Safety of control systems under uncertainty and time delays

Part 2

Gábor Orosz

University of Michigan, Ann Arbor

44th International Summer School of Automatic Control Grenoble, France August 28 - September 01, 2023

Material Covered

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

Control Barrier Functions and Input-to-State Safety With Application to Automated Vehicles

Anil Alan[®], *Graduate Student Member, IEEE*, Andrew J. Taylor[®], Chaozhe R. He[®], Aaron D. Ames[®], *Fellow, IEEE*, and Gábor Orosz[®], *Senior Member, IEEE*

Integrating Safety With Performance in Connected Automated Truck Control: Experimental Validation

Anil Alan[®], *Graduate Student Member, IEEE*, Chaozhe R. He[®], Tamas G. Molnar[®], *Member, IEEE*, Johaan Chacko Mathew, A. Harvey Bell, and Gábor Orosz[®], *Senior Member, IEEE*

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 31, NO. 4, JULY 2023

Received: 16 June 2022 Revised: 8 March 2023 Accepted: 23 April 2023

DOI: 10.1002/rnc.6751

RESEARCH ARTICLE

IEEE TRANSACTIONS ON INTELLIGENT VEHICLES.

Safety-Critical Control With Input Delay in Dynamic Environment

Tamas G. Molnar^(D), *Member, IEEE*, Adam K. Kiss^(D), Aaron D. Ames^(D), *Fellow, IEEE*, and Gábor Orosz^(D), *Senior Member, IEEE*

Control barrier functionals: Safety-critical control for time delay systems

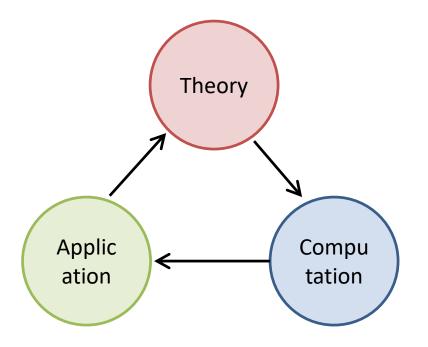
Adam K. Kiss¹ | Tamas G. Molnar² | Aaron D. Ames² | Gabor Orosz³

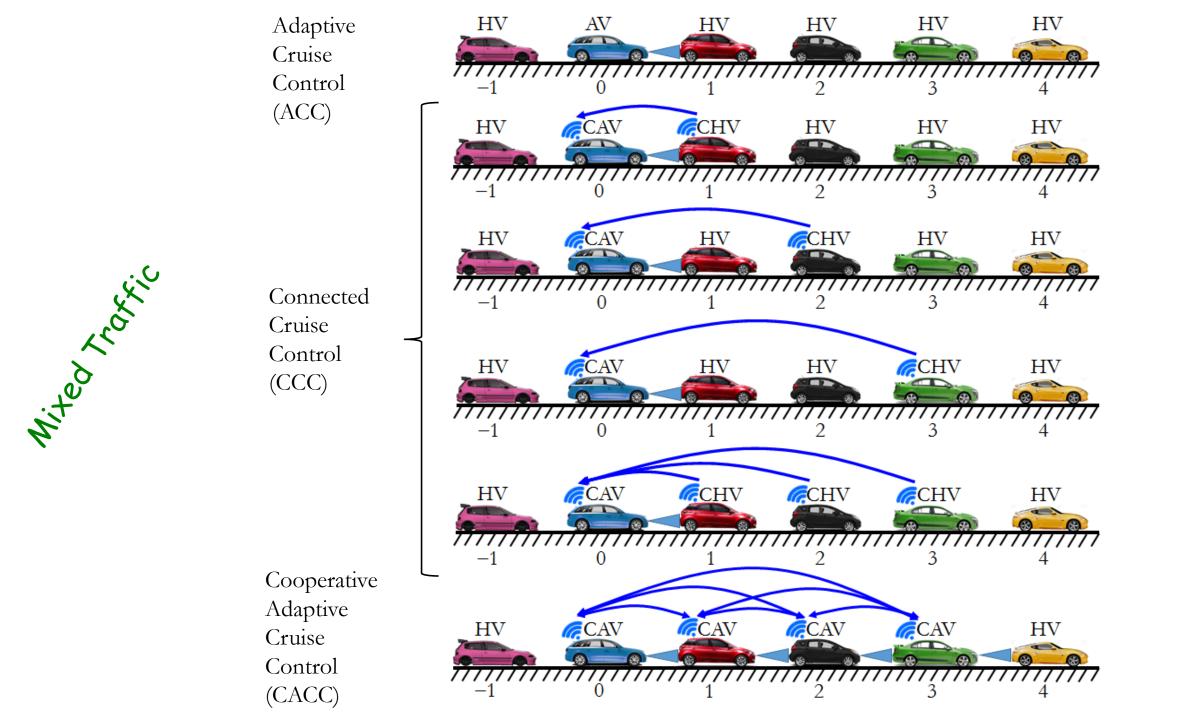
1

Motivation

5 advices from **Richard Murray** (CSS Award Speech, 2017)

- be increasingly multilingual
- spread the gospel
- embrace diversity
- master the TCA cycle
- get out the box





Control system:

$$\dot{x} = f(x) + g(x)u$$
 $x \in \mathbb{R}^n$
 $u \in \mathbb{R}^m$
Safe set: $S \subset \mathbb{R}^n$

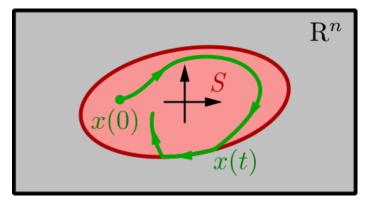
Safety as forward invariance:

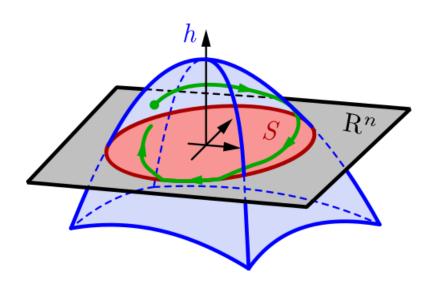
 $x(0) \in S \implies x(t) \in S, \ \forall t \ge 0$

Safe set constructed super-level set:

 $S = \{x \in X : h(x) \ge 0\}$

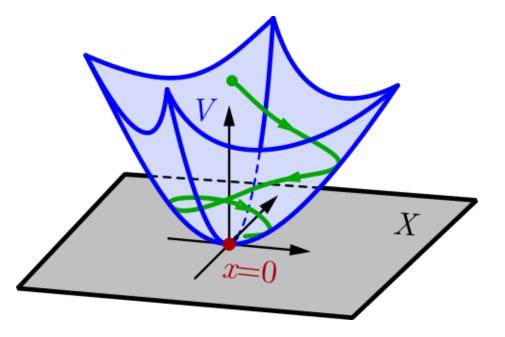
Goal: synthesize u so that h(x(t)) stays nonnegative





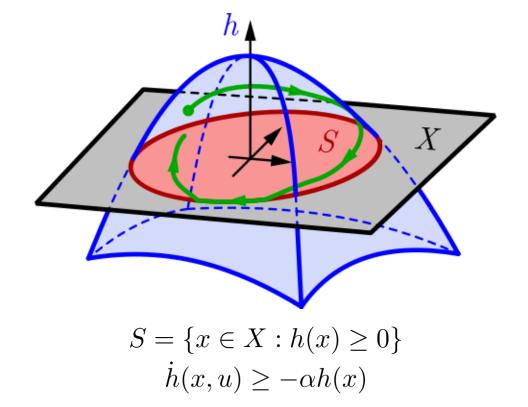
Control Lyapunov functions (CLFs)

Control barrier functions (CBFs)



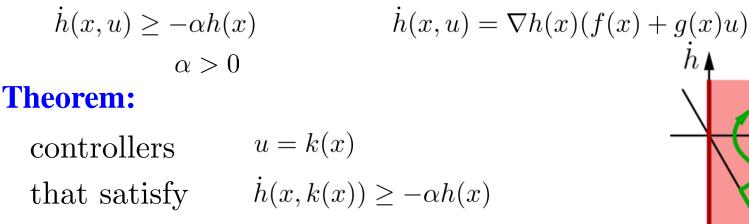
 $k_1 \|x\|^c \le V(x) \le k_2 \|x\|^c$ $\dot{V}(x, u) \le -\lambda V(x)$

Approach equilibrium exponentially with some minimum rate



Approach safe set boundary with some maximum rate

Control how fast the safe set boundary is approached

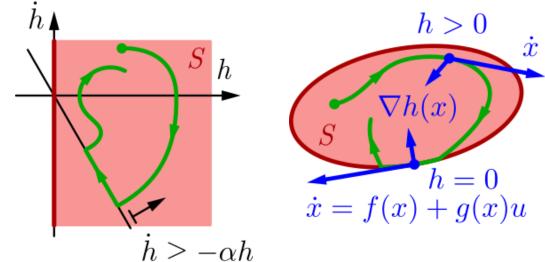


ensure safety: $x(0) \in S \Rightarrow x(t) \in S, \forall t \ge 0$

Control synthesis via optimization:

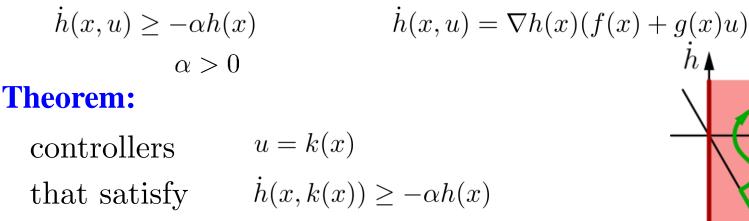
$$k_{\text{QP}}(x) = \underset{u \in U}{\operatorname{argmin}} \|u - k_{n}(x)\|^{2} \implies$$

s.t. $\dot{h}(x, u) \ge -\alpha h(x)$
$$\overset{\text{controller}}{\overset{u}{\overset{d}{\overset{\bullet}}}} \operatorname{safety filter} \overset{u}{\overset{\bullet}{\overset{\bullet}}} \operatorname{system} \overset{x}{\overset{\bullet}{\overset{\bullet}}}$$



Analytical solution (single input): $k_{\text{QP}}(x) = \max\left\{k_{n}(x), -\frac{\nabla h(x)f(x) + \alpha h(x)}{\nabla h(x)g(x)}\right\}$ $\nabla h(x)g(x) > 0$

Control how fast the safe set boundary is approached

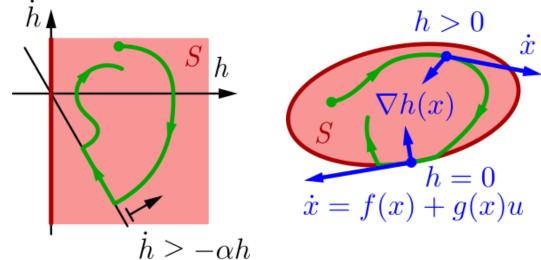


ensure safety: $x(0) \in S \implies x(t) \in S, \forall t \ge 0$

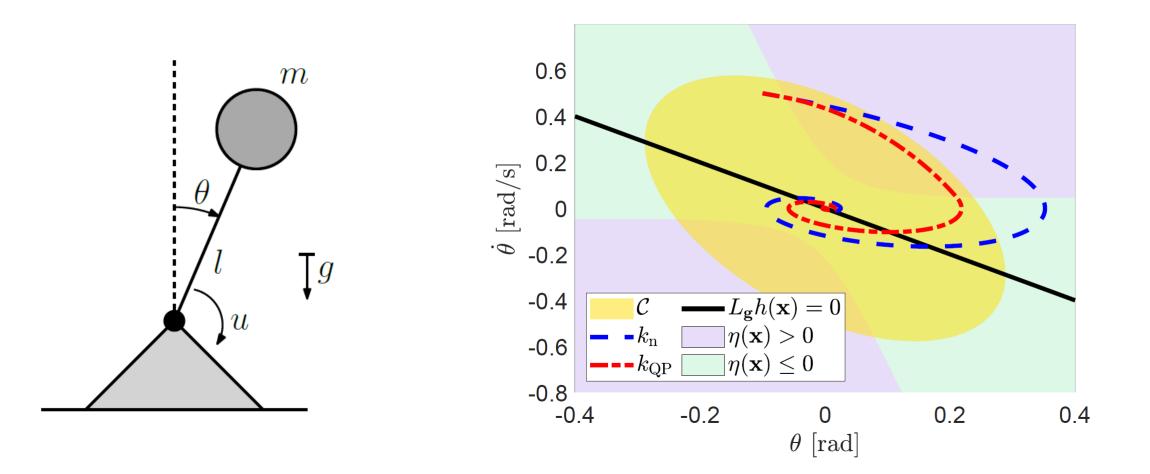
Control synthesis via optimization:

$$k_{\text{QP}}(x) = \underset{u \in U}{\operatorname{argmin}} \|u - k_{n}(x)\|^{2} \implies$$

s.t. $\dot{h}(x, u) \ge -\alpha h(x)$
$$\overset{\text{controller}}{\overset{u}{\overset{d}{\overset{\bullet}}}} \underbrace{\text{safety filter}}_{\overset{u}{\overset{\bullet}}} \underbrace{\text{system}}_{\overset{u}{\overset{\bullet}}} \xrightarrow{x}$$



Analytical solution (single input): $k_{\text{QP}}(x) = \min\left\{k_{n}(x), -\frac{\nabla h(x)f(x) + \alpha h(x)}{\nabla h(x)g(x)}\right\}$ $\nabla h(x)g(x) < 0$



CBF Applied to Vehicle Control

20

10

unsafe

safe

D(m)

50

Dynamical model:

$$\begin{array}{c} \dot{D} = v_{\mathrm{L}} - v \\ \dot{v} = u \\ \dot{v}_{\mathrm{L}} = a_{\mathrm{L}}(t) \end{array} \right\} \quad \dot{x} = f(t, x) + g(x)u$$

Safety measure:

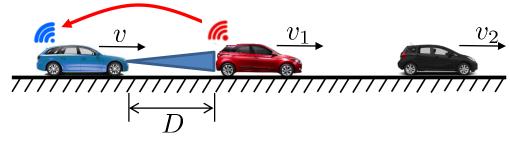
$$h(x) = D - D_{\rm sf} - Tv$$

Safety critical control:

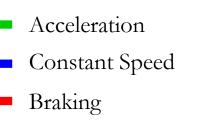
$$h(x) = D - D_{sf} - Tv$$
afety critical control:
$$\dot{h}(t, x, u) \ge -\alpha h(x)$$

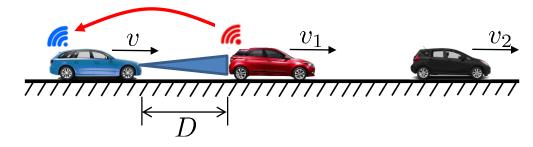
$$u \le \alpha \left(\frac{1}{T}(D - D_{sf}) - v\right) + \frac{1}{T}(v_{L} - v)$$

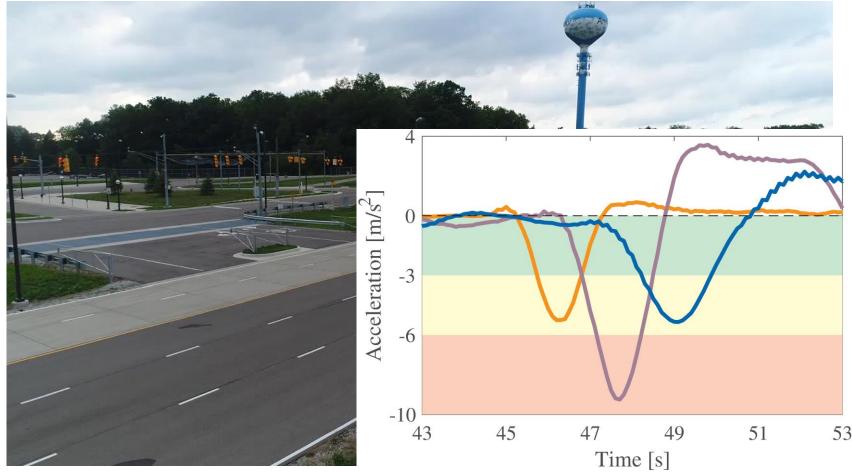
$$u = \alpha \left(\frac{1}{T}(D - D_{sf}) - v\right) + \frac{1}{T}(v_{L} - v)$$



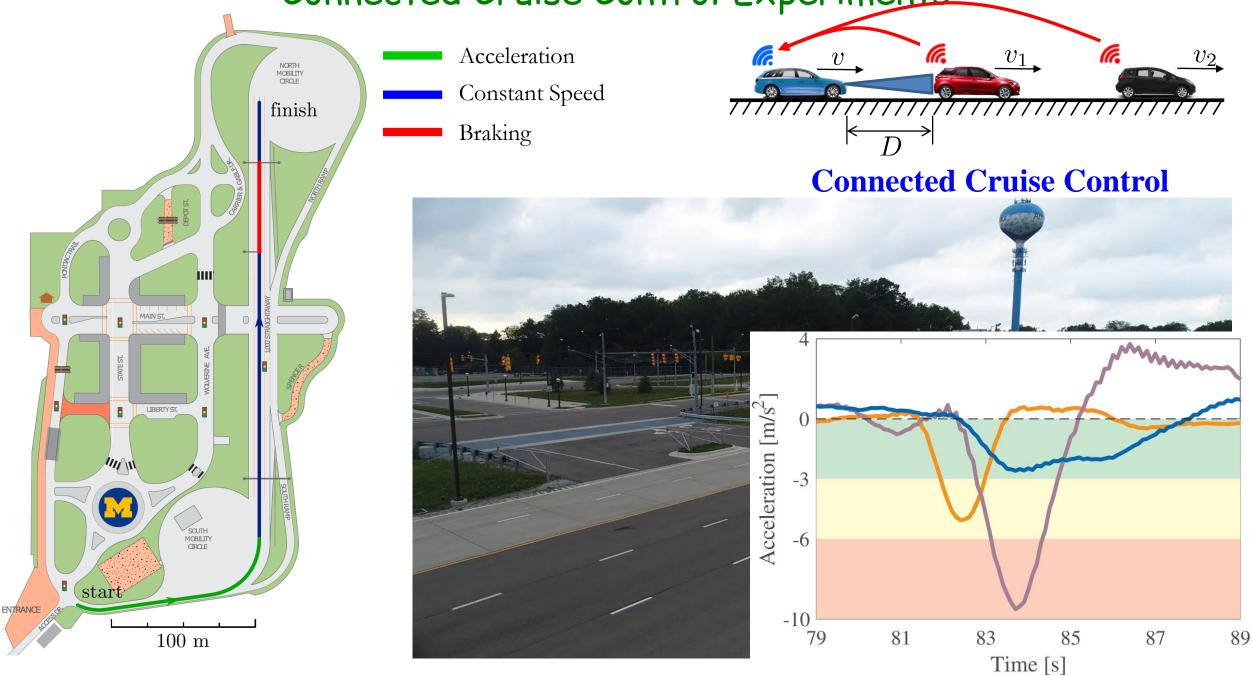
Connected Cruise Control Experiments







Connected Cruise Control Experiments



CBF Applied to Truck Control

Dynamical model:

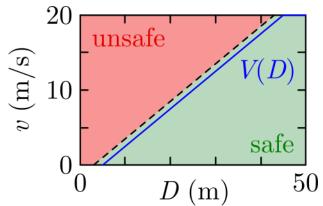
$$\begin{vmatrix} \dot{D} = v_{\rm L} - v \\ \dot{v} = u \\ \dot{v}_{\rm L} = a_{\rm L}(t) \end{vmatrix} \quad \dot{x} = f(t, x) + g(x)u$$

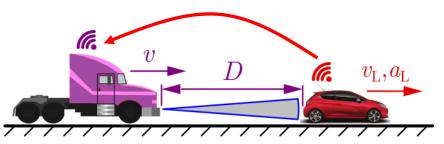
Safety measure:

$$h(x) = D - D_{\rm sf} - Tv$$

Safety critical control:

$$\dot{h}(t, x, u) \ge -\alpha h(x)$$
$$u \le \alpha \left(\frac{1}{T}(D - D_{\rm sf}) - v\right) + \frac{1}{T}(v_{\rm L} - v)$$
$$u = \alpha \left(\frac{1}{T}(D - D_{\rm st}) - v\right) + \frac{1}{T}(v_{\rm L} - v)$$
$$\underbrace{V(D)}_{V(D)}$$





Delays and Disturbances Destroy Safety

Dynamical model:

$$\begin{array}{c} \dot{D} = v_{\mathrm{L}} - v \\ \dot{v} = u \\ \dot{v}_{\mathrm{L}} = a_{\mathrm{L}}(t) \end{array} \right\} \quad \dot{x} = f(t, x) + g(x)u$$

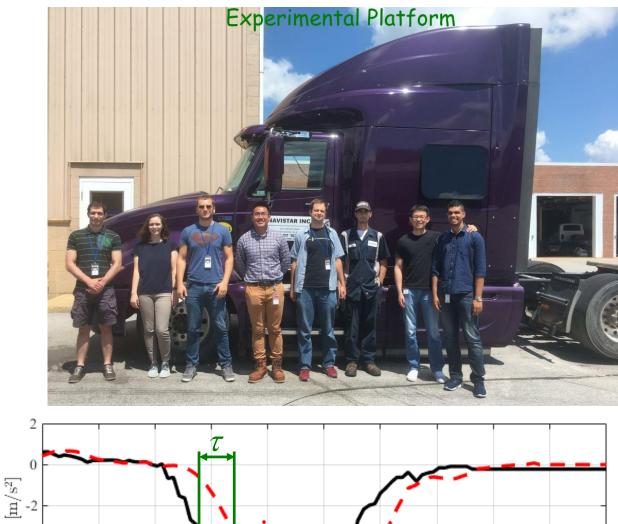
Why did the experiment fail?

Disturbances:

Truck's dynamics are uncertain (engine, transmission, brakes, tires...)

Delay:

Truck is massive, with large response time



7

8

9

10

 \mathcal{U}

2

-4

-6

Delays and Disturbances Destroy Safety

Dynamical model:

$$\dot{D} = v_{\mathrm{L}} - v$$

$$\dot{v} = u(t - \tau) + d(t)$$

$$\dot{v}_{\mathrm{L}} = a_{\mathrm{L}}(t)$$

$$\dot{x} = f(t, x) + g(x)(u(t - \tau) + d(t))$$

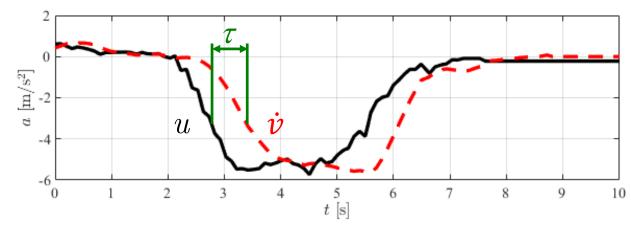
Why did the experiment fail?

Disturbances:

Truck's dynamics are uncertain (engine, transmission, brakes, tires...)

Delay:

Truck is massive, with large response time



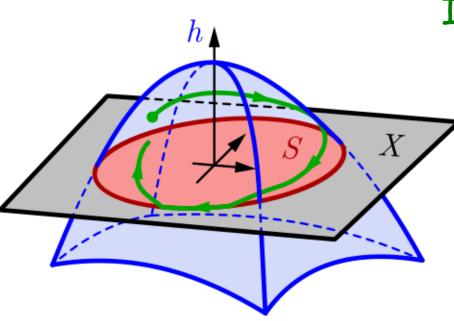
Content

Disturbances/Environment

Input-to-state safe control barrier functions (ISSf-CBF) Tunable Input-to-state safe control barrier functions (TISSf-CBF)

Time delays Input delay \rightarrow Predictors

Application of safety filters in the real world Moving from test track to the real world



 $S = \{x \in X : h(x) \ge 0\}$

Input-to-State Safety

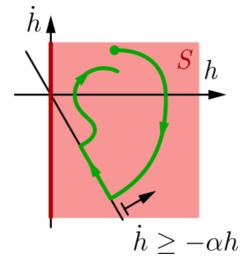
$$\dot{x} = f(x) + g(x)(u + d)$$

 $||d||_{\infty} \leq \delta$

$$\dot{h}(x,u) \ge -\alpha h(x) + ???$$

 $\alpha > 0$

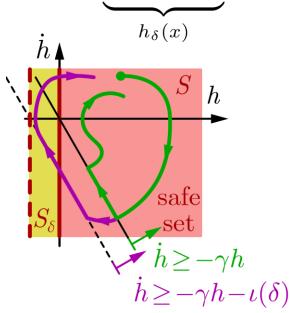
$$S_{\delta} = \{x \in X : \underbrace{h(x) + \gamma(\delta)}_{h \in (x)} \ge 0\}$$



Theorem:

 $\dot{h}(x,u) \ge -\alpha h(x) + \sigma \|\nabla h(x)g(x)\|^2$

+ formulae linking $\sigma, \alpha, \iota, \gamma$



Input-to-State Safety

Theorem:

 $\dot{h}(x,u) \ge -\alpha h(x) + \sigma \|\nabla h(x)g(x)\|^2$

If k(x) safe without disturbance:

 $\overline{k}(x) = k(x) + \sigma \left(\nabla h(x)g(x)\right)^{\top}$

Otherwise use QP:

 $\overline{k}_{\text{QP}}(x) = \underset{u \in U}{\operatorname{argmin}} \|u - k_{n}(x)\|^{2}$ s.t. $\dot{h}(x, u) \ge -\alpha h(x) + \sigma \|\nabla h(x)g(x)\|^{2}$

$$s_{\delta} = \{x \in X : h(x) + \gamma(\delta) \ge 0\}$$

 $\Rightarrow \text{Analytical solution (single input):}$ $\overline{k}_{\text{QP}}(x) = \max\left\{k_{n}(x), -\frac{\nabla h(x)f(x) + \alpha h(x)}{\nabla h(x)g(x)} + \sigma \nabla h(x)g(x)\right\}$

 $\nabla h(x)g(x) > 0$

Input-to-State Safety

Theorem:

 $\dot{h}(x,u) \ge -\alpha h(x) + \sigma \|\nabla h(x)g(x)\|^2$

If k(x) safe without disturbance:

 $\overline{k}(x) = k(x) + \sigma \left(\nabla h(x)g(x)\right)^{\top}$

Otherwise use QP:

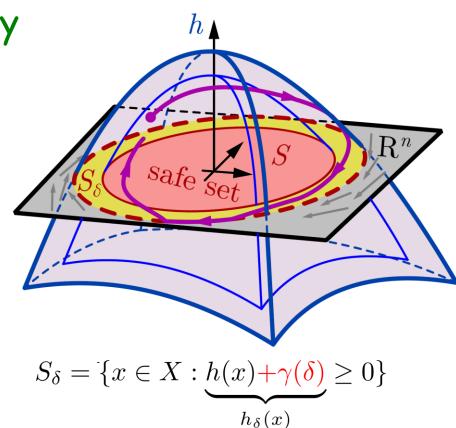
 $\overline{k}_{\text{QP}}(x) = \underset{u \in U}{\operatorname{argmin}} \|u - k_{n}(x)\|^{2}$ s.t. $\dot{h}(x, u) \ge -\alpha h(x) + \sigma \|\nabla h(x)g(x)\|^{2}$

$$\Rightarrow \text{Analytical solution (single input):}$$

$$\overline{k}_{\text{QP}}(x) = \min\left\{k_{n}(x), -\frac{\nabla h(x)f(x) + \alpha h(x)}{\nabla h(x)g(x)} + \sigma \nabla h(x)g(x)\right\}$$

 $\nabla h(x)g(x) < 0$

Keeps the truck safe but it keeps very large distance all the time!



Tunable Input-to-State Safety

Key idea:

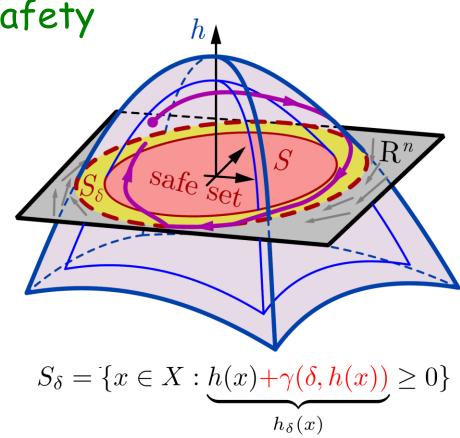
 $\sigma \rightarrow \sigma(h(x))$

Theorem:

The above construction still works if $\sigma(r)$ is strictly monotonically decreasing

Example:

$$\sigma(r) = \sigma_0 \mathrm{e}^{-\lambda r}$$



TISSF-CBF Applied to Truck Control

20

10

0

0

v (m/s)

unsafe

V(D)

safe

D (m) $\sigma(r) = \sigma_0 e^{-\lambda r}$ 50

Dynamical model:

$$\begin{array}{c} \dot{D} = v_{\mathrm{L}} - v \\ \dot{v} = u \\ \dot{v}_{\mathrm{L}} = a_{\mathrm{L}}(t) \end{array} \right\} \quad \dot{x} = f(t, x) + g(x)u$$

Safety measure:

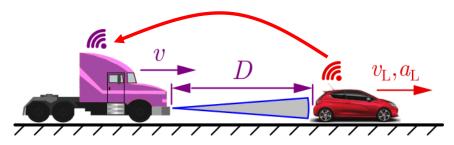
$$h(x) = D - D_{\rm sf} - Tv$$

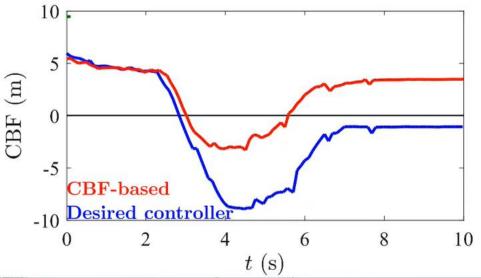
Safety critical control:

$$h(t, x, u) \ge -\alpha h(x) + \sigma(h(x)) \|\nabla h(x)g(x)\|^2$$

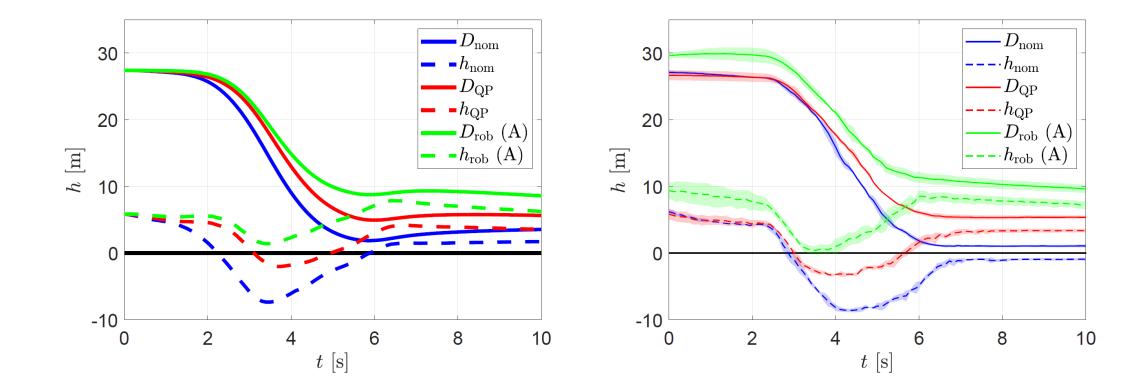
$$u \le \alpha \left(\frac{1}{T}(D - D_{\mathrm{sf}}) - v\right) + \frac{1}{T}(v_{\mathrm{L}} - v) - T\sigma_{0}\mathrm{e}^{-\lambda(D - D_{\mathrm{sf}} - Tv)}$$

$$u = \alpha \left(\underbrace{\frac{1}{T}(D - D_{\mathrm{st}})}_{V(D)} - v\right) + \frac{1}{T}(v_{\mathrm{L}} - v) - T\sigma_{0}\mathrm{e}^{-\lambda(D - D_{\mathrm{sf}} - Tv)}$$

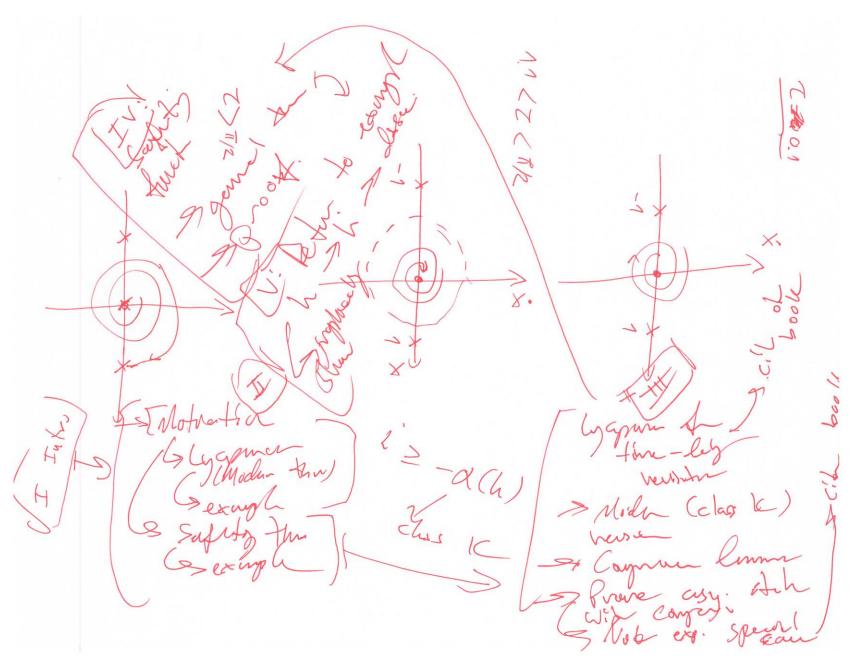




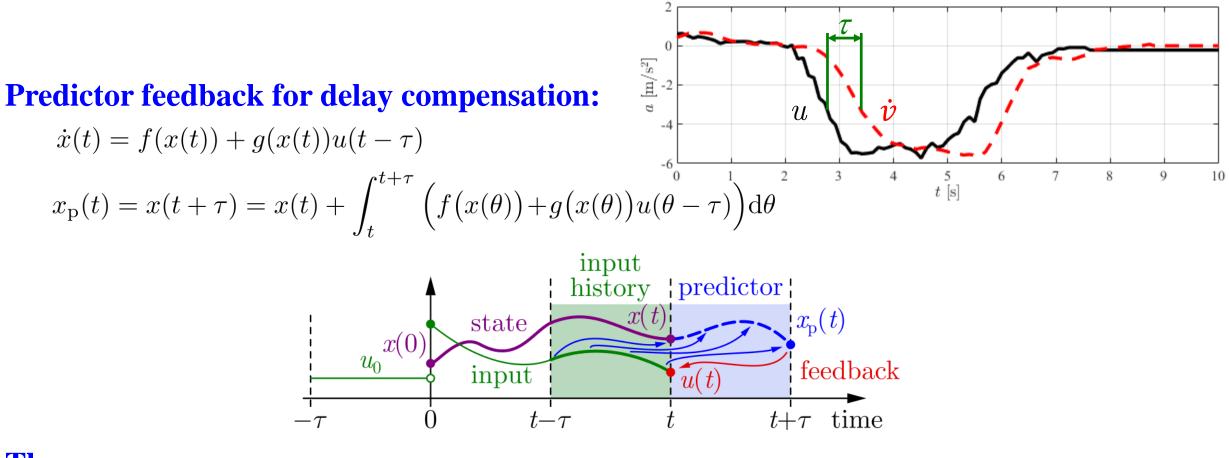
TISSF-CBF Applied to Truck Control



Safety with Time Delay



Input Delay



Theorem:

controllers that satisfy ensure safety:

 $u = k(x_{p})$ $\dot{h}(x_{p}, k(x_{p})) \ge -\alpha h(x_{p})$ $x(\theta) \in S, \ \forall \theta \in [0, \tau] \ \Rightarrow \ x(t) \in S, \ \forall t \ge 0$

Predictors Recover Safety Guarantees

Dynamical model:

$$\dot{D} = v_{\rm L} - v$$

$$\dot{v} = \boldsymbol{u}(t - \tau)$$

$$\dot{v}_{\rm L} = a_{\rm L}(t)$$

$$\dot{D} = v_{\rm L}(t)$$

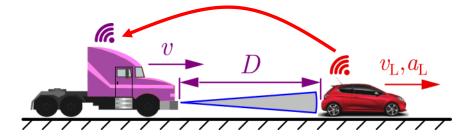
$$\dot{x} = f(t, x) + g(x)\boldsymbol{u}(t - \tau)$$

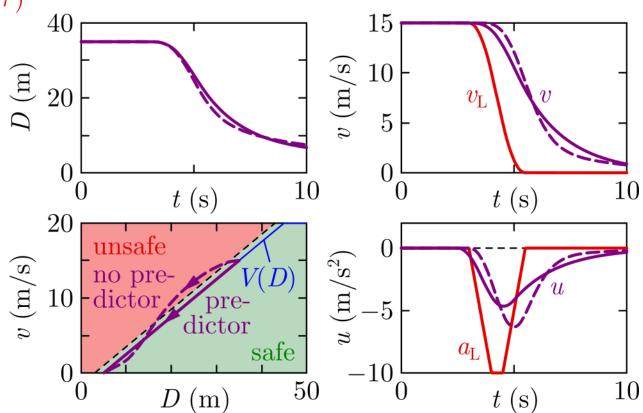
Safety measure:

$$h(x) = D - D_{\rm sf} - Tv$$

Safety critical control:

$$\begin{split} \dot{h}(t_{\rm p}, x_{\rm p}, u) &\geq -\alpha h(x_{\rm p}) \\ u &= \alpha \bigg(\underbrace{\frac{1}{T}(D_{\rm p} - D_{\rm st}) - v_{\rm p}}_{V(D_{\rm p})} + \underbrace{\frac{1}{T}(v_{\rm L,p} - v_{\rm p})}_{(V(D_{\rm p}))} \end{split}$$
intent of preceding vehicle





Prediction Errors Contribute to Disturbances

Dynamical model:

$$\dot{D} = v_{\rm L} - v \dot{v} = u(t - \tau) + d(t) \dot{v}_{\rm L} = a_{\rm L}(t)$$

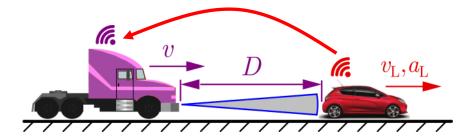
$$\dot{x} = f(t, x) + g(x)(u(t - \tau) + d(t) - 40) 40$$

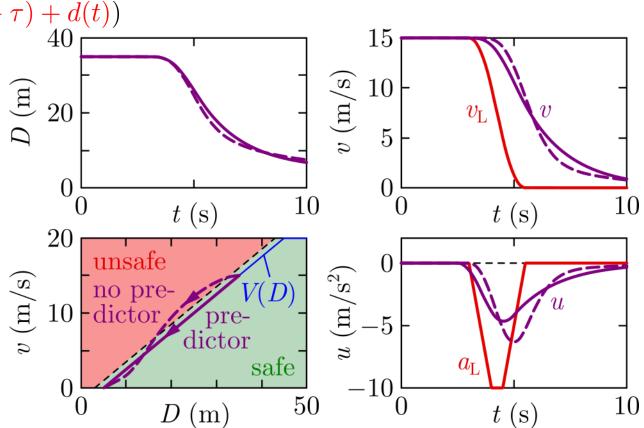
Safety measure:

$$h(x) = D - D_{\rm sf} - Tv$$

Safety critical control:

$$\dot{h}(t_{\mathrm{p}}, x_{\mathrm{p}}, u) \ge -\alpha h(x_{\mathrm{p}})$$
$$\hat{u} = \alpha \left(V(D_{\mathrm{p}}) - v_{\mathrm{p}} \right) + \frac{1}{T} (\hat{v}_{\mathrm{L}, \mathrm{p}} - v_{\mathrm{p}}) = u + d$$





Robust Safety Critical Control is Achieved

Dynamical model:

$$\dot{D} = v_{\rm L} - v
\dot{v} = u(t - \tau) + d(t)
\dot{v}_{\rm L} = a_{\rm L}(t)$$

$$\dot{x} = f(t, x) + g(x)(u(t - \tau) + d(t)
40$$

Disturbance (unmodelled 1st order lag):

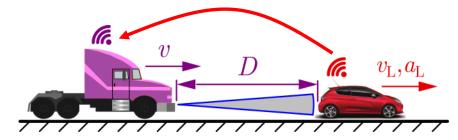
$$\dot{a}(t) = \frac{1}{\xi}(-a(t) + u(t - \tau)),$$

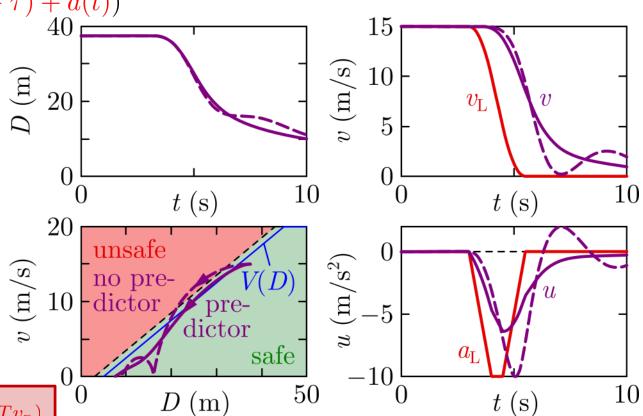
$$d(t) = a(t) - u(t - \tau)$$

Safety critical control:

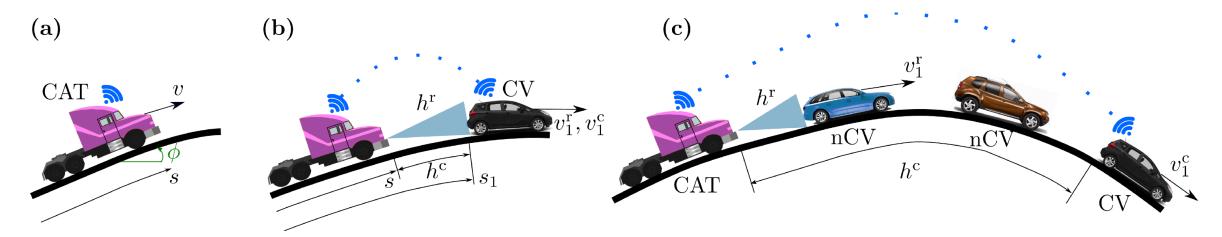
$$\dot{h}(t_{\mathrm{p}}, x_{\mathrm{p}}, u) \ge -\alpha h(x_{\mathrm{p}}) + \sigma(h(x_{\mathrm{p}})) \|\nabla h(x_{\mathrm{p}})g(x_{\mathrm{p}})\|^{2}$$

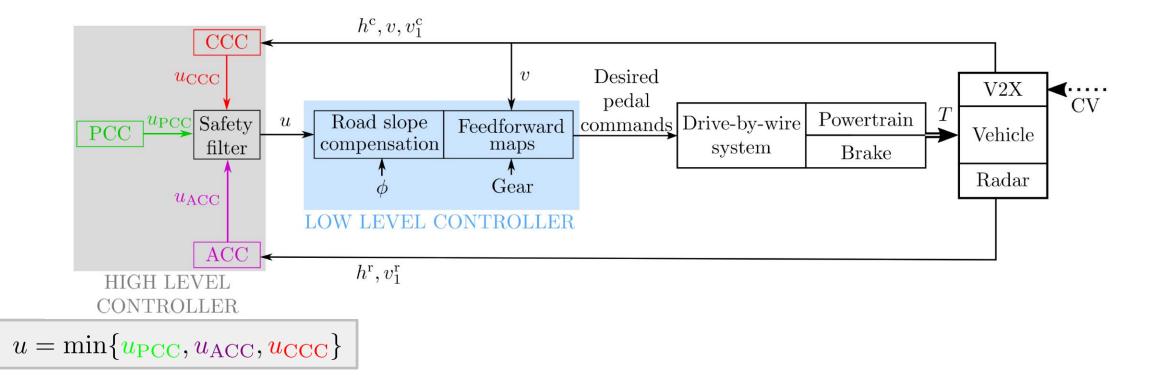
$$u = \alpha \left(V(D_{\rm p}) - v_{\rm p} \right) + \frac{1}{T} (\hat{v}_{\rm L,p} - v_{\rm p}) - T \sigma_0 \mathrm{e}^{-\lambda (D_{\rm p} - D_{\rm sf} - T v_{\rm p})}$$



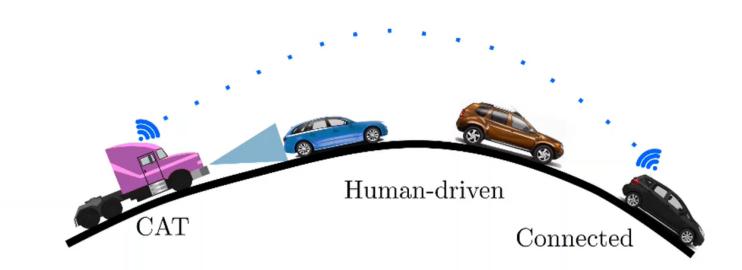


Real-world Experiments



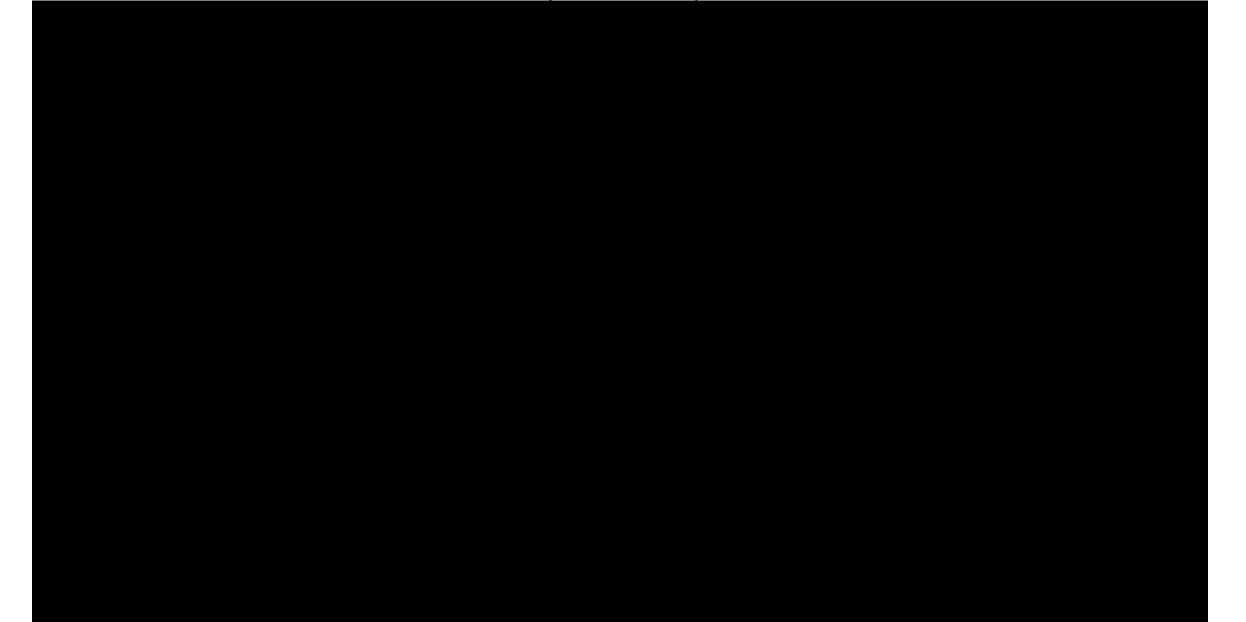


Safe Controller Integration For a Connected Automated Truck (CAT)



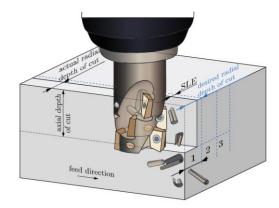
Because Traffic has a Memory

Input Delay

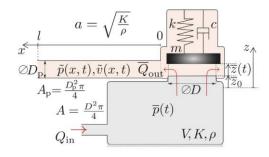


State Delay

$$\dot{x}(t) = f(x(t), \overline{x(t-\tau)}) + g(x(t), \overline{x(t-\tau)})u(t)$$
$$h(x(t), \overline{x(t-\tau)}) \ge 0$$

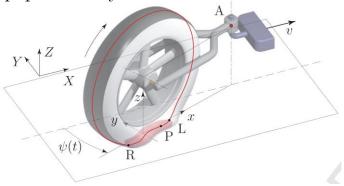


machine tool vibrations



hydraulic systems

population dynamics



tire dynamics

State Delay

$$\dot{x}(t) = f(x(t), \overline{x(t-\tau)}) + g(x(t), \overline{x(t-\tau)})u(t)$$
$$h(x(t), \overline{x(t-\tau)}) \ge 0$$

Infinite dimensional state space

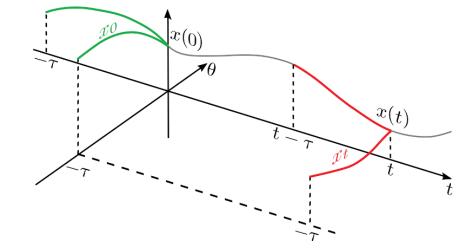
$$x_t(\theta) = x(t+\theta), \quad \theta \in [-\tau, 0]$$
$$x_t \in \mathcal{B} = C([-\tau, 0], \mathbb{R}^n)$$

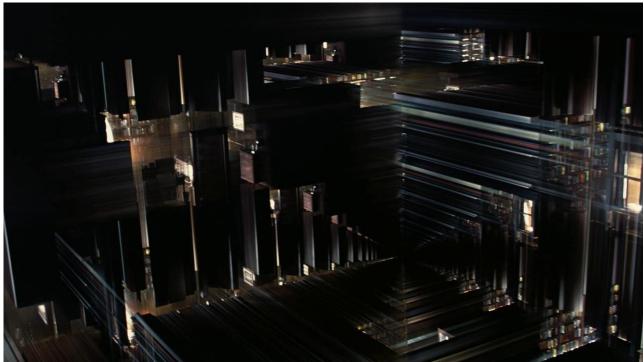
Functional differential equation

 $\dot{x}(t) = \mathcal{F}(x_t) + \mathcal{G}(x_t)u(t)$

Control Safety Functional

$$\mathcal{S} = \{ x_t \in \mathcal{B} : \mathcal{H}(x_t) \ge 0 \}$$





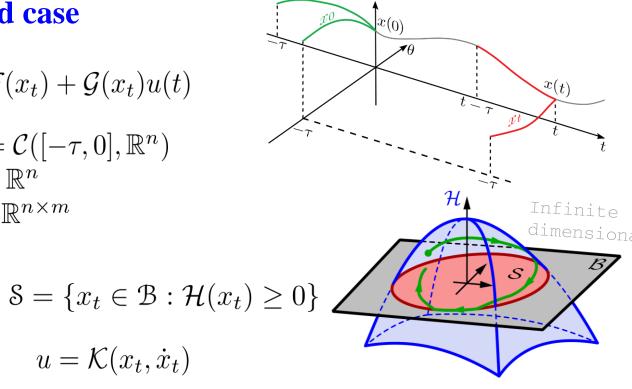
Control Barrier Functionals Delayed case

$$\dot{x}(t) = \mathcal{F}(x_t) + \mathcal{G}(x_t)u(t)$$

 $x_t \in \mathcal{B} = \mathcal{C}([-\tau, 0], \mathbb{R}^n)$ $\mathcal{F}: \mathcal{B} \to \mathbb{R}^n$ $\mathcal{G}: \mathcal{B} \to \mathbb{R}^{n \times m}$

Safe set:

Theorem:



Control synthesis:

$$\mathcal{K}(x_t, \dot{x}_t) = \underset{u \in U}{\operatorname{argmin}} \quad \|u - u_d\|^2$$

s.t. $\dot{\mathcal{H}}(x_t, \dot{x}_t, u) \ge -\alpha \mathcal{H}(x_t)$
How to calculate $\dot{\mathcal{H}} - 2$

 $\dot{\mathcal{H}}(x_t, \dot{x}_t, u) \ge -\alpha \mathcal{H}(x_t)$

 $u = \mathcal{K}(x_t, \dot{x}_t)$

$$\begin{aligned} x \in \mathbb{R}^n \\ f \colon \mathbb{R}^n \to \mathbb{R}^n \\ g \colon \mathbb{R}^n \to \mathbb{R}^{n \times m} \end{aligned}$$

Nondelayed case

 $\dot{x}(t) = f(x(t)) + g(x(t))u(t)$

 $S = \{x \in \mathbb{R}^n : h(x) \ge 0\}$

Safe set:

Theorem:
$$u = k(x)$$

 $\dot{h}(x, u) \ge -\alpha h(x)$

Control synthesis:

$$k(x) = \underset{u \in U}{\operatorname{argmin}} \quad \|u - u_{d}\|^{2}$$

s.t. $\dot{h}(x, u) \ge -\alpha h(x)$

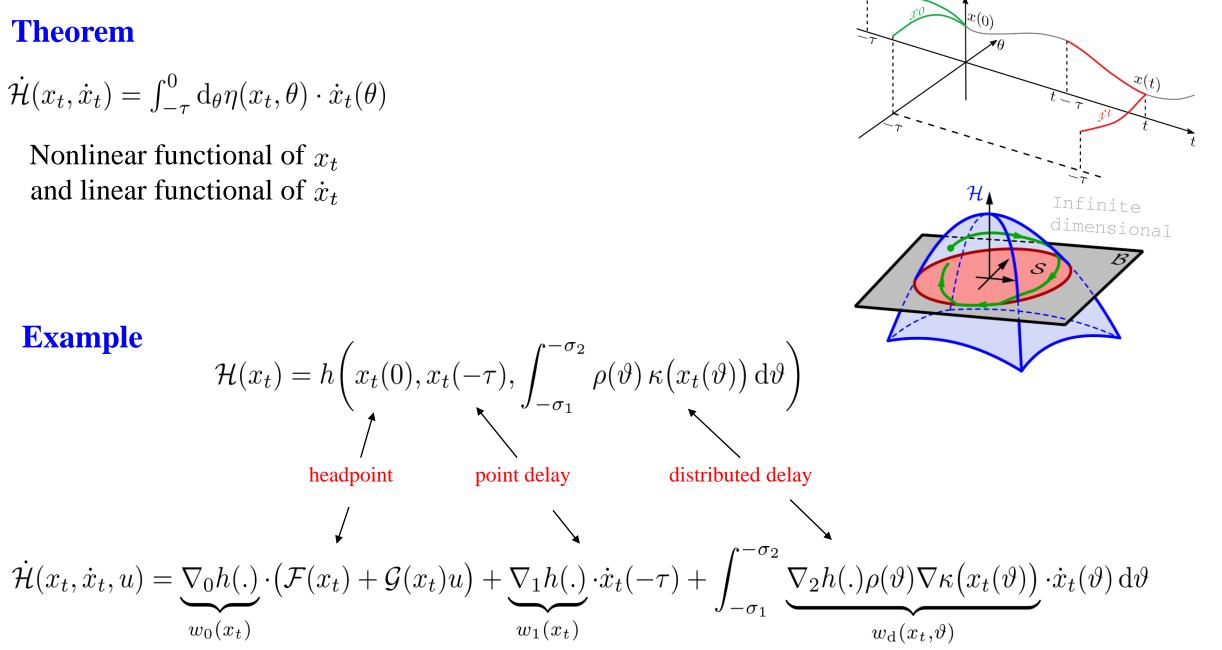
Theorem

$$\dot{\mathcal{H}}(x_t, \dot{x}_t) = \int_{-\tau}^0 \mathrm{d}_{\theta} \eta(x_t, \theta) \cdot \dot{x}_t(\theta)$$

 $w_0(x_t)$

headpoint

Nonlinear functional of x_t and linear functional of \dot{x}_t



Example

Closed Loop Safe System

 $\dot{x}(t) = \mathcal{F}(x_t) + \mathcal{G}(x_t)u(t)$

No delay in safety condition

$$h(x(t)) \ge 0$$

$$S = \{x_t \in \mathcal{B} : \mathcal{H}(x_0) \ge 0\}$$

Control law:

 $u = \mathcal{K}(x_t) = k(x(t), x(t - \tau))$

Functional differential equation:

 $\dot{x}(t) = \mathcal{F}(x_t) + \mathcal{G}(x_t)\mathcal{K}(x_t)$

Delay in safety condition

$$h(x(t), x(t - \tau)) \ge 0$$
$$S = \{x_t \in \mathcal{B} : \mathcal{H}(x_t) \ge 0\}$$

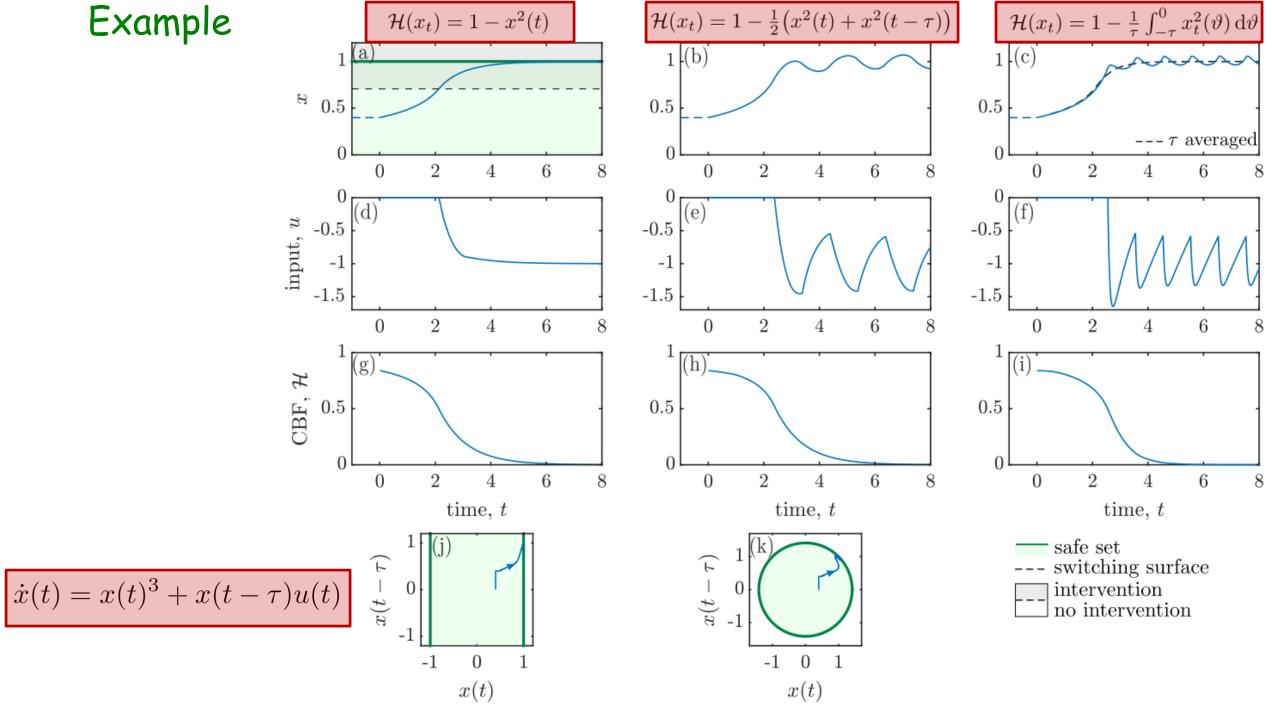
Control law:

$$u = \mathcal{K}(x_t (\dot{x}_t) = k(x(t), x(t - \tau), \dot{x}(t - \tau))$$

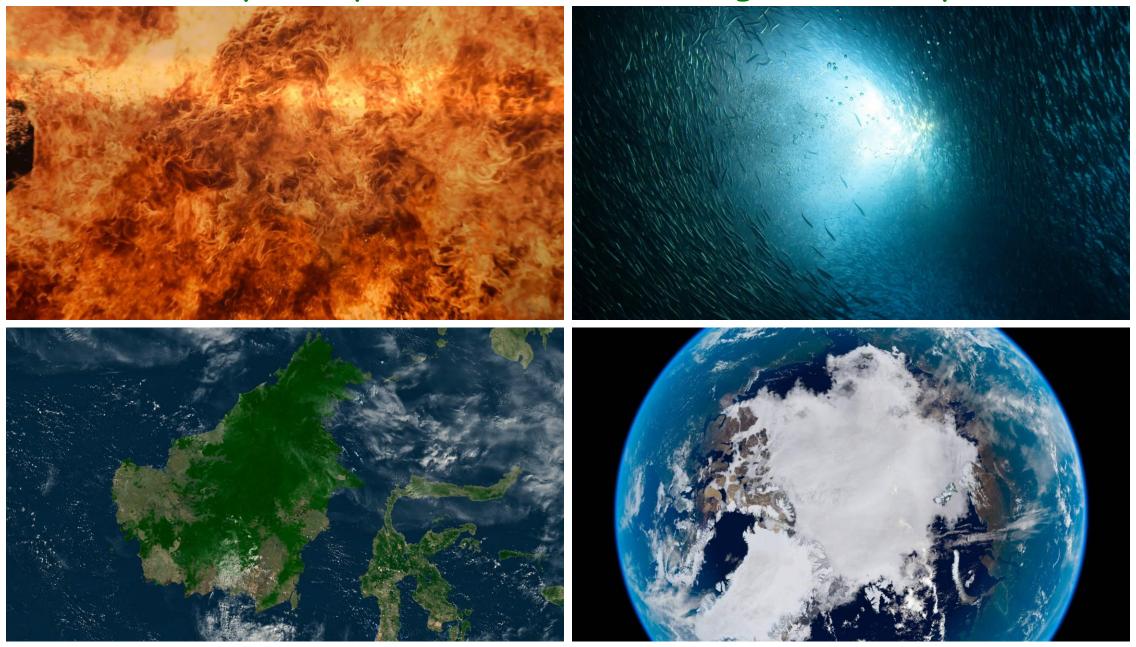
Neutral Functional differential equation:

$$\dot{x}(t) = \mathcal{F}(x_t) + \mathcal{G}(x_t)\mathcal{K}(x_t, \dot{x}_t)$$

Example



Many Ecosystems are at the Verge of Safety

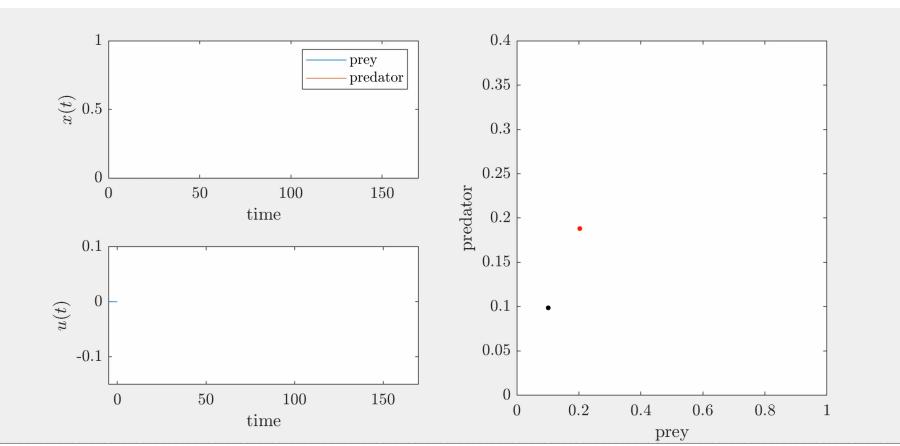


2019 David Attenborough: A Life on Our Planet

Population Dynamics

delayed predator-prey model

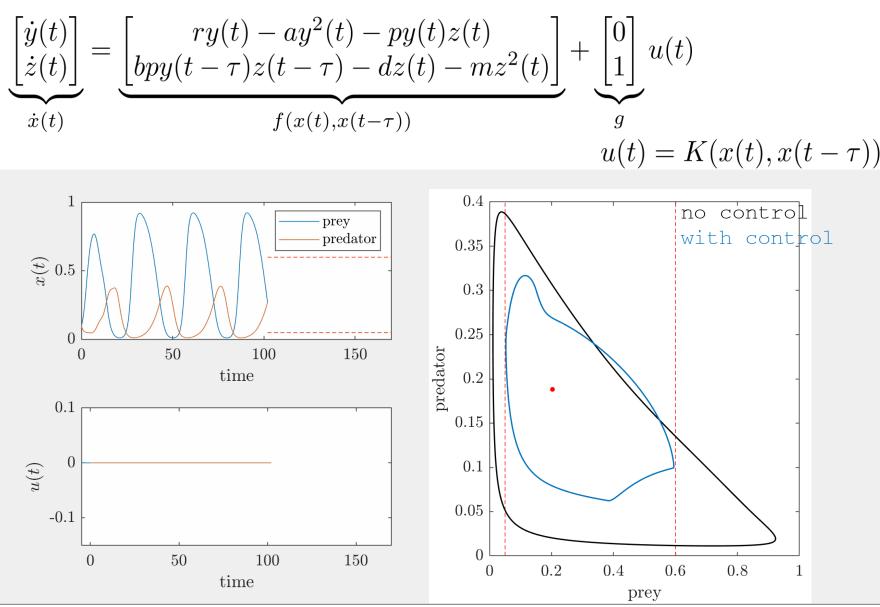
$$\underbrace{\begin{bmatrix} \dot{y}(t) \\ \dot{z}(t) \end{bmatrix}}_{\dot{x}(t)} = \underbrace{\begin{bmatrix} ry(t) - ay^2(t) - py(t)z(t) \\ bpy(t-\tau)z(t-\tau) - dz(t) - mz^2(t) \end{bmatrix}}_{f(x(t), x(t-\tau))}$$



- y prey population
- z predator population
- r prey growth rate
- *a* self-regulation rate
- p predation rate
- b conversion rate
- *d* predator mortality
- m predators competition
- au maturation time

Population Dynamics

delayed predator-prey model

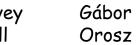


- y prey population
- z predator population
- r prey growth rate
- a self-regulation rate
- p predation rate
- b conversion rate
- *d* predator mortality
- m predators competition
- au maturation time

Collaborators

Anil Alan

Harvey Bell



Andrew Taylor Tamás Molnár

Aaron

Ames

Ádám Kiss

He

Budapest University of Technology