UNIVERSITY OF
MICHIGAN

Basic algorithms and recent advances
on safe control synthesis with

reachability and invariance

Necmiye Ozay, EECS
University of Michigan, Ann Arbor

44th International Summer School of Automatic Control
Grenoble, France

August 28 - September 01, 2023

Mostly based on joint work with Liren Yang (Huazhong University of Science
and Technology)

Research funded in part by

S - "~ Collins
T “n® Aerospate

Plant Autonomy
(with a model) software

Whitebox system:
Plant + software

N
g

Correctness
proof

Specification ¥

Verification

—
N

Counterexample

PROS:
* Strong guarantees

CONS:
* Hybrid system verification is
computationally very hard
* Autonomy software = up to
millions of lines of code (loc):
= hard to model

= hard to scale
Mars curiosity rover: 5M loc
Boeing 787 flight software: 15M loc

F 35-fighter jet: 25M loc
Average modern high-end car: 100M loc

Alternative #1: Correct-by-construction

(control) synthesis
Partial whitebox system:

Plant (3? Software) Specification

N —
e N

Software with Proof of

| Plant Autonomy corre.c’Fness gua.rantee impossibility
(with a model) software + validity domain

PROS:

e Strong guarantees

* Avoids the complexity induced by software
* “Explains” fundamental limits (impossibility)

Whitebox system:
Plant + software Specification ¥

computationally even harder
/ \ * Limited specs; spec correctness &

Correctness Counterexample completeness is more crucial
proof * Almost no synthesis approach for perception
or learning components

CONS:

Verification « Correct-by-construction synthesis is

Alternative #1: Correct-by-construction

(control) synthesis

Partial whitebox system:
Plant (37 Software)

N
/

Software with
correctness guarantee
+ validity domain

Specification

Proof of
impossibility

Putting “correct” and automatically
synthesized software on a car is feasible
There were failures but having mathematical
models and formal assumptions help detect
failures

* We realized that the model was missing

actuator delays

Conservativeness due to not looking ahead

i@@ Q)

€3
Motivated future work on safety with learned
models, delays, and predictions

Alternative #1: Correct-by-construction (x(t +1) = Ax(t) + Bu,(t) + Fd(t)
trol thesi
(control) synthesis u; (4 1) = u,(t)

X x(t+1) =Ax(t) + Bu(t — t4) + Fd(t) Taugid U2(t+ 1) =uz(t)

Saug = SXU™

| U, (E+ 1) = u(t)

« Goal: Find a set Cy, 4 € Sy, (ideally the maximal such
Caug) SUch that if x,,,;, € Cg,, 4 then there exist u € U such
that x5, 5 € Caug (Caug is a controlled invariant set).

Alternative #1: Correct-by-construction
(control) synthesis

X x(t+1) = Ax(t) + Bu(t — t4) + Fd(t) Zaug: 4

T(x, Uq, ...,u,d)

(x(t+1) = Ax(t) + Bu,(t) + Fd(t)
U (t+ 1) =uy(8)

u(t+1) = uz(t)
Saug = SXU™

— AT Td pi—1
= ATax + 37 AT Bu,

Direct method

X

1. Dimension reduction
Taux: X7, (t+1) = A%, () + Bu(t) + A*Fd(b).

Z:aug ’ Saug

Dim=n+m:- 1,

T

Zaux ’ Saux
Dim=n

3. Lifting

2. Compute maximal
invariant set of X«

| U, (E+ 1) = u(t)

Theorem:

Any controlled invariant
setofthen+m- 1,
dimensional system X,,q
can be obtained from that
of the n dimensional
auxiliary system X, -

Caug)

LI

10,000
—e—Proposed Method

——Direct Method

1621.7

1,000

=
o
o

Time Cost
[N
o

3.046

40

20

Dimension

Alternative #2: Falsification

Blackbox system:

Plant + software

Plant
(with a model)

Autonomy
software

Specification

N
e

Inconclusive

Falsification

—
o~

Counterexample

PROS:

Whitebox system:
Plant + software

N
g

Correctness
proof

Specification ¥

Verification

—
N

Counterexample

Can handle arbitrarily complex models (plant
+ software) including learning-based
components

Industry-adopted tools (e.g., Breach, S-Taliro)

CONS:

Weaker conclusions
No explanation of the counterexamples:
= can give “trivial” counterexamples if
assumptions are not modeled carefully
® jsit a hardware (plant) limitation or
software bug?

Alternative #2.5: Synthesis-guided falsification

Blackbox system:
Plant + software

Falsification

e

Inconclusive

Specification

—
N

Counterexample

System:
Whitebox plant +

Blackbox software Specification

Synthesis-guided

Falsification

Inconclusive Counterexample
+ explanation
o
1= i _____ |
| |
| |
| |
dﬂ_’ Plant ﬁ"y# ¥
| » |
| |
| |
| |
| |
[CUT | |1
| B |

* SUT: system under test; CUT: controller (autonomy software) under test - 9z, Univ. of Michigan

a typical
result with

our
falsification
algorithm

Underlying tool in verification:
Forward reachable sets (FRS)

Underlying tool in synthesis and synthesis-
guided falsification:

Backward reachable sets (BRS)

11

Closed-loop system:

Xe41 = [(xp, We)
Wt € W

X; = Post(X,)

X, = Post(X;) /

Typical verification problem:

Given a set of initial states X;, an
unsafe set X,;, and a time horizon
T, prove or disprove that for all

Xo € Xy, forall t € [0,T] and for
all wo.r—; € WT, we have x; & X,,.

Reachability [Girard 2005, Kurzhansky & Varaiya 2011]
Also used in constructing symbolic models (abstractions)

12

Closed-loop system:

Xe41 = [(xp, We)
Wt € W

Typical verification problem:

Given a set of initial states X;, an
unsafe set X,;, and a time horizon
T, prove or disprove that for all

Xo € Xy, forall t € [0,T] and for
all wo.r—; € WT, we have x; & X,,.

Outer-approximations

can be used to prove
safety

X; = Post(X,)

X, = Post(X;)

/

13

Backward Reachable Sets (BRS)

Control system:

Xp (target set)
Xey1 = f (e Ugy We)

us €U
WtEW

14

Backward Reachable Sets (BRS)

Control system:

Xp (target set)
Xey1 = f (e Ugy We)

us €U
WtEW

* Specification:
e Reachability [Bertsekas & Rhodes 1971]
e Safety [Bertsekas 1972]

 Temporal logic spec Building block:
[Chen et al. 2018] BRS computation

15

Control system:

Xp (target set)

Xe+1 = f(Xe, U, W) X1 /
u, €U C CPre(X,)

WtEW

* Specification:
e Reachability [Bertsekas & Rhodes 1971]
e Safety [Bertsekas 1972]
* Temporal logic spec
[Chen et al. 2018]

Inner-approximations can

be used for correct-by-
construction control

16

Closed-loop system:
xt+1 — Axt + BWt
Wt eWw

Control system:

xt+1 — Axt + But ~+ EWt
ur €U
wy €W

Post(X) ={Ax+Bw|xeX,weW}
= AXDOBW

CPre(X) = {x | Ju:Vw: Ax + Bu+ Ew € X}
= Proj, {(x,u) | Ax + Bu®EW < X}

If A is invertible:

=AY (X © EW & —BU)

e Set representations (and their complexity)

* Operations on the sets:
— Affine transformation
— Projection
— Intersection
— Minkowski sum
— Emptiness check
— Membership check

hyperplane: Py, = {x | a’x = b} CR"™, where a € R", a # 0, and b € R

halfspace: Pns = {x | alx < b} CR"™, where a € R”, a # 0, and b € R
om, cix =d;, i = 1,...,p},

polyhedron: P = {x | a]Taf b, 1,..
Ax < b, Cx = d}, or, equivalently

< J
alternatively, in matrix form P = {x
P ={x| Az < b},

hyperplane: Py, = {x | a’x = b} CR"™, where a € R", a # 0, and b € R

halfspace: Pns = {x | alx < b} CR"™, where a € R”, a # 0, and b € R
om, cix =d;, i = 1,...,p},

polyhedron: P = {x | a]Taf b, 1,..
Ax < b, Cx = d}, or, equivalently

< J
alternatively, in matrix form P = {x
P ={x| Az < b},

zonotope: Z = {z € R" |z =c+ > &g, —1 < o; <1}, wherec,g,...,9, € R™
The point c is called the center of Z; g1, . .., g, are called the generators of Z. We denote
a zonotope as Z = (¢, < g1, .-, 9p >).

hyperbox: H = {x € R" | z; € [l;,u;], i =1,...,n}, where ly,...,l, and uq,...,u, are
real numbers corresponding to lower and upper limits for each coordinate. Hyperboxes are
usually denoted as cross-products of intervals, i.e. H = [l1, u1] X ... X [l,, uy].

20

Intersection

c=cHnc®

Minkowski sum

Linear (affine)
transformation

Hyperbox
[|1,u1] X..X [Inlun]

Not a box!

Zonotope
(C, <g1, orny gp>)

Not a zonotope!

(e 4 < gV

2
g, g2, g >)

(LC, <Lg1, . Lgp>)

Polytope V-rep
COnV({Vl; "'Ivk})

Polytope H-rep
Ax<b

Intersection

c=cHnc®

Minkowski sum

Linear (affine)
transformation

Hyperbox
[|1,u1] X..X [Inlun]

simple min-max:
l; = max(I{®), 12)
u; = min(u;®, u;?)

simple algebra:
| = 1.4+ .2)

u; = ui(1)+ ui(z)

Not a box!

Zonotope
(C’ <g1, orny gp>)

Not a zonotope!

(e 4 < gV

2
g, g2, g >)

(LC, <Lg1, . Lgp>)

Polytope V-rep
COnV({Vl; "'Ivk})

Polytope H-rep
Ax<b

Intersection Minkowski sum))
Linear (affine)

C=cYnc® C=cYqgc® transformation
A A AR
’ ’ u; = min(ui(l), ui(Z)) u; = Ui(l)"' Lli(2)
(C’ngn:f-c.c')’pgepﬂ Not a zonotope! (C(;:(;? ;;?11;!) (Lc, <Lgy, ..., Lgp>)
comttnid) | 5 Conv(() + 7)) | Convl{vs,..)
L

Vconcatenation: * guter-approx. when
C@ is eo-norm ball:
1

Polytope H-rep | [A(D) - b(h)
Ax<b A= (@)

Ax < b+ | Al|oc€

1

AN

% Representations might be redundant, reductions are possible. Radius of the ball

J ﬁ In theory do not scale well with dimension n, in practice it is OK.

23

Membership check
Is point x in C?

Emptiness check
Is C the empty set?

Hyperbox simple comparisons: Non-empty iff
[l,uq] x ... x [l,,,up,] |, < x,< u; foralli? ;< u; for all i
Zonotope linear program (LP)

(CI <g11 LY gp>)

poly-time

Can’t represent empty sets

Polytope V-rep
Co nv({vll "'Ivk})

linear program (LP)
poly-time

Can’t represent empty sets
(trivial empty vertex set)

Polytope H-rep
Ax<b

simple algebra:
Ax < Db?

linear program (LP)
poly-time

24

Other important operations:

— Containment check (see Sadraddini & Tedrake’19), Minkowski
difference, complexity reduction

Approximate (inner or outer) set computations when exact
operations are hard
Many other set representations:
— Constrained zonotopes, hybrid zonotopes, polynomial zonotopes,
AH-polytopes, star sets, ellipsoids, ...
Software packages for manipulating sets:
— Matlab MPT3, Python polytope, Julia JuMP

Reachability software:

— FRS: CORA, JuliaReach, SpaceX, dReach, etc. (see
https://ieeecss.org/tc/hybrid-systems/tools)

— BRS: HIB, MPT3

https://ieeecss.org/tc/hybrid-systems/tools

* Methods/tools (far from being complete):

 HIB , interval analysis ,
polynomial optimization , linear
optimization , etc.

* Challenge: scalability (even for linear systems):

Xty1 = Axy + Buy + wy Projection is difficult
us € U =({u | Hyu < hy} for H-Reps
we €W =|{w | H,w < h,,}
Xo =|{x | Hyx < h,} Xi+1 = Projy {(x,u)

| Ax + Bu+ EW < X}

Polytopes in
half-space representations
(H-Reps)

26

Can we use zonotopes to represent X, ?

e Zonotope: { GO +c | O € [-1,1]" } =
* Advantages:

(G, c)

Generator
representation
(G-Rep)

» Affine transformation (projection), Minkowski sum are easy

* Order reduction (for outer-approximations)

Xk+1 — AXk @ BW

27

Can we use zonotopes to represent X, ?

e Zonotope: { GO +c | O € [-1,1]" } =
* Advantages:

(G, c)

Generator
representation
(G-Rep)

» Affine transformation (projection), Minkowski sum are easy

* Order reduction (for outer-approximations)

* For backward reachability, there lack efficient algos for:

* Minkowski difference
* Order reduction (for inner-approximations)

Xk+1 — AXk @ BW

Xpr1 = A1 (X, © EW @ —BU)

8

o Efficient inner/outer-approximations of the Minkowski
difference when the minuend is a zonotope — LCSS’22

* A zonotope order reduction technique (for inner-
approximation) — LCSS’22

* A scalable BRS under-approximation algorithm —
LCSS’22

* Extensions to constrained zonotopes and nonlinear
systems (with some results on complexity and
approximability) — EMSOFT’22

e X, =(G,c), W = cvxh(lVy,)

* Step I: over-approximate EW by (G diag(«a), c')

a, ¢’ can be found by solving a linear program

#variables = O(MN + n)

#constraints = O(MN + Mn) M: #vertices in Vi

n: dimension of X,

N: #columnsin G

* Step II: X;, © EW < (G, c) © (G diag(a), c’)
= (G diag(1 — a),c — ¢')

Step Il is just G-Rep manipulation

30

e X, =(G,c), W = cvxh(lVy,)

* Step I: over-approximate EW by (G diag(a), c’)
a, ¢’ can be found by solving a linear program

. N : . .
ming o ¢ Yoy by n: dimension of X

S.t. ‘v’wj eV:.c+ Zil Hijg,- = ij M: H#vertices i.n VW
6| <a;<1,i=0,1,...N N: #columnsin G

* Step II: X;, © EW < (G, c) © (G diag(a), c’)
= (G diag(1 — a),c — ¢')

Step Il is just G-Rep manipulation

31

* Comparison

Evaluation with Random Instances

10*

© min-out
© Sadraddini

* H-Rep manipulation .

[Althoff 2015]

* /Zonotope
containment
[Sadraddini &
Tedrake 2019],
[Raghuraman &
Koeln 2022] if W has
a G-Rep

P
o
N

cpu time (s)

dimension ny

mean min max

w/vyrm

1.0017

0.9900

1.3856 |

(V/V)m

0.9678

0.8372

1.7498

32

* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj goenerators
{lg1, 92, -, gl €} reduces by one

* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj goenerators
(lg1, 92, -, 9n), €) > reduces by one

* Two questions:
* Which [gi,gj] to “combine”?

* Replace [gi,gj] with g; + gj or gi — gj?

* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj goenerators
(lg1, 92, -, 9n), €) > reduces by one

* Two questions:
* Which [gi,gj] to “combine”?

Pick small or closely- Jian 9gj
aligned generators : > Ji

* Replace [gi,gj] with g; + gj or gi — gj?

35

* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj goenerators
(lg1, 92, -, 9n), €) > reduces by one

* Two questions:
* Which [gi,gj] to “combine”?
* (i,7) = argmin lg; || 5], Gin— g

Omin '

+ (0,J) = argmin gyl |lg [, 222 S

* Replace [g;, gj| with g; + g; or g; — g;?

* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj goenerators
{lg1, 92, -, gl €} reduces by one

* Two questions:
* Which [gi,gj] to “combine”?
* (i,7) = argmin lg; || 5], Gin— g

Omin I

+ (0,J) = argmin gyl |lg [, 222 S

* Replace [gi,gj] with g; + gj or g; — gj?
gi+9;
Use the one that is larger other

and “more perpendicular” generators
to the other generators

9di — gj

37

* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj goenerators
{lg1, 92, -, gl €} reduces by one

* Two questions:
* Which [gi,gj] to “combine”?
* (i,7) = argmin lg; || 5], Gin— g

Omin '

+ (0,J) = argmin gyl |lg [, 222 S

* Replace [g;, gj| with g; + g; or g; — g;?

* Replace with g; + g; if NED other
16 (g: + g)ll2 = 16T (9: = g1 Cenerators
and g; — g; otherwise

9di — gj

4.5

3.5

2.5

Order Reduction

#generator=21

size ratio

dimension ny 5
(before reduction) -

0.2

0.3

0.4

0.5

0.6

0.7 0.8 0.9

' | dE £ |

.

. ([‘reduced_
r —

Voriginal

)

1

Ny

\—MO

s 5 4 B B T B

order N/ny (before reduction)

39

cpu time (s)

Example: Aircraft Position Control
* Longitudinal: x in 6D, u in 2D,
e Lateral: x in 6D, u in 2D

350
300

T T T TT

min-out (with order reduction)
Sadraddini (with order reduction)
-------- min-out (no order reduction)

| |s+++++++ Sadraddini (no order reduction)

|
|
order reduction stans\ml

|
|
I
|
|
|

10 20 30 40 90

T T T T T T

min-out (with order reduction)

o
.
o
-

Sadraddini (with order reduction)
min-out (order reduction afterwards) ==

10

20 30 40 50 60 70

Fig. 3: Backward reachable set computation for lateral dynamics. Left: computation time. Right: set volume.

1000

800

600 [

400 -

200

T T T T T

= min-out (with order reduction)
= Sadraddini (with order reduction)
""""" min-out (no order reduction)
------ Sadraddini (no order reduction)

':.'.,.:.:.'m-

"]

iy

—~
.

T

it henes
s

PSPPSRI

.

80

min-out (with order reduction)
= Sadraddini (with order reduction)
-------- min-out (order reduction afterwards)

20

40 60 80 100 120

k

140

160

40

» Zonotopes are not as rich as polytopes in
terms of expressiveness

— How about constrained zonotopes?

* So far, applicable to linear systems

— How about nonlinear systems?

e System: X1 = f(xe, up) +wy
u €U, wrewWw

If no A, b the set
is just a zonotope

Target set, control set Constrained zonotope -
XO = <GO) CO;AO; bO) CZ {Ge tc | ”9”00 — 1) b}
U =(Gy, ¢, A, by) CG-Rep of CZ: (G, c, A, b)
Affine map

are constrained zonotopes Affine space
=Lyc
Safe set Unit box

(01 40 = b}
Xsate = {x | Hx < a}is a polyhedron {0110llc =1} @.space X-space

Disturbance set
w =(a,,c,)is azonotope

42

: . — For nonlinear systems, replace W
* Linear system: Xip1 = Axy + Buy +wy by W (B £ wg/ere T Confains Al

U; € U, W E 124 / linearization error

* BRS computation: Xppy = Pre(X,) = A2 (X, e@@ =BU) N Xae

Target set, BRS, control set

— Assumptions Set operations
Xie = (G, € A, bic) on sets involved
U = (Gy, €y, Ay, by)
are constrained zonotopes Easy to compute for

constrained zonotopes,
via CG-Rep
manipulation

Disturbance set
w =(a,,c,)is azonotope

Safe set Minkowski difference
Xsate = {x | Hx < a }is a polyhedron XOUY={xI{x}PYcX} ?

43

Theorem 1.
Given CZ = (G, c,A,b) and Z = (G’, ¢'), no algorithm finds a polynomial-size CG-Rep
of CZ © Z in polynomial-time (unless P=NP).

Theorem 2.

We can findaset CZ4 € CZ © Z by solving a linear program, whose # variables and
constraints are polynomial in the size of CZ’s and Z’s representations.

Theorem 3. (ERep not unique

Every constrained zonotope CZ has a “rich” enough CG-Rep s.t. our under-

approximation is exact, i.e., CZ4 = CZ © Z. There is a trade-off between

accuracy & efficiency, which can be
“tuned” via CG-Rep selection

44

[Exact

Constrained Zonotope 107
[_1Zonotope
HJB

KXunsate

Less conservative then
zonotope-based approach

Deal with constraints
(convex or nonconvex)
More scalable than HIB

WiTarget set

I Obstacles

—HJB

il Constrained Zonotopes

T2

_ . _10D
| nonlinear 7 nonlinear
" Noriconvex Nonconvex
X
safe " . X safe
n k Splitting Scaling HJB
Example 2 2 100 N/A 56.1s — 45.2s
Example 3 10 10 226.7s N/A (Memory error\
Example 4: 3 478.9s 282135 |y temory error |
Convex constraints (k = 25) (k = 400) , y |
N Example 4: 320 | 1564.1s NA | 45216s |
onconvex constraints ' .
Example 5 10 340 951.6s N/A I Memory error, '

HJB: hard to scale

45

How to use backward reachable sets (BRS)
in falsification?

46

=TT J{ """ ' Falsification problem: Given a plant model, a (blackbox)
controller and a specification, can we find an initial
Wo—| Plant —T>¥yF¢ condition and an external input sequence (disturbance
sequence) so that the specification is violated?

S

Assumptions:

 “simple enough” plant model

C o S X = f(x:, Up, W
Zo: initial condition t+1 = f (e, ug, we)
u: control input “simple enough” specification: we will focus on

y: output safety (invariance) and reachability specifications

w disturbance (external input)

©: specification

“simple enough”: almost anything for which you can
compute the validity domain (i.e., winning set) of the
synthesis problem

Chou et al. EMSOFT 18

I ' Approach:

I I
I I .
Wa—s{ Plant —T>y¥ ¢

S

w disturbance (external input)
Zo: initial condition
u: control input
y: output
©: specification
Plant model:

Xer1 = f (e, up, W)

|deal result of the synthesis problems:

Unsafe Synsafe

Ignore the controller, focus on safety-critical part of
the spec.

Given the plant model and safety (invariance) part
Xsafe Of the spec, consider the safety and dual
reachability synthesis problems:

Invariance in Xqz

Reachability to
Xunsafe :_'Xsafe

N. Ozay, Univ. of Michigan

48

w_l_> Plant _ﬁy# ¥

Invariance in Xqz,

S

w disturbance (external input)
Zo: initial condition
u: control input

J output Reachability to T w,

©: specification Xunsafe ==X safe X1
Plant model:

Xer1 = f(xe, ue, we) - - l/VQ

| |

|deal result of the synthesis problems: | |

Unsafe Synsafe I xO [

| |

' Xipit !

N. Ozay, Univ. of Michigan 49

W——>| Plant _r>y#()0

w disturbance (external input)
Zo: initial condition
u: control input
y: output
©: specification
Plant model:

Xer1 = f (e, up, W)

|deal result of the synthesis problems:)

Unsafe Synsafe

l Approach:

Ignore the controller, focus on safety-critical part of
the spec.

Given the plant model and safety (invariance) part
Xsafe Of the spec, consider the safety and dual
reachability synthesis problems.

Comments:

* Synthesized X;,, is the validity domain W of the best
safety controller (i.e., the maximal invariant set)

* Synthesized X, is the validity domain of “best”
disturbance policy

* OK to use approximate computations/models

Can use any synthesis approach: iterative polytopic

computations, Hamilton Jacobi Bellman, control

barrier functions, abstractions

N. Ozay, Univ. of Michigan 50

* Hypotheses:

— Hard initial conditions: boundary of the control invariant set

(small # of safe control inputs)

— Hard external inputs: solutions of a dual reachability problem
(when out of S, pick best effort input to get closeto S,,,/)

(i)
1

System

>
u

Controller

/I Blackbox

T\

Input generator:
— if x € Sqyal. d = g(x)
else d = g°(x)

51

Some example “bugs” found in the
open-source autonomous driving
software CommaAl (using its
python source code directly!)

Similar results with Stanford DARPA
Grand Challenge code (C++ code)

Can use the synthesis artifacts for
“sandboxing” (supervising)
complex controllers

Our software is available online:
integration of several driving
software with car dynamics models

Can handle any (learning-based) state-
feedback controller (e.g., NNs, RL, etc.)
—> so far no perception modules

Distance headway (m)

Deviation from centerline (m)

D
o

N
o
T

N
o
T

o

Adaptive cruise control

— Unsupervised
— Supervised

o
[

o
o

'
—_
O [T

o
T

| |
5 10 15
Time (sec)

Lane keeping

- |=——Unsupervised

—— Supervised

Time (sec)

52

known & simple
(can be uncertain)

Plant

A\ 4

n g
CUT < Sensor <
unknown & known & simple
complicated (can be noisy)

an abstraction of a

complex perception
module

Plant model including sensor:
Xer1 = f (e, U, wy)

Ve = g(x¢, V)

d Given:
= A gray-box system
" Anunsafe set X, jsafe, and an initial set Xj,it
[Find one adversarial example:
= Atrajectory xg, X1, ..., X1
= External inputs wy, wq, ..., Wr_1, Vg, V1, «or) UT—1
" Xp € Xinit and Xt € Xunsafe

53

known & simple
(can be uncertain)

» Plant
T g
CUT < Sensor <
Wr_1,Vp_
unknown & known & simple r-1%T-1
complicated (can be noisy)
an abstraction of a
complex perception
module
Plant model including sensor: A
. W1, V1
Xer1 = f Qe Up, W) X
1
)

= .
y o

Key Idea
Verification: compute = U Xy

Xo = Xunsafe
Xi+1 = Pre(Xy): = Xp U {x|3w, v: f (x, 7(x, v), W) € X}
NG ~ J
Closed-loop dynamics: complex due to m,
even if f itself is simple (precisely why
verification is hard)

X unsafe

Synthesis-guided Adversarial Example Generation

Key Idea
Synthesis: compute PRIENER I VEI(N=EIog Bl R = U)?k

AN

)EO = Xunsafe ~ ~ ~
Xpr1 = CPre(Xk): = X U {x|Vu: 3Iw: f(x,u,w) € X}
g /

~

Open-loop dynamics: simple, independent of T
* The adversarial examples are trivial (generic)
* Noise v is not essential for violation

2-player
backward

reachable set
(perfect info)

X unsafe

Synthesis-guided Adversarial Example Generation

Key Idea

Synthesis guided Falsification: compute

. CX =42 —player backward reachable set

Y= CPrey()_(k): = {y|Vu:3Ax,v:y = g(x,v), f(x,u,w) € X}

.« Vi+1 € Yig1 U1 = T(Vi+1),

Xp1 = Pre()_(k|Yk+1): = {x|3w, v: Y41 = g(x, V), <_independent
fOou,w) €% ofm!

, Where

£ W N R

2-player
backward Xunsafe

reachable set
(perfect inifo)

Synthesis-guided Adversarial Example Generation

Key Idea

Synthesis guided Falsification: compute

. CX =42 —player backward reachable set

. Y11 = CPre,(Xy): From where it is challenging to satisfy the spec
“query at the challenging region of the state space

Xpe+1 = Pre(Xi|yx+1) 1-player backward reachability _independent
based on the query result of m!

, Where

BwNop

2-player
backward Xunsafe

reachable set
(perfect inifo)

Synthesis-guided Adversarial Example Generation

known & simple
(can be uncertain)

» Plant
n g
CUT < Sensor |«
unknown & known & simple
complicated (can be noisy)

an abstraction of a

complex perception
module

Plant model including sensor:
Xer1 = f (e, up, we)

Ve = g(x¢, v¢)

Moving down stream

Obstacle avoidance: Needs to avoid obstacle

Can go left or right (controller decisions)

Two different controllers for this task
(unknown to the algorithm):

X s
o
15 Ujusuy
10
5
SRR
0 5 10 15 20
Controller 1 Controller 2

59

Interesting insight: falsifying “sensor
noise” trajectories at the discontinuities
of the controller

known & simple
(can be uncertain)

*| FPlant 20 Hiease e deses IFFFFIITELE ' 20 [HAAAAR PR A EE & KRS T \
1 Kinit (X ! I ALinit 1
1200000000880 0 0900000 e =
T 4 UTUALS U UgU3
15 sux\wa,
CUT < Sensor |« ::
10 2 10
unknown & known & simple eclse T/ dual
complicated (can be noisy) 5 eececessss perfect 5
LN N N N NN N NN X
an abstraction of a Teseeseseeeeeeesl el e W Xunste
complex perception 0 2090009009000 900 0 ooooooooooocoo?fl
module 0 5 10 15 20 0 5 10 15 20
|
. . . oglmmmmmmmmssmssssmnooa . 20 !
Plant model including sensor: 200 x, - ' Xinit :
0000000000000 00000 ¢ ! CEEESISIIE S SN EEEE ...,.' Y o
AN e N
— UIUAL ujusu3
Xep1 = f (g Up We) lipeees U X, 15
oo’
LN
ve = g(x¢, vt) 10 .3 10
LN NN J
LR NN 17dual
5 oot s20 8 s W pertect .
LN N N NN NN NN
0000000 CGOOSOSSOS Xu.nsa.fe X \saf
Ioooooooocoooocool Fe 0000000000000 Laale
0 9000000000600 0000:I

‘ 0
0 5 10 15 20 0 5 10 15 20

More examples with
complex models/
controllers -

> 26

Buck converter with rule-based switching
controller - forced to overvoltage

32

24

Two cars at an intersection, 8-D

22

estimation
Dotted: the other car’s position
estimation

dynamics, complex hybrid MPC T
controllers, each car has partial |
information of the other * Black: falsifying trajectory
* Yellow: simulations with random noise &
10 disturbance (no violation)
0 More complex specification including a
R =) deadline
” D(-T € Xsafc) A O[O,T]D(-’I: € Xtargct)
Car2 *
-50 b . ‘ — : | 12:
? ¥ I O VAR R R z] .

{ Dashed: ego position
m

!
{3

So far, we have

known & simple
(can be uncertain)

» Plant
n g
CUT < Sensor <
unknown &

known & simple

complicated (can be noisy)

known & simple
(can be uncertain)

Yet, we want

A4

Plant

Vision-based CUT Camera

A

unknown &
complicated

complicated
(can be noisy)

Vision-based CUT can be a modular
design or an end-to-end controller..

{

Searching for falsifying noise
(adversary) in the semantic (state)
space instead of image space

known & simple \

(can be uncertain) “n»

g

v

Plant noise

N

known & simple

unknown &
complicated

62

known & simple
(can be uncertain) “w”

v

Plant noise

A

known & simple

unknown &
complicated

Learn an end-to-end vision-based neural network
controller from demonstrations generated by a state-
feedback MPC
e Input: low resolution image
e Output: control input u (i.e., acceleration along
x-direction)
e Camera model implemented in Matlab (or
CARLA)

I O
0

0 5 10 15 20

a vehicle moving on the 2d plane
dynamics along x-direction: double integrator
x(t+1) =x(t) + T *v(t)
v(t+1) =v.(t)+T*u(t)
acceleration c is the control input
dynamics along y-direction:
constant velocity + bounded disturbance w

y(t+1) = y(6) + 7 (v, (&) + w(t))

63

Randomly perturbed images

Adversarially perturbed images with
our falsification algorithm (similar
perturbation magnitude)

|
I
1

64

z=9(x)

Nonlinear system — Koopman over-approximation
— +
+
xT = f(x,u) x =Cz z"€Az+Bu+W
Hard l Easy
Inner approximates
Backward Reachable Set =~ €= == == == = == Backward Reachable Set
Xt Zt

Two key ingredients:
- Koopman over-approximation (KoA): a simulation-like relation between the
original system and Koopman-inspired abstraction

- Implicit inner-approximation Z of target set X where {x| ¥(x) € Z} € X.

P(z)

Balim, Aspeel, Liu, Ozay, L-CSS’23

65

z = P(x)
Nonlinear system — Koopman over-approximation
— +
+
xT = f(x,u) x =Cz z"€Az+Bu+W
Hard l Easy
Inner approximates
Backward Reachable Set =~ €= == == == = == Backward Reachable Set
Xt Zt

Some properties:

Any lifting function 1 including x in its coordinates can be used;
The Koopman over-approximation is learned from data;

If we can estimate local Lipschitz constants, can improve computation further by
updating the linear representation locally

Forced Duffing Oscillator

— H|B
Our Method
1.0 A Target Set

Balim, Aspeel, Liu, Ozay, L-CSS’23

66

z = (x)
Nonlinear system — Koopman over-approximation
C— .
xt = f(x,u) x=Cz zt € A;z+ Bu+ W, ifx €D

Hardl l Easy

Backward Reachable Set Backward Reachable Set
Xt Zt

Inner approximates
* L8 B B N |
Single linearization is not enough:

- Different over-approximations are learned over local subdomains (leading to a
PWA system) for better accuracy:

- Experiments show that to obtain BRSs with similar sizes, the Koopman over-
approximation requires less pieces than direct linearization (hybridization).

Why do we need hybridization in the lifted space? See Liu, Ozay, Sontag IFAC

W(C’23 paper on non-existence of linear immersions for systems with multiple

omega limit sets

Forced Duffing Oscillator

— H|B

Our Method
1.0 A Target Set

Inverted Pendulum

T
0.4

— H|B

Ours y(x) = (x, sin(6))

> 7\ Ours y(x) = x
Target Set

= Trajectory

24

—4

0 1 2 3 4

6
Balim, Aspeel, Liu, Ozay, L-CSS’23

67

Koopman-Inspired Safety Control for Unknown Nonlinear

Systems
Forced Duffing Oscillator

Z - lp (x) B | l ﬁ — gjl?r Method
N C t — 0 mes Target Set
4

—— Trajectory
BRS

50 - o Target Set

21 e Current State

Backw %0

0.2 04
150 A

Single linea

200 A

- Different
PWA syst ___ |
- Exp
app ' ' ' . .
Why d 0 50 100 150 200 250
tomorT _ .
with multiple omega limit sets

t T T T T
0 1 2 3 4

0
Balim, Aspeel, Liu, Ozay, L-CSS’23

Key takeaways:

Zonotopes and constrained zonotopes
for backward reachability 2
applications in synthesis and
falsification

A new framework: synthesis-guided
falsification:
— Leads to explainable counterexamples
— Works with blackbox controllers (code)

— Extends to vision/perception-based control
or end-to-end learning controllers

An interesting connection between
adversarial examples in machine
learning and those in decision-making

We can also do backward reachability
for nonlinear systems using liftings

Machine learning:

“panda” “gibbon”

Adversarial examples occur at
decision boundaries in classification

Decision making (obstacle avoidance):

(— Controller 1L r—— Controller 2:

‘ j— ‘ —

_Adversarial examples occur at decision boundaries

i.e., discontinuities of the controller

69

* An optimization problem

minimize fo(z)
subject to fi(x) <0 foralli=1,...,m
hi(x) =0 foralli=1,...,p

is an LP problem if f; for i=0,...,m and h; for i=1,...,p are affine
functions. An LP is typically written in the following form:

minimize, ¢

subject to Ax <b
Cr=d

In other words, an LP problem is an optimization problem whose objective function is
linear and feasible set is defined by a polyhedron.

