Then
C =V is a smooth Chetaev function for x € —F (x).

@ Let C be a smooth Chetaev function for x € F(x). Then
V = C is a smooth Lyapunov function for x € —F (x).

Proof.

Let V denote a smooth Lyapunov function. Then there exists

p € P such that
max (VV(x),w) < —p(|x]) x € R™.
weF (x)

(VV(x),w) = WrEngx)WV(x), n(|x)w)

max
wen(lx|)F(x)

—n(lxDp(lx]) = 5(lx])

~> Solutions are forward complete w.l.o.g.

Proof.

Let V denote a smooth Lyapunov function for x € F(x). Then
there exists p € P such that

—p(Ix]) nglgFX)(VV(X),M:— rr;n —(VV(x),w)

for all x € R™. Equivalently
p(lx]) 2 n};ﬂ =(VV(),wii= mln (VV(X) w)

i.e., C = V is a Chetaev function for x € —F(x). O
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Weak (in)stability of differential inclusions & Lyapunov characterizations

Weak K L-stability and control Lyapunov functions
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Weak (in)stability of differential inclusions & Lyapunov characterizations

Weak K L-stability and control Lyapunov functions

Definition (Global asymptotic stabilizability)

X € F(x) is uniformly globally asymptotically stabilizable with
respect to 0 if the following are satisfied. There exists a function
6 € K such that for all £ > 0 and all x; € R™ with

|xo| < 6(&) there exists ¢ € S(xq) with

lp(t;x0)| < &
l6(2;x0)| — O

forallt >0 and

for t — oo.

Definition (Weak % L-stability)

X € F(x) is weakly K L-stable with respect to the equilibrium 0
if there exists B € K L such that, for all xy € R there exists
¢ € S(xp) with

[p(t:x0)| < B(Ix0l,2), V1 €Rso.

Corollary

Consider x € F(x) satisfying the basic conditions. x € F(x) is
globally asymptotically stabilizable with respect to 0 if and only if
it is is weakly K L-stable.

v

Definition (Control Lyapunov function)

A continuous function V : R — R is called control Lyapunov
function for X € F(x) if there exist @, ay € Ke and p € P and

ai(|x]) < V(x) < ax(|x]) Vx € R"
min D,V (x;w) < —p(|x]|) Vx € R"
weF (x)
v
Theorem

Suppose F satisfies the basic conditions and is Lipschitz. Then
the following are equivalent.

@ x € F(x) is weakly K L-stable.

@ There exists a Lipschitz control Lyapunov function.

P. Braun (ANU) (In-)Stability of Differential Inclusions 17/25



Weak K., Ko -instability and control Chetaev functions

Definition (Weak complete instability)

X € F(x) is weakly completely unstable with respect to 0 if the
following properties are satisfied. There exists a function
6 € K such that for all £ > 0 and all xy € R” with
|x0| = 6(&) there exists ¢ € S(xp) with
|d(t;x0)| = & forallt >0 and
[¢p(t;x0)| > o0 fort — oo.

Definition (Weak K, K -instability)

X € F(x) is weakly Ko Koo-unstable with respect to 0 if there
exists k € Koo Koo such that, for all xo € R there exists
¢ € S(xp) so that

|d(t;x0)| = x(|x0|,2) forallz > 0.

Corollary

Consider x € F(x) satisfying the basic conditions. x € F(x) is
weakly completely unstable with respect to O if and only if it is is
weakly Koo Koo-unstable.

Definition (Control Chetaev function)

A continuous function C : R — R is called control Chetaev
function for x € F(x) if there exist @, @) € Ko and p € P
such that

a;(|x]) £ C(x) < aa(]x]) Vx € R*?

max D*C(x;w) > p(|x]) Vx e R"*
weF(x)

Theorem
Suppose F satisfies the basic conditions and is Lipschitz. Then
the following are equivalent.

@ The origin of X € F(x) is weakly Koo Keo-unstable.

@ There exists a continuous control Chetaev function.

-
P. Braun (ANU) (In-)Stability of Differential Inclusions
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When are nonsmooth control Lyapunov/Chetaev functions necessary? (Examples)

Consider the differential inclusion Nonsmooth control Chetaev function:
x € F(x)=conv{f(x,u)lue U(x)} C(x) =2[x1] + |x2]
where f(x, u) and U are defined as 5
1 0 1 S
= 0K
fx,u) [0 e O]u and tho':ft%%

U(x) =[-2]x],2]x]].
Assume there exists a smooth control Chetaev function C.
@ Then, V =CisaCLF for x = — f(x, u):

sup (VC(x), f(x,u)) 2 p(lx])
uel(x)

uerpL}?x)wc(x), —f(x,u)) < -p(|x]).

@ The second component x; of — f, is not stabilizable to the
origin, i.e., a smooth CLF cannot exist and thus a smooth
CCF cannot exist There are differential inclusions satisfying basic conditions and

F locally Lipschitz which are weakly Koo Koo-unstable and which

do not admit smooth control Chetaev functions.

Corollary

@ However, intuitively it should be clear that the origin is
weakly completely unstable

P. Braun (ANU) (In-)Stability of Differential Inclusions 19/25



Relations between control Chetaev functions, control Lyapunov functions, and scaling

Note that

@ Results on the positive scaling x € 77(|x|)F (x) remain
valid in the weak setting

@ The connections between x € F(x) and x € —F (x)
established in the strong setting are in general not satisfied
in the weak setting

P. Braun (ANU) (In-)Stability of Differential Inclusions 20/25



Relations between control Chetaev functions, control Lyapunov functions, and scaling

Note that

@ Results on the positive scaling X € 77(|x|)F (x) remain
valid in the weak setting

@ The connections between x € F(x) and x € —F (x)
established in the strong setting are in general not satisfied
in the weak setting

P. Braun (ANU)

In particular, let V be a control Lyapunov function for X € F'(x),
i.e., for p € P forall x € R

p— > 1 ;
p(lx]) = wg};r(lx) D,V (x;w)
This implies that

< -D.V(x;
p(lx) omax  =Ds (x;w)

max (- liminf 1(V(x+tv)—V(x))
weF (x) vow; 1,0

max  limsup ——(V(x+tv) -V(x))
WEF (X) yw; N0

max limsup 1 t(V(x —tv) - V(x))
WEF(X) yy; t/‘O

max limsup 1 ;(Vx+tw) - V(x))
WE-F(X) 5, t/O

max D~ V(x;w).

we—-F(x)

~» The left Dini derivative cannot be used to define a CCF for
x € —F(x).

(In-)Stability of Differential Inclusions 20/25



Relations between control Chetaev functions, control Lyapunov functions (Artstein’s Circles)

4 4

AN i
@ Consider (u € [-1,1] = U) iﬂ/‘"{j/k\tsx\\tid
: AT
51(1) = (—x1 (024 20 u(o), NN B 2
K (1) = (<231 (1)x2(0)) u(t) go ol -]
e e . VAN AR B N VN NN
(the origin is weakly K L-stable) ) L7 /’ L IR
@ Control Lyapunov function: z J \" N }/ ! \ \
2, 3.2 4 SN F
V(x) = f4x7 +3x5 — |x1] 4 2 0 2 4 4 2 0 2 4
Ty Eat
2y ! @ All solutions corresponding to xo € R2\(R x {0}) are
s 05 ] bounded
= - - ~> The origin is not weakly K. K -unstable.
b g o
0.5
0 08 Corollary
.
. % T o 1 T os o os i Weak K L-stability of the origin for x € F(x) is not equivalent
* o o to weak Koo Koo-instability of the origin for x € —F (x).
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Relations between control Chetaev functions, control Lyapunov functions (Brockett integrator)

Example

Consider the dynamics of the Brockett integrator,

F(x)=conv{f(x,u)|lue U}
defined through
u
flx,u) = u and  U=[-1,1]%.
Xjup — XpuUy
(Note that the dynamics in forward time are equivalent to the dynamics in backward time.)
@ It can be shown that
V(x) = xl2 +x§ +2x§ - 2|x3] xl2 +x§
is CLF but not a CCF.

@ It can be shown that

C(x) = |xi|+ |x2| + |x3]
is a CCF but not a CLF
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Comparison to control barrier function results

Consider the control affine system
A= f(x)+g(x)u
@ f, g locally Lipschitz
@ C c R is called forward invariant if for every xo € C,
¢(t;x9) € C, Vt € Ry

> (in the strong sense) V¢ € S(xq)
> (in the weak sense) 3¢ € S(xq)

@ For u = k(x) Lipschitz, x = f(x) + g(x)k(x) is called
safe with respect to C if C is forward invariant.
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Comparison to control barrier function results

Consider the control affine system
A= f(x)+g(x)u
@ f, g locally Lipschitz
@ C c R is called forward invariant if for every xo € C,
#(t;x0) € C, Yt € Ry

> (in the strong sense) V¢ € S(xq)
> (in the weak sense) 3¢ € S(xq)

@ For u = k(x) Lipschitz, x = f(x) + g(x)k(x) is called
safe with respect to C if C is forward invariant.

Definition (Control barrier function (CBF))

Let C c R be the superlevel set
C={x e R"| B(x) = 0}.

of a smooth function B : R — R. Then B is a CBF if there
exists an extended class Ko function 6 : R — R such that

8, extended K function if there exist @, @y € K so
that 6(r) = @1(r) and §(—-r) = —ay(r) forall r € Ryy.

If B(x) is a control barrier function, then C is safe and
asymptotically stable with respect to x = f(x) + g(x)u
and a control law u = k(x) satisfying inequality (4).

Note that, if B(x) is large, (4) is not restrictive.
Note that, for x € {x € R"| B(x) =0}, (4) is restrictive

CBFs are usually used in the context of invariance (not
(in)stability)

((VB(x), f(x)) +(VB(x),g(x))u) > -6(B(x)) 4)
v

P. Braun (ANU) (In-)Stability of Differential Inclusions 23/25
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Comparison to control barrier function results

Consider the control affine system
A= f(x)+g(x)u
@ f, g locally Lipschitz
@ C c R is called forward invariant if for every xo € C,
#(t;x0) € C, Yt € Ry

> (in the strong sense) V¢ € S(xq)
> (in the weak sense) 3¢ € S(xq)

@ For u = k(x) Lipschitz, x = f(x) + g(x)k(x) is called
safe with respect to C if C is forward invariant.

Definition (Control barrier function (CBF))
Let C c R be the superlevel set
C={x e R"| B(x) = 0}.
of a smooth function B : R — R. Then B is a CBF if there

exists an extended class Ko function 6 : R — R such that

sup
ueld

((VB(x), f(x)) +(VB(x),g(x))u) > -6(B(x)) 4)

v

@ ¢, extended K function if there exist @, @ € Ko SO
that 6(r) = @1(r) and §(—-r) = —ay(r) forall r € Ryy.

@ If B(x) is a control barrier function, then C is safe and
asymptotically stable with respect to x = f(x) + g(x)u
and a control law u = k(x) satisfying inequality (4).

@ Note that, if B(x) is large, (4) is not restrictive.
@ Note that, for x € {x € R"| B(x) =0}, (4) is restrictive

@ CBFs are usually used in the context of invariance (not
(in)stability)

In combination with CLFs V:

u = k(x) = argmin,, ulu+v?
(u,y)eUXR

subjectto (VV(x), f(x) +g(x)u) < -p(|x|) +y
(VB(x), f(x) +g(x)u) 2 -6(B(x)),
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Complete control Lyapunov functions: Stability & Avoidance

Definition (Weak K L-stab. with avoidance prop.)

Let O c R™,0 ¢ O, be open. x € F(x) is weakly K L-stable
with respect to 0 with avoidance property with respect to O, if
there exists 8 € K L such that, for each xy € R™\O, there exists
@ (-;x0) € S(xp) so that

& (2;x0)| < B(|x0l,1) and & (t;x0) & O Vit>0.

Consider the special case: O = Uf\il O; for Oy, ..., On open and
for simplicity assume N = 1 in the following.
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Complete control Lyapunov functions: Stability & Avoidance

Definition (Weak K L-stab. with avoidance prop.)

Let O c R™,0 ¢ O, be open. x € F(x) is weakly K L-stable
with respect to 0 with avoidance property with respect to O, if
there exists 8 € K L such that, for each xy € R™\O, there exists
@ (-;x0) € S(xp) so that

& (2;x0)| < B(|x0l,1) and & (t;x0) & O Vit>0.

Consider the special case: O = Uf\il O; for Oy, ...
for simplicity assume N = 1 in the following.

15
1
0.5

-0.5

, On open and

Definition (Complete control Lyapunov function)

Suppose F satisfies the basic condition and is Lipschitz. Let

O; c R" define an open set and let V¢ : R — R be a cont.
function. Assume there exist @, @ € K and p € P such that
the following are satisfied. There exists ¢; € R such that

Vc(x)=c; VYx €00, and c; < inf Ve (x).
x€0;

vV x e R"”
vV x ER"\O].

ai(|x]) < Ve (x) < ax(lx]),

in D,V ; < - ,
i 12k c(x;w) < —p(x)

Then V is called complete control Lyapunov function.
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Complete control Lyapunov functions: Stability & Avoidance

Definition (Weak K L-stab. with avoidance prop.)

Let O c R™,0 ¢ O, be open. x € F(x) is weakly K L-stable
with respect to 0 with avoidance property with respect to O, if
there exists 8 € K L such that, for each xy € R™\O, there exists
@ (-;x0) € S(xp) so that

& (2;x0)| < B(|x0l,1) and & (t;x0) & O Vit>0.

Consider the special case: O = Uf\il O; for Oy, ...
for simplicity assume N = 1 in the following.

15
1
0.5

-0.5

, On open and

Definition (Complete control Lyapunov function)

Suppose F satisfies the basic condition and is Lipschitz. Let

O; c R" define an open set and let V¢ : R — R be a cont.
function. Assume there exist @, @ € K and p € P such that
the following are satisfied. There exists ¢; € R such that

Ve(x)=c; Yx€dO; and c¢| £ inf Ve(x).
x€0;

vV x e R"”
vV x ER"\O].

ai(|x]) < Ve (x) < ax(lx]),

in D,V ; < - ,
i 12k c(x;w) < —p(x)

Then V is called complete control Lyapunov function.

Theorem

Consider x € F(x) satisfying the basic conditions and assume
F is Lipschitz. Let Oy be open and let Ve : R™ — R be a
complete control Lyapunov function. Then x € F (x) is weakly
K L-stable with respect to the origin and has the avoidance
property with respect to Oj.

~» If Oy is bounded, V¢ is necessarily nonsmooth.
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Overview

x € n(lx))F(x)

7:Ry0 =Ry
strong complete strong complete (strong) asymptotic
instability instability stability

IBeKL
(strong) K L-stability

!

JV:R" 5 Ry
smooth Lyapunov fen.

!

weak complete asymptotic

weak complete
instability stabilizability

instability
Tk € KooKeo Ape KL
weak K L-stability

weak Koo Koo-instability

JV:R" 5 Ry

Fk € KooKeo
strong Koo Koo-instability

|

JC:R" - Ry
smooth Chetaev fcn. cC=V

JC:R" - Ry \
control Lyapunov fen.

control Chetaev fcn.
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Koo Keo-instability and Chetaev functions

Consider: x € F(x), xp € R

@ Assume F satisfies the basic conditions

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 € R if the following properties are satisfied. There
exists a function § € K such that for all £ > 0 and for all
solutions ¢ € S(xgp),

|p(t;x0)| = & forallt > 0,

[¢(t;x0)] = 00 fort — oo,

whenever |xg| > 6(&).
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Koo Keo-instability and Chetaev functions

Consider: x € F(x), xp € R Example:
@ Assume F satisfies the basic conditions @ «k(s,1) =celts € KoK if 1>0,¢>0

1) = 1 Koo Koo
Definition (Strong complete instability) oK =lrrlse

The differential inclusion is strongly completely unstable with Definition (Strong KoK -instability)
respect to 0 € R if the following properties are satisfied. There . o o .
exists a function & € K such that for all £ > 0 and for all The differential inclusion is strongly Ko Keo-unstable with
solutions & € S(xp), respect to 0 € R” if there exists k € Ko Koo such that, for all
xo € R every solution ¢ € S(xq) satisfies
|p(t;x0)] = & forallz > 0, v ~
. > .
|6t x0)| = 00 fort — oo, [¢(;x0) |2k (X0, 7), V1 €Rxo

whenever |xg| > 6(&).

Definition (K%K- and Ko, Koo-functions)

Consider the continuous function « : R220 — Ryo.
@ « is said to be of class KooK (k € Koo K) if k (-, 5) € Koo
Vs eRspand (s, ) — «k(s,0) € K Vs €Rop.

@ « is said to be of class Koo Koo (k € Koo Koo) if
k(+,5) € Ko Vs €Rspand k(s,-) — k(s,0) € Ko
Vs eRyp.

T —
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Koo Keo-instability and Chetaev functions

Consider: x € F(x),

@ Assume F satisfies the basic conditions

X0 eR"

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 € R if the following properties are satisfied. There
exists a function § € K such that for all £ > 0 and for all
solutions ¢ € S(xgp),
[¢(t:x0)| 2 €
[¢(2:x0)| — o0

whenever |xg| > 6(&).

forallt > 0,

fort — oo,

Definition (K%K- and Ko, Koo-functions)

Consider the continuous function « : R2>0 — Ryo.

@ « is said to be of class KooK (k € Koo K) if k (-, 5) € Koo
Vs eRspand k(s, ) — k(s,0) € K Vs €Ryyp.

@ « is said to be of class Koo Koo (k € Koo Koo) if
k(+,5) € Ko Vs €Rspand k(s,-) — k(s,0) € Ko
Vs eRyp.

Example:
0 «(s,1) =cel's € KK if 1> 0,¢ >0
@ k(s,t)=(t+1)s € KooKeo

Definition (Strong Ko Ko-instability)

The differential inclusion is strongly Ko Koo-unstable with
respect to 0 € R if there exists k € Ko Koo such that, for all
xo € R™ every solution ¢ € S(x) satisfies

lo(t;x0)| =k (|x0l,2), Vt€Rsp.

Can k € KoK be replaced by k € Ko K in the Definition?

Example (Counterexample)

Consider x = 0 which has 0 as a stable equilibrium. Assume that
k € Ko ¥ is used to define complete instability and consider

k(r,t)=1r2-e™) € KK\ KeoKeo-
For all xy € R™ and for all # € Ry it holds that

[ (t:x0)| = |x0] > 3x0l(2 - e7*) =k (|x0]. 1)

i — o
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Koo Keo-instability and Chetaev functions

Consider: x € F(x),

@ Assume F satisfies the basic conditions

X0 eR"

Definition (Strong complete instability)

The differential inclusion is strongly completely unstable with
respect to 0 € R if the following properties are satisfied. There
exists a function § € K such that for all £ > 0 and for all
solutions ¢ € S(xgp),
[¢(t:x0)| 2 €
[¢(2:x0)| — o0

whenever |xg| > 6(&).

forallt > 0,

fort — oo,

Definition (KoK~ and Ko, Keo-functions)

Consider the continuous function « : R2>0 — Ryo.

@ « is said to be of class KooK (k € Koo K) if k (-, 5) € Koo
Vs eRspand k(s, ) — k(s,0) € K Vs €Ryyp.

@ « is said to be of class Koo Koo (k € Koo Koo) if
k(+,5) € Ko Vs €Rspand k(s,-) — k(s,0) € Ko
Vs eRyp.

Example:
@ «(s,1) =cells € KK if 1> 0,¢ >0

0 k(s,t)=(t+1)s € KooKeo

Definition (Strong Ko Keo-instability)

The differential inclusion is strongly K Keo-unstable with
respect to 0 € R” if there exists k € Ko Koo such that, for all
xo € R™ every solution ¢ € S(x) satisfies

|p(t;: x0) |2k (Ix0],2), V1 €Rxo.

Definition (Local Strong Ko, K-instability)

Let 0 € O c R" be an open neighborhood. 0 € R” is locally
strongly completely unstable with respect to the differential
inclusion and O if there exists a k € K Koo such that, for all
xo € O every solution ¢ € S(xp) satisfies

[p(2:x0)| = x(|x0l, ).

for all # € R such that ¢ (¢;x9) € O.

i —
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K L-stability with respect to (two) measures

@ Consider two measures w1, wy : G — Ry, i.e., two
positive functions from an open set G C R" to the positive
real numbers.

@ Then x € F(x) is called K L-stable with respect to
(w1, wy) on G if there exists a K L-function B such that
forall x € G,
wi($(t;x0)) < B(wr(x0),1) Y120
and d(t;x0) € G V¢ € S(xg) Vitr=>0.

Note that:

@ For G =R" and w(x) = wy(x) = | x|, the definition of
(string) K L-stability of the origin is recovered.

@ For G c R™\{0} excluding the origin, the measures

w1 (x) = wo(x) = 1 ensure certain instability properties.

)

In particular, the bound

930 = (8(|%

is obtained.
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K L-stability with respect to (two) measures

@ Consider two measures w1, wy : G — Ry, i.e., two
positive functions from an open set G C R to the positive
real numbers.

@ Then x € F(x) is called K L-stable with respect to
(w1, wy) on G if there exists a K L-function B such that
forall x € G,
wi($(t;x0)) < B(wr(x0),1) Y120
and d(t;x0) € G V¢ € S(xg) Vitr=>0.

Note that:

@ For G =R" and w(x) = wy(x) = | x|, the definition of
(string) K L-stability of the origin is recovered.

@ For G c R™\{0} excluding the origin, the measures
1

w1 (x) = wy(x) = — ensure certain instability properties.

x|
In particular, the bound

)

930 = (8(|%

is obtained.

In the context of Lyapunov functions:

@ A Lyapunov function characterizing K L-stability with

respect to (w1, wy ), needs to satisfy

a1 (wi(x)) £ V(x) < m(wr(x)).
For w (x) = wy(x) = |x|~! this implies

1 1
— <V(x) < —
| x| | x|
and for wy(x) = wy(x) = |x| this implies
[x] < V(x) < |x]|
As an example

» V(x) = x? characterizes stability of X = —x
» V(x) = x~2 characterizes instability of x = x

~» V behaves different close to the origin
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Relations between Chetaev and Lyapunov functions & scaling (2)

Scaling of Lyapunov/Chetaev functions:
@ A Chetaev function satisfies:

a1(]x]) £ C(x) £ ap(|x]) V x eR"?
min D,C(x;w) > p(|x]) V x eR"?
weF (x)
@ Forp=poa;' € P,itholds that
min D,C(x;w) = p(|x]) = p(a;' (C(x)))
weF (x)
=p(C(x)).
@ Select @ € K continuously differentiable such that
&' (s) >0 and p(s)d (s) = a(s) Vs € Ry,
@ Note that for é(x) =&(C(x)):
D.C(x;w) = & (C(x))DsC(x;w)  YweR™
(chain rule with respect to the Dini derivative) and thus

n;;r(l )D+5(x;W) > &' (C(x))p(C(x))

v

&(C(x)) = C(x)

v
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Relations between Chetaev and Lyapunov functions & scaling (2)

Scaling of Lyapunov/Chetaev functions:
@ A Chetaev function satisfies:
ai(|x]) £ C(x) < aa(|x]) vV x € R?

min D,C(x;w) > p(|x]) V x eR"?
weF (x) @=ad&oa and & =A4om

@ As alast step define

@ Forp=poay I e P, it holds that which satisfies
Jmin, DClxiw) = plxl) = pla! (C(x))) Bl = € < dallx) Vv e R
=p(C(x)).
@ Select @ € K continuously differentiable such that
&' (s) >0 and p(s)d (s) = a(s) Vs € Ry,
@ Note that for é(x) =&(C(x)):
D,.C(x;w) = & (C(x))D.C(x;w) VweR"
(chain rule with respect to the Dini derivative) and thus

n;p(] )D+5(x;W) > &' (C(x))p(C(x))

> @(C(x)) = C(x)
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Relations between Chetaev and Lyapunov functions & scaling (2)

Scaling of Lyapunov/Chetaev functions:
@ A Chetaev function satisfies:
VxeR"
VxeR"

a;(|x]) £ C(x) < ax(|x])
in D.C(x; >
min Dy (xsw) = p(Ix])
@ Forp=poa;' € P,itholds that

min D,C(x;w) = p(|x]) = p(a;' (C(x)))

weF (x)
=p(C(x)).
@ Select @ € K continuously differentiable such that
&' (s) >0 and p(s)d (s) = a(s) Vs € Ry,
@ Note that for C(x) = @(C(x)):
D,.C(x;w) = & (C(x))D.C(x;w) VweR"

(chain rule with respect to the Dini derivative) and thus

II;;I(] )D+5(x;W) > &' (C(x))p(C(x))

> @(C(x)) = C(x)

@ As alast step define
dl :doal and ddeoaz

which satisfies

a(lx)) < C(x) < do(lx])  YxeR",
In particular the conditions
ai(]x]) £ C(x) < ax(]x])  VxeR"
min D.C(x;w) > p(|x]) VxeR"?
weF (x)
are equivalent to
@ (lx) < C(x) < da(lx])  VxeR"
min D,C(x;w) > C(x) VxeR"

weF(x)
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