Avoidance and Stabilization for Linear Systems

Philipp Braun
School of Engineering, Australian National University, Canberra, Australia

In Collaboration with:
L. Grüne: University of Bayreuth, Bayreuth, Germany
C. M. Kellett: School of Engineering, Australian National University, Canberra, Australia
L. Zaccarian: Dipartimento di Ingegneria Industriale, University of Trento, Italy, and

LAAS-CNRS, Université de Toulouse, France
Australian
National
University

Research focus: Obstacle avoidance \& target set stabilization

Setting: Linear System $\dot{x}=A x+B u$
Goal: Reactive controller design for obstacle avoidance \& target set stabilization.

Combined avoidance \& stabilization:

Research focus: Obstacle avoidance \& target set stabilization

Setting: Linear System $\dot{x}=A x+B u$
Goal: Reactive controller design for obstacle avoidance \& target set stabilization.

- "We construct Lipschitz-continuous feedback laws which guarantee avoidance and stabilization."
- "Avoidance \& stability are achieved for almost all initial conditions."
- "The controller design is independent of the shape of the obstacles."
- "The avoidance controller and the stabilizing control law can be designed independently."

Combined avoidance \& stabilization:

Research focus: Obstacle avoidance \& target set stabilization

Setting: Linear System $\dot{x}=A x+B u$
Goal: Reactive controller design for obstacle avoidance \& target set stabilization.

- "We construct Lipschitz-continuous feedback laws which guarantee avoidance and stabilization."
\rightsquigarrow Topological obstruction \rightsquigarrow Discontinuous feedback laws are necessary.
\rightsquigarrow Lipschitz-continuous feedback laws can only provide global results if the obstacle is defined through an unbounded set.
- "Avoidance \& stability are achieved for almost all initial conditions."
- "The controller design is independent of the shape of the obstacles."
- "The avoidance controller and the stabilizing control law can be designed independently."

Combined avoidance \& stabilization:

Research focus: Obstacle avoidance \& target set stabilization

Setting: Linear System $\dot{x}=A x+B u$
Goal: Reactive controller design for obstacle avoidance \& target set stabilization.

- "We construct Lipschitz-continuous feedback laws which guarantee avoidance and stabilization."
\rightsquigarrow Topological obstruction \rightsquigarrow Discontinuous feedback laws are necessary.
\rightsquigarrow Lipschitz-continuous feedback laws can only provide global results if the obstacle is defined through an unbounded set.
- "Avoidance \& stability are achieved for almost all initial conditions."
\rightsquigarrow What about robustness?
- "The controller design is independent of the shape of the obstacles."
- "The avoidance controller and the stabilizing control law can be designed independently."

Combined avoidance \& stabilization:

Research focus: Obstacle avoidance \& target set stabilization

Setting: Linear System $\dot{x}=A x+B u$
Goal: Reactive controller design for obstacle avoidance \& target set stabilization.

- "We construct Lipschitz-continuous feedback laws which guarantee avoidance and stabilization."
\rightsquigarrow Topological obstruction \rightsquigarrow Discontinuous feedback laws are necessary.
\rightsquigarrow Lipschitz-continuous feedback laws can only provide global results if the obstacle is defined through an unbounded set.
- "Avoidance \& stability are achieved for almost all initial conditions."
\rightsquigarrow What about robustness?
- "The controller design is independent of the shape of the obstacles."
\rightsquigarrow Only if the system is fully actuated and the drift term is not present; i.e., $\dot{x}=u$.
- "The avoidance controller and the stabilizing control law can be designed independently."

Combined avoidance \& stabilization:

Research focus: Obstacle avoidance \& target set stabilization

Setting: Linear System $\dot{x}=A x+B u$
Goal: Reactive controller design for obstacle avoidance \& target set stabilization.

- "We construct Lipschitz-continuous feedback laws which guarantee avoidance and stabilization."
\rightsquigarrow Topological obstruction \rightsquigarrow Discontinuous feedback laws are necessary.
\rightsquigarrow Lipschitz-continuous feedback laws can only provide global results if the obstacle is defined through an unbounded set.
- "Avoidance \& stability are achieved for almost all initial conditions."
\rightsquigarrow What about robustness?
- "The controller design is independent of the shape of the obstacles."
\rightsquigarrow Only if the system is fully actuated and the drift term is not present; i.e., $\dot{x}=u$.
- "The avoidance controller and the stabilizing control law can be designed independently."
\rightsquigarrow The combination of repelling \& stabilizing controllers may introduce equilibria (stable or unstable) and limit cycles in the closed-loop dynamics.

(Underactuated) Systems with Nontrivial Drift (Position of the Obstacle)

- Consider

$$
\dot{x}=\left[\begin{array}{rr}
-1 & \frac{3}{2} \\
-\frac{3}{2} & -1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

(The system is controllable)

- Subspace of induced equilibria: $\left(B \in \mathbb{R}^{n}\right)$

$$
\mathcal{E}=\left\{y \in \mathbb{R}^{n}: 0=A y+B \nu, \nu \in \mathbb{R}\right\}
$$

- Obstacle \mathcal{D} with $\mathcal{D} \cap \mathcal{E}=0$
- Use the natural drift $A x$ to 'leave the obstacle behind' and use $B u$ to avoid the obstacle
- Obstacle \mathcal{D} with $\mathcal{D} \cap \mathcal{E} \neq 0$
- Use u to destabilize a point $\hat{x} \in \mathcal{D} \cap \mathcal{E}$ to avoid the obstacle

Problem formulation \& hybrid controller framework

Setting:

$$
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n}
$$

Problem

Consider the linear system and a stabilizing feedback law

$$
u_{s}=K_{s} x .
$$

For given $\varepsilon_{2}>\varepsilon_{1}>0$, construct an avoidance (safety) controller $\gamma(x)$ such that
(i) the origin $x=0$ is globally asymptotically stable
(ii) $\gamma(x)$ satisfies

$$
\gamma(x)=K_{s} x \quad \forall x \in \mathbb{R}^{n} \backslash \mathcal{B}_{\varepsilon_{2}}(\hat{x})
$$

\Longrightarrow Semiglobal Preservation
(iii) the closed loop solution $x(\cdot ; \gamma)$ satisfies
$x\left(t ; x_{0}\right) \notin \mathcal{B}_{\varepsilon_{1}}(\hat{x}) \forall t \in \mathbb{R}_{\geq 0}, \forall x_{0} \notin \mathcal{B}_{\varepsilon_{2}}(\hat{x})$
\Longrightarrow Semiglobal \hat{x}-avoidance

Obstacle:

$$
\hat{x} \in \mathbb{R}^{n} \backslash\{0\}
$$

Problem formulation \& hybrid controller framework

Setting:

$$
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n}
$$

Problem

Consider the linear system and a stabilizing feedback law

$$
u_{s}=K_{s} x .
$$

For given $\varepsilon_{2}>\varepsilon_{1}>0$, construct an avoidance (safety) controller $\gamma(x)$ such that
(i) the origin $x=0$ is globally asymptotically stable
(ii) $\gamma(x)$ satisfies

$$
\gamma(x)=K_{s} x \quad \forall x \in \mathbb{R}^{n} \backslash \mathcal{B}_{\varepsilon_{2}}(\hat{x})
$$

\Longrightarrow Semiglobal Preservation
(iii) the closed loop solution $x(\cdot ; \gamma)$ satisfies
$x\left(t ; x_{0}\right) \notin \mathcal{B}_{\varepsilon_{1}}(\hat{x}) \forall t \in \mathbb{R}_{\geq 0}, \forall x_{0} \notin \mathcal{B}_{\varepsilon_{2}}(\hat{x})$
\Longrightarrow Semiglobal \hat{x}-avoidance

Obstacle:

$$
\hat{x} \in \mathbb{R}^{n} \backslash\{0\}
$$

Hybrid controller design

Given: Controller selection

$$
\gamma(x, q)=u_{q}(x), \quad q \in\{1, \ldots, p\}, \quad p \in \mathbb{N}
$$

Orchestrate the controller selection through the flow map:

$$
\dot{\xi}=\left[\begin{array}{l}
\dot{x} \\
\dot{q}
\end{array}\right]=\left[\begin{array}{c}
A x+B \gamma(x, q) \\
0
\end{array}\right], \quad \xi \in \mathcal{C}
$$

and the jump map

$$
\xi^{+}=\left[\begin{array}{l}
x^{+} \\
q^{+}
\end{array}\right] \in\left[\begin{array}{c}
x \\
\left\{i \in \mathbb{N} \mid \xi \in \mathcal{D}_{i}\right\}
\end{array}\right], \quad \xi \in \mathcal{D}
$$

where

$$
\begin{array}{ll}
\text { - } \mathcal{D}=\bigcup_{i=1}^{p} \mathcal{D}_{i} \subset \mathbb{R}^{n} \times\{1, \ldots, p\} \\
\text { - } \mathcal{C} \subset \mathbb{R}^{n} \times\{1, \ldots, p\} & \text { (Jump set) } \\
\text { (Flow set) }
\end{array}
$$

Obstacle avoidance $(\hat{x} \notin \mathcal{E})$: Problem formulation and assumptions

Setting:

$$
\dot{x}=A x+B u, \quad A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n} .
$$

Problem

Consider the linear system and a stabilizing feedback law

$$
u_{s}=K_{s} x
$$

For given $\varepsilon_{2}>\varepsilon_{1}>0$, construct an avoidance (safety) controller $\gamma(x)$ such that
(i) the origin $x=0$ is globally asymptotically stable
(ii) $\gamma(x)$ satisfies

$$
\gamma(x)=K_{s} x \quad \forall x \in \mathbb{R}^{n} \backslash \mathcal{B}_{\varepsilon_{2}}(\hat{x})
$$

\Longrightarrow Semiglobal Preservation
(iii) the closed loop solution $x(\cdot ; \gamma)$ satisfies
$x\left(t ; x_{0}\right) \notin \mathcal{B}_{\varepsilon_{1}}(\hat{x}) \forall t \in \mathbb{R}_{\geq 0}, \forall x_{0} \notin \mathcal{B}_{\varepsilon_{2}}(\hat{x})$
\Longrightarrow Semiglobal \hat{x}-avoidance

Obstacle:

$$
\hat{x} \in \mathbb{R}^{n} \backslash \mathcal{E}
$$

Set of induced equilibria:

$$
\mathcal{E}=\left\{y \in \mathbb{R}^{n}: 0=A y+B \nu, \nu \in \mathbb{R}\right\}
$$

Basic Assumption

(a) Matrix $A_{s}:=A+B K_{s}$ is Hurwitz. \checkmark
(b) $|B|=1$. \checkmark
(c) The norm $x \mapsto|x|^{2}$ is contractive under the stabilizer $u_{s}=K_{s} x$ (i.e., $V(x)=x^{T} x$ is a Lyapunov function.) \checkmark

Discussion:
(a) (A, B) stabilizable (Controllability is not necessary)
(b) Coordinate transformation: $B_{\circ}=B /|B|, u_{\circ}=|B| u$.
(c) Lyapunov function: $V_{\circ}(x)=x^{T} S_{\circ}^{T} S_{\circ} x$. Coordinate transformation: $x_{\circ}=S_{\circ} x$.

Numerical example

System parameters:

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{rr}
-1.0 & 1.5 \\
-1.5 & -1.0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \quad \hat{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; \quad \begin{aligned}
\sigma(A) & =\{-1+1.5 i,-1-1.5 i\} \\
\sigma\left(A+A^{T}\right) & =\{-2,-2\}
\end{aligned} \\
& u_{s}=0, \quad \mu=1.15, \quad \eta=0.8321, \quad \zeta=1.8028, \quad \delta^{*}=0.2455
\end{aligned}
$$

Controller design: 1. The "wipeout" property

- Distance to induced equilibria:

$$
\eta^{2}:=\min _{y \in\{y \mid \exists u, A y+B u=0\}}|\hat{x}-y|^{2}
$$

- Linear "wipeout" function/direction:

$$
\begin{gathered}
H(x)=\hat{x}^{T} A_{B}^{T} x=\hat{x}^{T} A^{T}\left(I-B B^{T}\right) x \\
w_{\hat{x}}=\frac{\nabla H(x)}{|\nabla H(x)|}=\frac{A_{B} \hat{x}}{\sqrt{\hat{x}^{T} A_{B}^{T} A_{B} \hat{x}}}
\end{gathered}
$$

- Visualization:

Controller design: 1. The "wipeout" property

Remark

- For each $x \in \mathcal{B}_{\eta}(\hat{x})$ we have

$$
\dot{H}(x)=\langle\nabla H(x), A x+B u\rangle \geq 0, \quad \forall u \in \mathbb{R}
$$

- For each $\bar{\eta}<\eta$, there exists $\underline{h}>0$ such that

$$
\langle\nabla H(x), A x+B u\rangle \geq \underline{h}, \quad \forall u \in \mathbb{R}, \forall x \in \mathcal{B}_{\bar{\eta}}(\hat{x})
$$

- Distance to induced equilibria:

$$
\eta^{2}:=\min _{y \in\{y \mid \exists u, A y+B u=0\}}|\hat{x}-y|^{2}
$$

- Linear "wipeout" function/direction:

$$
\begin{gathered}
H(x)=\hat{x}^{T} A_{B}^{T} x=\hat{x}^{T} A^{T}\left(I-B B^{T}\right) x \\
w_{\hat{x}}=\frac{\nabla H(x)}{|\nabla H(x)|}=\frac{A_{B} \hat{x}}{\sqrt{\hat{x}^{T} A_{B}^{T} A_{B} \hat{x}}}
\end{gathered}
$$

- Visualization:

Controller design: 2. Definition of the shell $\mathcal{S}(\delta)$

- Design parameters of the shell $\mathcal{S}(\delta)$:

$$
\begin{aligned}
& \delta \in \mathbb{R}_{>0} \\
& \mu \in(0,2)
\end{aligned}
$$

Controller design: 2. Definition of the shell $\mathcal{S}(\delta)$

- Design parameters of the shell $\mathcal{S}(\delta)$:

$$
\begin{aligned}
& \delta \in \mathbb{R}_{>0} \\
& \mu \in(0,2)
\end{aligned}
$$

- Definitions: $(q \in\{1,-1\})$

$$
\begin{aligned}
\delta_{\mu} & :=\delta\left(\frac{1}{\mu}-\frac{\mu}{4}\right) \\
\mathcal{O}_{q} & :=\mathcal{B}_{\left(\frac{\mu \delta}{2}+\delta_{\mu}\right)}\left(\hat{x}-q \delta_{\mu} B\right) \\
\mathcal{S}(\delta) & :=\mathcal{O}_{1} \bigcap \mathcal{O}_{-1}
\end{aligned}
$$

Controller design: 2. Definition of the shell $\mathcal{S}(\delta)$

- Design parameters of the shell $\mathcal{S}(\delta)$:

$$
\begin{aligned}
& \delta \in \mathbb{R}_{>0} \\
& \mu \in(0,2)
\end{aligned}
$$

- Definitions: $(q \in\{1,-1\})$

$$
\begin{aligned}
\delta_{\mu} & :=\delta\left(\frac{1}{\mu}-\frac{\mu}{4}\right) \\
\mathcal{O}_{q} & :=\mathcal{B}_{\left(\frac{\mu \delta}{2}+\delta_{\mu}\right)}^{\left(\hat{x}-q \delta_{\mu} B\right)} \\
\mathcal{S}(\delta) & :=\mathcal{O}_{1} \bigcap \mathcal{O}_{-1}
\end{aligned}
$$

- Hysteresis parameter: $h \in(0,1)$

$$
\begin{aligned}
\mathcal{O}_{h, q} & =\mathcal{B}_{h \frac{\mu \delta}{2}+\delta_{\mu}}\left(\hat{x}-q \delta_{\mu} B\right) \\
\mathcal{S}_{h}(\delta) & =\mathcal{O}_{h, 1} \cap \mathcal{O}_{h,-1} \\
\oint_{q} & =\mathcal{S}(\delta) \cap\left\{x \in \mathbb{R}^{n}: q B^{T}(x-\hat{x}) \geq 0\right\}
\end{aligned}
$$

Controller design: 3. The avoidance controller

- Hysteresis parameter: $h \in(0,1)$

$$
\begin{aligned}
\mathcal{O}_{h, q} & =\mathcal{B}_{h \frac{\mu \delta}{2}+\delta_{\mu}}\left(\hat{x}-q \delta_{\mu} B\right) \\
\mathcal{S}_{h}(\delta) & =\mathcal{O}_{h, 1} \cap \mathcal{O}_{h,-1} \\
\$_{q} & =\mathcal{S}(\delta) \cap\left\{x \in \mathbb{R}^{n}: q B^{T}(x-\hat{x}) \geq 0\right\}
\end{aligned}
$$

- Avoidance control law: $(q \in\{1,-1\})$

$$
u_{a}(x, q)=-\frac{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), A x\right\rangle}{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), B\right\rangle}
$$

Controller design: 3. The avoidance controller

Lemma

Let $\mu \in(0,2 / \sqrt{3}), \delta>0$ and $h \in(0,1)$.

- For $q \in\{-1,1\}$ and $x_{0} \in \mathcal{S}_{h}(\delta) \subset \mathcal{S}(\delta)$, the controller $u=u_{a}\left(x_{0}, q\right)$ is well defined.

Idea of the proof:

- We show that: $\left\langle x_{0}-\left(\hat{x}-q \delta_{\mu} B\right), B\right\rangle \neq 0$

$$
\forall x_{0} \in \mathcal{S}(\delta)
$$

- Avoidance control law: $(q \in\{1,-1\})$

$$
u_{a}(x, q)=-\frac{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), A x\right\rangle}{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), B\right\rangle}
$$

Controller design: 3. The avoidance controller

Lemma

Let $\mu \in(0,2 / \sqrt{3}), \delta>0$ and $h \in(0,1)$.

- For $q \in\{-1,1\}$ and $x_{0} \in \mathcal{S}_{h}(\delta) \subset \mathcal{S}(\delta)$, the controller $u=u_{a}\left(x_{0}, q\right)$ is well defined.
- The solution $x\left(\cdot, x_{0}, u_{a}\right)$ remains at a constant (non-negative) distance from the center

$$
c_{q}:=\hat{x}-q \delta_{\mu} B
$$

of the ball \mathcal{O}_{q} until it remains in $\mathcal{S}(\delta)$.
Idea of the proof:

- We show that: $\left\langle x_{0}-\left(\hat{x}-q \delta_{\mu} B\right), B\right\rangle \neq 0$

$$
\forall x_{0} \in \mathcal{S}(\delta)
$$

- We show that:

$$
\begin{gathered}
\frac{d}{d t}\left|x\left(t ; x_{0}, u_{a}\right)-c_{q}\right|^{2}=0 \\
\forall x\left(t ; x_{0}, u_{a}\right) \in \mathcal{S}(\delta)
\end{gathered}
$$

Controller design: 3. The avoidance controller

- Controller design: $(q=\{-1,0,1\})$

$$
\gamma(x, q):=(1-|q|) u_{s}(x)+|q| u_{a}(x, q)
$$

- Hysteresis parameter: $h \in(0,1)$

$$
\begin{aligned}
\mathcal{O}_{h, q} & =\mathcal{B}_{h \frac{\mu \delta}{2}+\delta_{\mu}}\left(\hat{x}-q \delta_{\mu} B\right) \\
\mathcal{S}_{h}(\delta) & =\mathcal{O}_{h, 1} \cap \mathcal{O}_{h,-1} \\
\oint_{q} & =\mathcal{S}(\delta) \cap\left\{x \in \mathbb{R}^{n}: q B^{T}(x-\hat{x}) \geq 0\right\}
\end{aligned}
$$

- Avoidance control law: $(q \in\{1,-1\})$

$$
u_{a}(x, q)=-\frac{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), A x\right\rangle}{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), B\right\rangle}
$$

Controller design: 3. The avoidance controller

- Hysteresis parameter: $h \in(0,1)$

$$
\begin{aligned}
\mathcal{O}_{h, q} & =\mathcal{B}_{h \frac{\mu \delta}{2}+\delta_{\mu}}\left(\hat{x}-q \delta_{\mu} B\right) \\
\mathcal{S}_{h}(\delta) & =\mathcal{O}_{h, 1} \cap \mathcal{O}_{h,-1} \\
\$_{q} & =\mathcal{S}(\delta) \cap\left\{x \in \mathbb{R}^{n}: q B^{T}(x-\hat{x}) \geq 0\right\}
\end{aligned}
$$

- Controller design: $(q=\{-1,0,1\})$

$$
\gamma(x, q):=(1-|q|) u_{s}(x)+|q| u_{a}(x, q)
$$

- Jump set: $(q=\{-1,1\})$

$$
\begin{aligned}
\mathcal{D}_{q} & :=\left(\mathcal{S}_{h}(\delta) \cap \phi_{q}\right) \times\{0\} \\
\mathcal{D}_{0} & :=\overline{\mathbb{R}^{n} \backslash \mathcal{S}(\delta)} \times\{1,-1\} \\
\mathcal{D} & :=\mathcal{D}_{1} \cup \mathcal{D}_{-1} \cup \mathcal{D}_{0}
\end{aligned}
$$

- Jump map:

$$
\begin{aligned}
\xi^{+}= & {\left[\begin{array}{l}
x^{+} \\
q^{+}
\end{array}\right] \in\left[\begin{array}{c}
x \\
G_{q}(\xi)
\end{array}\right], \quad \xi \in \mathcal{D} } \\
G_{q}(\xi) & = \begin{cases}1, & \xi \in \mathcal{D}_{1} \backslash \mathcal{D}_{-1} \\
-1, & \xi \in \mathcal{D}_{-1} \backslash \mathcal{D}_{1} \\
\{1,-1\}, & \xi \in \mathcal{D}_{1} \cap \mathcal{D}_{-1} \\
0, & \xi \in \mathcal{D}_{0},\end{cases}
\end{aligned}
$$

- Avoidance control law: $(q \in\{1,-1\})$

$$
u_{a}(x, q)=-\frac{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), A x\right\rangle}{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), B\right\rangle}
$$

Controller design: 3. The avoidance controller

- Hysteresis parameter: $h \in(0,1)$

$$
\begin{aligned}
\mathcal{O}_{h, q} & =\mathcal{B}_{h \frac{\mu \delta}{2}+\delta_{\mu}}\left(\hat{x}-q \delta_{\mu} B\right) \\
\mathcal{S}_{h}(\delta) & =\mathcal{O}_{h, 1} \cap \mathcal{O}_{h,-1} \\
\$_{q} & =\mathcal{S}(\delta) \cap\left\{x \in \mathbb{R}^{n}: q B^{T}(x-\hat{x}) \geq 0\right\}
\end{aligned}
$$

- Avoidance control law: $(q \in\{1,-1\})$

$$
u_{a}(x, q)=-\frac{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), A x\right\rangle}{\left\langle x-\left(\hat{x}-q \delta_{\mu} B\right), B\right\rangle}
$$

Controller design: 4. Global stability and obstacle avoidance

$$
\eta^{2}:=\min _{y \in\{y \mid \exists u, A y+B u=0\}}|\hat{x}-y|^{2} .
$$

$$
\begin{gathered}
\zeta=-\frac{2\left|A+B K_{s}\right|}{\lambda_{\max }\left(\left(A+B K_{s}\right)^{T}+\left(A+B K_{s}\right)\right)}>0 \\
\delta^{*}=\frac{1}{2}\left(|\hat{x}|+\eta+\zeta-\sqrt{(|\hat{x}|+\eta+\zeta)^{2}-4|\hat{x}| \eta}\right)>0
\end{gathered}
$$

Theorem

Let the basic assumption be satisfied.
Let $\delta \in\left(0, \min \left\{\delta^{*}, \frac{\eta}{1+\zeta}\right\}\right), \mu \in(0,2 / \sqrt{3})$, and $h \in(0,1)$. Then the hybrid controller guarantees that
(i) the origin $\xi=(x, q)=(0,0)$ is uniformly globally asymptotically stable from $\mathbb{R}^{n} \times\{-1,0,1\}$.
(ii) $\forall \xi(0,0) \in \mathbb{R}^{n} \backslash \mathcal{S}(\delta) \times\{-1,0,1\}$,

$$
|x(t, j)|_{\hat{x}} \geq h \frac{\mu \delta}{2} \quad \forall(t, j) \in \operatorname{dom}(\xi)
$$

Numerical example

System parameters:

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{rr}
-1.0 & 1.5 \\
-1.5 & -1.0
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u, \quad \hat{x}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; \quad \begin{aligned}
\sigma(A) & =\{-1+1.5 i,-1-1.5 i\} \\
\sigma\left(A+A^{T}\right) & =\{-2,-2\}
\end{aligned} \\
& u_{s}=0, \quad \mu=1.15, \quad \eta=0.8321, \quad \zeta=1.8028, \quad \delta^{*}=0.2455
\end{aligned}
$$

Extensions

Extensions:

- Multiple obstacles
- In the multidimensional input case the method is applicable for all $\hat{x} \neq 0$

Extensions

Extensions:

- Multiple obstacles
- In the multidimensional input case the method is applicable for all $\hat{x} \neq 0$
- The construction is independent of the state dimension $x \in \mathbb{R}^{n}$

Extensions

Extensions:

- Multiple obstacles
- In the multidimensional input case the method is applicable for all $\hat{x} \neq 0$
- The construction is independent of the state dimension $x \in \mathbb{R}^{n}$
- Extensions to robust stabilization and robust avoidance:

$$
\begin{aligned}
\dot{x} & =A x+B u+w_{x} \\
y & =x+w_{y}
\end{aligned}
$$

Extensions

Extensions:

- Multiple obstacles
- In the multidimensional input case the method is applicable for all $\hat{x} \neq 0$
- The construction is independent of the state dimension $x \in \mathbb{R}^{n}$
- Extensions to robust stabilization and robust avoidance:

$$
\begin{aligned}
\dot{x} & =A x+B u+w_{x} \\
y & =x+w_{y}
\end{aligned}
$$

- Bounded inputs

Obstacle avoidance $(\hat{x} \in \mathcal{E})$: Problem formulation and assumptions

Setting:

- (Linear) Dynamical system

$$
\dot{x}(t)=A x(t)+B u(t), \quad x(0) \in \mathbb{R}^{n}, \quad\left(u \in \mathbb{R}^{1}\right)
$$

- (A, B) controllable (stabilizability is not enough)

Subspace of induced equilibria: $\left(B \in \mathbb{R}^{n}\right)$

- $\mathcal{E}=\left\{y \in \mathbb{R}^{n} \mid 0=A y+B \nu, \nu \in \mathbb{R}\right\}$
- (W.I.o.g.) $\mathcal{E}=\operatorname{span}\left(A^{-1} B\right)$

Remember:

Let $\hat{x} \in \mathcal{E}$ and $0=A \hat{x}+B \nu_{\hat{x}}$. Then

$$
\begin{aligned}
\dot{z} & =\overbrace{x-\hat{x}}=A(x-\hat{x})+B\left(u-\nu_{\hat{x}}\right) \\
& =A z+B v
\end{aligned}
$$

where $z=x-\hat{x}$ and $v=u-\nu_{\hat{x}}$.

Example:

$$
\dot{x}=\left[\begin{array}{rr}
-1 & \frac{3}{2} \\
-\frac{3}{2} & -1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u
$$

Obstacle centered around

$$
\hat{x} \in \mathcal{E}
$$

Target set $0 \in \mathbb{R}^{n}$

Controller design $\left(\hat{x} \in \mathcal{E}=\operatorname{span}\left(A^{-1} B\right)\right)$

Setting:

- Linear Dynamical system

$$
\dot{x}=A x+B u, \quad x(0) \in \mathbb{R}^{n}, \quad\left(u \in \mathbb{R}^{1}\right)
$$

- Obstacle \& target set:

$$
\hat{x} \in \mathcal{E}=\operatorname{span}\left(A^{-1} B\right), \quad 0 \in \mathbb{R}^{n}
$$

- (A, B) controllable

Lyapunov decrease

$$
\dot{V}(x(t))=\left\langle\nabla V_{s}(x), A x+B u_{s}(x)\right\rangle<0
$$

$$
x \neq 0
$$

Lyapunov equation:

$$
A_{s}^{T} P_{s}+P_{s} A_{s}=-I,
$$

Lyapunov functions

$$
V_{s}(x)=x^{T} P_{s} x
$$

$x \neq$
(Intuitive) Controller design:
Use pole placement to compute $K_{s}, \quad \in \mathbb{R}^{1 \times n}$ such that $A_{s}=\left(A+B K_{s}\right)$

- $u_{s}(x)=K_{s} x$

Controller design $\left(\hat{x} \in \mathcal{E}=\operatorname{span}\left(A^{-1} B\right)\right)$

Setting:

- Linear Dynamical system

$$
\dot{x}=A x+B u, \quad x(0) \in \mathbb{R}^{n}, \quad\left(u \in \mathbb{R}^{1}\right)
$$

- Obstacle \& target set:

$$
\hat{x} \in \mathcal{E}=\operatorname{span}\left(A^{-1} B\right), \quad 0 \in \mathbb{R}^{n}
$$

- (A, B) controllable
- Shifted system

$$
\dot{z}=A z+B v, \quad z=x-\hat{x}, \quad v=u-\nu_{\hat{x}}
$$

Lyapunov equation:

$$
A_{s}^{T} P_{s}+P_{s} A_{s}=-I,
$$

Lyapunov functions

$$
\begin{aligned}
V_{s}(x) & =x^{T} P_{s} x \\
V_{s a}(x) & =(x-\hat{x})^{T} P_{s}(x-\hat{x})
\end{aligned}
$$

Lyapunov decrease

$$
\begin{aligned}
\dot{V}(x(t)) & =\left\langle\nabla V_{s}(x), A x+B u_{s}(x)\right\rangle
\end{aligned}<0
$$

$$
x \neq 0, x \neq \hat{x}
$$

(Intuitive) Controller design:
Use pole placement to compute K_{s}, $A_{s}=\left(A+B K_{s}\right)$

- $u_{s}(x)=K_{s} x$
- $u_{s a}(x)=K_{s}(x-\hat{x})+\nu_{\hat{x}}$
$\in \mathbb{R}^{1 \times n}$ such that are Hurwitz, i.e.,
stabilizes 0
stabilizes \hat{x}

Controller design $\left(\hat{x} \in \mathcal{E}=\operatorname{span}\left(A^{-1} B\right)\right)$

Setting:

- Linear Dynamical system

$$
\dot{x}=A x+B u, \quad x(0) \in \mathbb{R}^{n}, \quad\left(u \in \mathbb{R}^{1}\right)
$$

- Obstacle \& target set:

$$
\hat{x} \in \mathcal{E}=\operatorname{span}\left(A^{-1} B\right), \quad 0 \in \mathbb{R}^{n}
$$

- (A, B) controllable
- Shifted system

$$
\dot{z}=A z+B v, \quad z=x-\hat{x}, \quad v=u-\nu_{\hat{x}}
$$

- Time reversal system

$$
\dot{y}=-A y-B v, \quad y(t)=z(-t)
$$

Lyapunov equation:

$$
\begin{aligned}
A_{s}^{T} P_{s}+P_{s} A_{s} & =-I, \\
A_{d}^{T} P_{d}+P_{d} A_{d} & =-I
\end{aligned}
$$

Lyapunov functions \& Chetaev functions:

$$
\begin{aligned}
V_{s}(x) & =x^{T} P_{s} x \\
V_{s a}(x) & =(x-\hat{x})^{T} P_{s}(x-\hat{x}) \\
C_{d}(x) & =(x-\hat{x})^{T} P_{d}(x-\hat{x})
\end{aligned}
$$

Lyapunov decrease/Chetaev increase

$$
\dot{V}(x(t))=\left\langle\nabla V_{s}(x), A x+B u_{s}(x)\right\rangle<0
$$

$$
\begin{gathered}
\left\langle\nabla V_{s a}(x), A x+B u_{s a}(x)\right\rangle<0 \\
\left\langle\nabla C_{d}(x), A x+B u_{d}(x)\right\rangle>0 \\
x \neq 0, x \neq \hat{x}
\end{gathered}
$$

(Intuitive) Controller design:
Use pole placement to compute $K_{s}, K_{d} \in \mathbb{R}^{1 \times n}$ such that $A_{s}=\left(A+B K_{s}\right)$ and $A_{d}=-\left(A+B K_{d}\right)$ are Hurwitz, i.e.,

- $u_{s}(x)=K_{s} x$
- $u_{s a}(x)=K_{s}(x-\hat{x})+\nu_{\hat{x}}$
- $u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$

Controller design $\left(\hat{x} \in \mathcal{E}=\operatorname{span}\left(A^{-1} B\right)\right)$

Setting:

n
$-\nu_{\hat{x}}$
(Intuitive) Controller design:
Use pole placement to compute $K_{s}, K_{d} \in \mathbb{R}^{1 \times n}$ such that $A_{s}=\left(A+B K_{s}\right)$ and $A_{d}=-\left(A+B K_{d}\right)$ are Hurwitz, i.e.,

- $u_{s}(x)=K_{s} x$
- $u_{s a}(x)=K_{s}(x-\hat{x})+\nu_{\hat{x}}$
- $u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$
stabilizes 0 stabilizes \hat{x} destabilizes \hat{x}

Lyapunov equation:

$$
\begin{aligned}
A_{s}^{T} P_{s}+P_{s} A_{s} & =-I, \\
A_{d}^{T} P_{d}+P_{d} A_{d} & =-I
\end{aligned}
$$

Lyapunov functions \& Chetaev functions:

$$
\begin{aligned}
V_{s}(x) & =x^{T} P_{s} x \\
V_{s a}(x) & =(x-\hat{x})^{T} P_{s}(x-\hat{x}) \\
C_{d}(x) & =(x-\hat{x})^{T} P_{d}(x-\hat{x})
\end{aligned}
$$

Lyapunov decrease/Chetaev increase

$$
\begin{gathered}
\dot{V}(x(t))=\left\langle\nabla V_{s}(x), A x+B u_{s}(x)\right\rangle<0 \\
\left\langle\nabla V_{s a}(x), A x+B u_{s a}(x)\right\rangle<0 \\
\left\langle\nabla C_{d}(x), A x+B u_{d}(x)\right\rangle>0 \\
x \neq 0, x \neq \hat{x}
\end{gathered}
$$

Example:

$$
\begin{aligned}
& \dot{x}=\left[\begin{array}{rr}
0 & 1 \\
-1 & 1
\end{array}\right] x+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u \\
& \hat{x}=\left[\begin{array}{r}
-1 \\
0
\end{array}\right] \in \mathcal{E}=\operatorname{span}\left(\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right)
\end{aligned}
$$

Intuitive controller design

Controller design:

- In 1 \& 2: $\gamma(\xi)=u_{s}(x)=K_{s}(x)$
(asymptotically stabilize 0)
- In 3: $\quad \gamma(\xi)=u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$
- In 4: $\gamma(\xi)=(1-\lambda(x)) u_{s a}(x)+\lambda(x) u_{d}(x), \quad(\lambda(x) \in[0,1])$
- (Dashed lines: avoid Zeno behavior)

Stability properties of the closed loop

Closed-loop properties:

- \hat{x}-avoidance?
(Clear)
- Asymptotic stability of the origin?

Controller design:

- 1\&2: $\gamma(\xi)=u_{s}(x)=K_{s}(x)$
- 3: $\gamma(\xi)=u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$
- 4: $\gamma(\xi)=(1-\lambda(x)) u_{\text {sa }}(x)+\lambda(x) u_{d}(x)$, $(\lambda(x) \in[0,1])$
- (Dashed lines: avoid Zeno behavior)

Stability properties of the closed loop

Controller design:

- 1\&2: $\gamma(\xi)=u_{s}(x)=K_{s}(x)$
- 3: $\gamma(\xi)=u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$
- 4: $\gamma(\xi)=(1-\lambda(x)) u_{s a}(x)+\lambda(x) u_{d}(x)$, $(\lambda(x) \in[0,1])$
- (Dashed lines: avoid Zeno behavior)

Closed-loop properties:

- \hat{x}-avoidance?
(Clear)
- Asymptotic stability of the origin?
- Does the control law introduce equilibria? By construction
- $0=A x+B u_{s}(x) \Longleftrightarrow x=0$
- $0=A x+B u_{d}(x) \Longleftrightarrow x=\hat{x}$

Note that

- $0=A x+B \nu \Longrightarrow x \in \mathcal{E}$

Stability properties of the closed loop

Closed-loop properties:

- \hat{x}-avoidance?
(Clear)
- Asymptotic stability of the origin?
- Does the control law introduce equilibria? By construction
- $0=A x+B u_{s}(x) \Longleftrightarrow x=0$
- $0=A x+B u_{d}(x) \Longleftrightarrow x=\hat{x}$

Note that

- $0=A x+B \nu \Longrightarrow x \in \mathcal{E}$

Controller design:

- 1\&2: $\gamma(\xi)=u_{s}(x)=K_{s}(x)$
- 3: $\gamma(\xi)=u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$
- 4: $\gamma(\xi)=(1-\lambda(x)) u_{s a}(x)+\lambda(x) u_{d}(x)$, $(\lambda(x) \in[0,1])$
- (Dashed lines: avoid Zeno behavior)

Lemma

Let $x \in \mathcal{E}$. Then

$$
A x+B u_{s a}(x)=\rho\left(A x+B u_{d}(x)\right)
$$

where

$$
\rho=\frac{1+K_{s a} A^{-1} B}{1+K_{d} A^{-1} B} \in \mathbb{R} \backslash\{0\}
$$

Stability properties of the closed loop

Closed-loop properties:

- \hat{x}-avoidance?
(Clear)
- Asymptotic stability of the origin?
- Does the control law introduce equilibria? By construction
- $0=A x+B u_{s}(x) \Longleftrightarrow x=0$
- $0=A x+B u_{d}(x) \Longleftrightarrow x=\hat{x}$

Note that

- $0=A x+B \nu \Longrightarrow x \in \mathcal{E}$

Controller design:

- 1\&2: $\gamma(\xi)=u_{s}(x)=K_{s}(x)$
- 3: $\gamma(\xi)=u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$
- 4: $\gamma(\xi)=(1-\lambda(x)) u_{\text {sa }}(x)+\lambda(x) u_{d}(x)$, $(\lambda(x) \in[0,1])$
- (Dashed lines: avoid Zeno behavior)

It holds

$$
A x+B u_{s a}(x)=\rho\left(A x+B u_{d}(x)\right), \rho \in \mathbb{R}
$$

- $\rho>0$: No induced equilibria
- $\rho<0$: Two induced equilibria

Lemma

Let $x \in \mathcal{E}$. Then

$$
A x+B u_{s a}(x)=\rho\left(A x+B u_{d}(x)\right)
$$

where

$$
\rho=\frac{1+K_{s a} A^{-1} B}{1+K_{d} A^{-1} B} \in \mathbb{R} \backslash\{0\}
$$

Stability properties of the closed loop

Closed-loop properties:

- \hat{x}-avoidance?
(Clear)
- Asymptotic stability of the origin?
- Does the control law introduce equilibria? By construction
- $0=A x+B u_{s}(x) \Longleftrightarrow x=0$
- $0=A x+B u_{d}(x) \Longleftrightarrow x=\hat{x}$

Note that

- $0=A x+B \nu \Longrightarrow x \in \mathcal{E}$

Controller design:

- 1\&2: $\gamma(\xi)=u_{s}(x)=K_{s}(x)$
- 3: $\gamma(\xi)=u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$
- 4: $\gamma(\xi)=(1-\lambda(x)) u_{s a}(x)+\lambda(x) u_{d}(x)$, $(\lambda(x) \in[0,1])$
- (Dashed lines: avoid Zeno behavior)

It holds

$$
A x+B u_{s a}(x)=\rho\left(A x+B u_{d}(x)\right), \rho \in \mathbb{R}
$$

- $\rho>0$: No induced equilibria (n even)
- $\rho<0$: Two induced equilibria (n odd)

Lemma $\left(\operatorname{sign}(\rho)=(-1)^{n} \quad\left(x \in \mathbb{R}^{n}\right)\right)$

$$
\begin{aligned}
\prod_{i=1}^{n} \lambda_{i}^{d} & =\operatorname{det}\left(A+B K_{d}\right) \\
& =\operatorname{det}(A) \operatorname{det}\left(1+K_{d} A^{-1} B\right)>0 \\
\prod_{i=1}^{n} \lambda_{i}^{s a} & =\operatorname{det}(A) \operatorname{det}\left(1+K_{s a} A^{-1} B\right) \gtrless 0 \\
\text { and } \quad \rho & =\frac{1+K_{s a} A^{-1} B}{1+K_{d} A^{-1} B}
\end{aligned}
$$

Summary: Obstacle avoidance \& target set stabilization $(\hat{x} \in \mathcal{E})$

Controller design:

- $\ln 1$ \& 2: $\gamma(\xi)=u_{s}(x)=K_{s}(x)$
- In 3: $\gamma(\xi)=u_{d}(x)=K_{d}(x-\hat{x})+\nu_{\hat{x}}$
- In 4: $\gamma(\xi)=(1-\lambda(x)) u_{s a}(x)+\lambda(x) u_{d}(x)$, $(\lambda(x) \in[0,1])$
- (Dashed lines: avoid Zeno behavior)

Assumptions:

- $\dot{x}=A x+B u, x \in \mathbb{R}^{n}, u \in R^{1}$
- (A, B) controllable
((A, B) stabilizable is not enough)
- $\hat{x} \in \mathcal{E}=\operatorname{span}\left(A^{-1} B\right)$

Results:

- $\forall n \geq 2$: Obstacle avoidance
- $n=2$: Obstacle avoidance \& global asymptotic stability
- $\forall n>2$ odd: No global asymptotic stability
- $\forall n \geq 4$ even: Obstacle avoidance \& maybe global asymptotic stability
(We cannot exclude the existence of periodic orbits)

Conclusion \& discussion

Conclusion \& discussion

$$
\hat{x} \in \mathcal{E}
$$

$$
\dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}
$$

Linear system:
Assumption:

- (A, B) controllable

- (A, B) stabilizable

Conclusion \& discussion

$$
\hat{x} \in \mathcal{E}
$$

Linear system: $\quad \dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$
Assumption:

- (A, B) controllable

If $m>1$:

- $\hat{x} \in\left\{y \mid 0=A y+B u, u \in \mathbb{R}^{m}\right\} \backslash\{0\}$
- (A, B) stabilizable
- $\hat{x} \in \mathbb{R}^{n} \backslash\{0\}$

Conclusion \& discussion

$$
\hat{x} \in \mathcal{E}
$$

Linear system: $\quad \dot{x}=A x+B u, \quad x \in \mathbb{R}^{n}, u \in \mathbb{R}^{m}$
Assumption:

- (A, B) controllable

If $m>1$:

- $\hat{x} \in\left\{y \mid 0=A y+B u, u \in \mathbb{R}^{m}\right\} \backslash\{0\}$

Closed-loop properties:

- Only applicable if $n \geq 2$ is even
- Guarantees only for $n=2$

- (A, B) stabilizable
- $\hat{x} \in \mathbb{R}^{n} \backslash\{0\}$
- Independent of $n \in \mathbb{N}, n \geq 2$

