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Plant Autonomy
(with a model) software

Whitebox system:
Plant + software

N
g

Correctness
proof

Specification ¥

Verification

—
N

Counterexample

PROS:
* Strong guarantees

CONS:
* Hybrid system verification is
computationally very hard
* Autonomy software = up to
millions of lines of code (loc):
= hard to model

= hard to scale
Mars curiosity rover: 5M loc
Boeing 787 flight software: 15M loc

F 35-fighter jet: 25M loc
Average modern high-end car: 100M loc



Alternative #1: Correct-by-construction

(control) synthesis
Partial whitebox system:

Plant (3? Software) Specification

N —
e N

Software with Proof of

| Plant Autonomy corre.c’Fness gua.rantee impossibility
(with a model) software + validity domain

PROS:

e Strong guarantees

* Avoids the complexity induced by software
* “Explains” fundamental limits (impossibility)

Whitebox system:
Plant + software Specification ¥

computationally even harder
/ \ * Limited specs; spec correctness &

Correctness Counterexample completeness is more crucial
proof * Almost no synthesis approach for perception
or learning components

CONS:

Verification « Correct-by-construction synthesis is







Alternative #1: Correct-by-construction

(control) synthesis

Partial whitebox system:
Plant (37 Software)

N
/

Software with
correctness guarantee
+ validity domain

Specification

Proof of
impossibility

Putting “correct” and automatically
synthesized software on a car is feasible
There were failures but having mathematical
models and formal assumptions help detect
failures

* We realized that the model was missing

actuator delays

Conservativeness due to not looking ahead

i@@ Q)

€3
Motivated future work on safety with learned
models, delays, and predictions



Alternative #1: Correct-by-construction ( x(t +1) = Ax(t) + Bu,(t) + Fd(t)
trol thesi
(control) synthesis u; (4 1) = u,(t)

X x(t+1) =Ax(t) + Bu(t — t4) + Fd(t) Taugid U2(t+ 1) =uz(t)

Saug = SXU™

| U, (E+ 1) = u(t)

« Goal: Find a set Cy, 4 € Sy, (ideally the maximal such
Caug ) SUch that if x,,,;, € Cg,, 4 then there exist u € U such
that x5, 5 € Caug (Caug is a controlled invariant set).



Alternative #1: Correct-by-construction
(control) synthesis

X x(t+1) = Ax(t) + Bu(t — t4) + Fd(t) Zaug: 4

T(x, Uq, ...,u,d)

(x(t+1) = Ax(t) + Bu,(t) + Fd(t)
U (t+ 1) =uy(8)

u(t+1) = uz(t)
Saug = SXU™

— AT Td pi—1
= ATax + 37 AT Bu,

Direct method

X

1. Dimension reduction
Taux: X7, (t+1) = A%, () + Bu(t) + A*Fd(b).

Z:aug ’ Saug

Dim=n+m:- 1,

T

Zaux ’ Saux
Dim=n

3. Lifting

2. Compute maximal
invariant set of X«

| U, (E+ 1) = u(t)

Theorem:

Any controlled invariant
setofthen+m- 1,
dimensional system X,,q
can be obtained from that
of the n dimensional
auxiliary system X, -

Caug )

LI

10,000
—e—Proposed Method

——Direct Method

1621.7

1,000

=
o
o

Time Cost
[N
o

3.046

40
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Dimension



Alternative #2: Falsification

Blackbox system:

Plant + software

Plant
(with a model)

Autonomy
software

Specification

N
e

Inconclusive

Falsification

—
o~

Counterexample

PROS:

Whitebox system:
Plant + software

N
g

Correctness
proof

Specification ¥

Verification

—
N

Counterexample

Can handle arbitrarily complex models (plant
+ software) including learning-based
components

Industry-adopted tools (e.g., Breach, S-Taliro)

CONS:

Weaker conclusions
No explanation of the counterexamples:
= can give “trivial” counterexamples if
assumptions are not modeled carefully
® jsit a hardware (plant) limitation or
software bug?



Alternative #2.5: Synthesis-guided falsification

Blackbox system:
Plant + software

Falsification

e

Inconclusive

Specification

—
N

Counterexample

System:
Whitebox plant +

Blackbox software Specification

Synthesis-guided

Falsification

Inconclusive Counterexample
+ explanation
o
1= i _____ |
| |
| |
| |
dﬂ_’ Plant ﬁ"y# ¥
| » |
| |
| |
| |
| |
[ CUT | |1
| B |

* SUT: system under test; CUT: controller (autonomy software) under test - 9z, Univ. of Michigan




a typical
result with

our
falsification
algorithm




Underlying tool in verification:
Forward reachable sets (FRS)

Underlying tool in synthesis and synthesis-
guided falsification:

Backward reachable sets (BRS)

11



Closed-loop system:

Xe41 = [ (xp, We)
Wt € W

X; = Post(X,)

X, = Post(X;) /

Typical verification problem:

Given a set of initial states X;, an
unsafe set X,;, and a time horizon
T, prove or disprove that for all

Xo € Xy, forall t € [0,T] and for
all wo.r—; € WT, we have x; & X,,.

Reachability [Girard 2005, Kurzhansky & Varaiya 2011]
Also used in constructing symbolic models (abstractions)

12



Closed-loop system:

Xe41 = [ (xp, We)
Wt € W

Typical verification problem:

Given a set of initial states X;, an
unsafe set X,;, and a time horizon
T, prove or disprove that for all

Xo € Xy, forall t € [0,T] and for
all wo.r—; € WT, we have x; & X,,.

Outer-approximations

can be used to prove
safety

X; = Post(X,)

X, = Post(X;)

/

13




Backward Reachable Sets (BRS)

Control system:

Xp (target set)
Xey1 = f (e Ugy We)

us €U
WtEW

14



Backward Reachable Sets (BRS)

Control system:

Xp (target set)
Xey1 = f (e Ugy We)

us €U
WtEW

* Specification:
e Reachability [Bertsekas & Rhodes 1971]
e Safety [Bertsekas 1972]

 Temporal logic spec Building block:
[Chen et al. 2018] BRS computation

15



Control system:

Xp (target set)

Xe+1 = f(Xe, U, W) X1 /
u, €U C CPre(X,)

WtEW

* Specification:
e Reachability [Bertsekas & Rhodes 1971]
e Safety [Bertsekas 1972]
* Temporal logic spec
[Chen et al. 2018]

Inner-approximations can

be used for correct-by-
construction control

16



Closed-loop system:
xt+1 — Axt + BWt
Wt eWw

Control system:

xt+1 — Axt + But ~+ EWt
ur €U
wy €W

Post(X) ={Ax+Bw|xeX,weW}
= AXDOBW

CPre(X) = {x | Ju:Vw: Ax + Bu+ Ew € X}
= Proj, {(x,u) | Ax + Bu®EW < X}

If A is invertible:

=AY (X © EW & —BU)



e Set representations (and their complexity)

* Operations on the sets:
— Affine transformation
— Projection
— Intersection
— Minkowski sum
— Emptiness check
— Membership check



hyperplane: Py, = {x | a’x = b} CR"™, where a € R", a # 0, and b € R

halfspace: Pns = {x | alx < b} CR"™, where a € R”, a # 0, and b € R
om, cix =d;, i = 1,...,p},

polyhedron: P = {x | a]Taf b, 1,..
Ax < b, Cx = d}, or, equivalently

< J
alternatively, in matrix form P = {x
P ={x| Az < b},



hyperplane: Py, = {x | a’x = b} CR"™, where a € R", a # 0, and b € R

halfspace: Pns = {x | alx < b} CR"™, where a € R”, a # 0, and b € R
om, cix =d;, i = 1,...,p},

polyhedron: P = {x | a]Taf b, 1,..
Ax < b, Cx = d}, or, equivalently

< J
alternatively, in matrix form P = {x
P ={x| Az < b},

zonotope: Z = {z € R" |z =c+ > &g, —1 < o; <1}, wherec,g,...,9, € R™
The point c is called the center of Z; g1, . .., g, are called the generators of Z. We denote
a zonotope as Z = (¢, < g1, .-, 9p >).

hyperbox: H = {x € R" | z; € [l;,u;], i =1,...,n}, where ly,...,l, and uq,...,u, are
real numbers corresponding to lower and upper limits for each coordinate. Hyperboxes are
usually denoted as cross-products of intervals, i.e. H = [l1, u1] X ... X [l,, uy].

20



Intersection

c=cHnc®

Minkowski sum

Linear (affine)
transformation

Hyperbox
[|1,u1] X..X [Inlun]

Not a box!

Zonotope
(C, <g1, orny gp>)

Not a zonotope!

(e 4 < gV

2
g, g2, g >)

(LC, <Lg1, . Lgp>)

Polytope V-rep
COnV({Vl; "'Ivk})

Polytope H-rep
Ax<b




Intersection

c=cHnc®

Minkowski sum

Linear (affine)
transformation

Hyperbox
[|1,u1] X..X [Inlun]

simple min-max:
l; = max(I{®), 12)
u; = min(u;®, u;?)

simple algebra:
| = 1.4+ .2)

u; = ui(1)+ ui(z)

Not a box!

Zonotope
(C’ <g1, orny gp>)

Not a zonotope!

(e 4 < gV

2
g, g2, g >)

(LC, <Lg1, . Lgp>)

Polytope V-rep
COnV({Vl; "'Ivk})

Polytope H-rep
Ax<b




Intersection Minkowski sum ) )
Linear (affine)

C=cYnc® C=cYqgc® transformation
A A AR
’ ’ u; = min(ui(l), ui(Z)) u; = Ui(l)"' Lli(2)
( C’ngn:f-c.c')’pgepﬂ Not a zonotope! (C(;:(;? ;;?11;!) (Lc, <Lgy, ..., Lgp>)
comttnid) | 5 Conv(() + 7)) | Convl{vs,.. )
L

Vconcatenation: * guter-approx. when
C@ is eo-norm ball:
1

Polytope H-rep | [A(D) - b(h)
Ax<b A= (@)

Ax < b+ | Al|oc€

1

AN

% Representations might be redundant, reductions are possible. Radius of the ball

J ﬁ In theory do not scale well with dimension n, in practice it is OK.

23



Membership check
Is point x in C?

Emptiness check
Is C the empty set?

Hyperbox simple comparisons: Non-empty iff
[l,uq] x ... x [l,,,up,] |, < x,< u; foralli? ;< u; for all i
Zonotope linear program (LP)

(CI <g11 LY gp>)

poly-time

Can’t represent empty sets

Polytope V-rep
Co nv({vll "'Ivk})

linear program (LP)
poly-time

Can’t represent empty sets
(trivial empty vertex set)

Polytope H-rep
Ax<b

simple algebra:
Ax < Db?

linear program (LP)
poly-time

24



Other important operations:

— Containment check (see Sadraddini & Tedrake’19), Minkowski
difference, complexity reduction

Approximate (inner or outer) set computations when exact
operations are hard
Many other set representations:
— Constrained zonotopes, hybrid zonotopes, polynomial zonotopes,
AH-polytopes, star sets, ellipsoids, ...
Software packages for manipulating sets:
— Matlab MPT3, Python polytope, Julia JuMP

Reachability software:

— FRS: CORA, JuliaReach, SpaceX, dReach, etc. (see
https://ieeecss.org/tc/hybrid-systems/tools)

— BRS: HIB, MPT3



https://ieeecss.org/tc/hybrid-systems/tools

* Methods/tools (far from being complete):

 HIB , interval analysis ,
polynomial optimization , linear
optimization , etc.

* Challenge: scalability (even for linear systems):

Xty1 = Axy + Buy + wy Projection is difficult
us € U =({u | Hyu < hy} for H-Reps
we €W =|{w | H,w < h,,}
Xo =|{x | Hyx < h,} Xi+1 = Projy {(x,u)

| Ax + Bu+ EW < X}

Polytopes in
half-space representations
(H-Reps)

26



Can we use zonotopes to represent X, ?

e Zonotope: { GO +c | O € [-1,1]" } =
* Advantages:

(G, c)

Generator
representation
(G-Rep)

» Affine transformation (projection), Minkowski sum are easy

* Order reduction (for outer-approximations)

Xk+1 — AXk @ BW

27



Can we use zonotopes to represent X, ?

e Zonotope: { GO +c | O € [-1,1]" } =
* Advantages:

(G, c)

Generator
representation
(G-Rep)

» Affine transformation (projection), Minkowski sum are easy

* Order reduction (for outer-approximations)

* For backward reachability, there lack efficient algos for:

* Minkowski difference
* Order reduction (for inner-approximations)

Xk+1 — AXk @ BW

Xpr1 = A1 (X, © EW @ —BU)

8



o Efficient inner/outer-approximations of the Minkowski
difference when the minuend is a zonotope — LCSS’22

* A zonotope order reduction technique (for inner-
approximation) — LCSS’22

* A scalable BRS under-approximation algorithm —
LCSS’22

* Extensions to constrained zonotopes and nonlinear
systems (with some results on complexity and
approximability) — EMSOFT’22



e X, =(G,c), W = cvxh(lVy,)

* Step I: over-approximate EW by (G diag(«a), c')

a, ¢’ can be found by solving a linear program

#variables = O(MN + n)

#constraints = O(MN + Mn) M: #vertices in Vi

n: dimension of X,

N: #columnsin G

* Step II: X;, © EW < (G, c) © (G diag(a), c’)
= (G diag(1 — a),c — ¢')

Step Il is just G-Rep manipulation

30



e X, =(G,c), W = cvxh(lVy,)

* Step I: over-approximate EW by (G diag(a), c’)
a, ¢’ can be found by solving a linear program

. N : . .
ming o ¢ Yoy by n: dimension of X

S.t. ‘v’wj eV:.c+ Zil Hijg,- = ij M: H#vertices i.n VW
6| <a;<1,i=0,1,...N N: #columnsin G

* Step II: X;, © EW < (G, c) © (G diag(a), c’)
= (G diag(1 — a),c — ¢')

Step Il is just G-Rep manipulation

31



* Comparison

Evaluation with Random Instances

10*

© min-out
© Sadraddini

* H-Rep manipulation .

[Althoff 2015]

* /Zonotope
containment
[Sadraddini &
Tedrake 2019],
[Raghuraman &
Koeln 2022] if W has
a G-Rep

P
o
N

cpu time (s)

dimension ny

mean min max

w/vyrm

1.0017

0.9900

1.3856 |

(V/V)m

0.9678

0.8372

1.7498

32



* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj  goenerators
{lg1, 92, -, gl €} reduces by one




* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj  goenerators
(lg1, 92, -, 9n ), €) > reduces by one

* Two questions:
* Which [gi,gj] to “combine”?

* Replace [gi,gj] with g; + gj or gi — gj?



* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj  goenerators
(lg1, 92, -, 9n ), €) > reduces by one

* Two questions:
* Which [gi,gj] to “combine”?

Pick small or closely- Jian 9gj
aligned generators : > Ji

* Replace [gi,gj] with g; + gj or gi — gj?

35



* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj  goenerators
(lg1, 92, -, 9n ), €) > reduces by one

* Two questions:
* Which [gi,gj] to “combine”?
* (i,7) = argmin lg; || 5], Gin— g

Omin '

+ (0,J) = argmin gyl |lg [, 222 S

* Replace [g;, gj| with g; + g; or g; — g;?



* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj  goenerators
{lg1, 92, -, gl €} reduces by one

* Two questions:
* Which [gi,gj] to “combine”?
* (i,7) = argmin lg; || 5], Gin— g

Omin I

+ (0,J) = argmin gyl |lg [, 222 S

* Replace [gi,gj] with g; + gj or g; — gj?
gi+9;
Use the one that is larger other

and “more perpendicular” generators
to the other generators

9di — gj

37



* |[dea: replace [gi,gj] by

gi T 9jOorgi—Jgj  goenerators
{lg1, 92, -, gl €} reduces by one

* Two questions:
* Which [gi,gj] to “combine”?
* (i,7) = argmin lg; || 5], Gin— g

Omin '

+ (0,J) = argmin gyl |lg [, 222 S

* Replace [g;, gj| with g; + g; or g; — g;?

* Replace with g; + g; if NED other
16 (g: + g)ll2 = 16T (9: = g1 Cenerators
and g; — g; otherwise

9di — gj



4.5

3.5

2.5

Order Reduction

#generator=21

size ratio

dimension ny 5
(before reduction) -

0.2

0.3

0.4

0.5

0.6

0.7 0.8 0.9

' | dE £ |

.

. ([‘reduced_
r —

Voriginal

)

1

Ny

\—MO

s 5 4 B B T B

order N/ny (before reduction)
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cpu time (s)

Example: Aircraft Position Control
* Longitudinal: x in 6D, u in 2D,
e Lateral: x in 6D, u in 2D

350
300

T T T TT

min-out (with order reduction)
Sadraddini (with order reduction)
-------- min-out (no order reduction)

| |s+++++++ Sadraddini (no order reduction)

|
|
order reduction stans\ml

|
|
I
|
|
|

10 20 30 40 90

T T T T T T

min-out (with order reduction)

o
.
o
-

Sadraddini (with order reduction)
min-out (order reduction afterwards) ==

10

20 30 40 50 60 70

Fig. 3: Backward reachable set computation for lateral dynamics. Left: computation time. Right: set volume.

1000

800

600 [

400 -

200

T T T T T

= min-out (with order reduction)
= Sadraddini (with order reduction)
""""" min-out (no order reduction)
------ Sadraddini (no order reduction)

':.'.,.:.:.'m-

"]

iy

—~
.

T

it henes
s

PSPPSRI

.

80

min-out (with order reduction)
= Sadraddini (with order reduction)
-------- min-out (order reduction afterwards)

20

40 60 80 100 120

k

140

160
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» Zonotopes are not as rich as polytopes in
terms of expressiveness

— How about constrained zonotopes?

* So far, applicable to linear systems

— How about nonlinear systems?



e System: X1 = f(xe, up) +wy
u €U, wrewWw

If no A, b the set
is just a zonotope

Target set, control set Constrained zonotope -
XO = <GO) CO;AO; bO) CZ {Ge tc | ”9”00 — 1) b}
U =(Gy, ¢, A, by) CG-Rep of CZ: (G, c, A, b)
Affine map

are constrained zonotopes Affine space
=Lyc
Safe set Unit box

(01 40 = b}
Xsate = {x | Hx < a}is a polyhedron {0110llc =1} @.space X-space

Disturbance set
w =(a,,c,)is azonotope

42



: . — For nonlinear systems, replace W
* Linear system: Xip1 = Axy + Buy +wy by W (B £ wg/ere T Confains Al

U; € U, W E 124 / linearization error

* BRS computation: Xppy = Pre(X,) = A2 (X, e@@ =BU) N Xae

Target set, BRS, control set

— Assumptions Set operations
Xie = (G, € A, bic) on sets involved
U = (Gy, €y, Ay, by)
are constrained zonotopes Easy to compute for

constrained zonotopes,
via CG-Rep
manipulation

Disturbance set
w =(a,,c,)is azonotope

Safe set Minkowski difference
Xsate = {x | Hx < a }is a polyhedron XOUY={xI{x}PYcX} ?

43



Theorem 1.
Given CZ = (G, c,A,b) and Z = (G’, ¢'), no algorithm finds a polynomial-size CG-Rep
of CZ © Z in polynomial-time (unless P=NP).

Theorem 2.

We can findaset CZ4 € CZ © Z by solving a linear program, whose # variables and
# constraints are polynomial in the size of CZ’s and Z’s representations.

Theorem 3. (ERep not unique

Every constrained zonotope CZ has a “rich” enough CG-Rep s.t. our under-

approximation is exact, i.e., CZ4 = CZ © Z. There is a trade-off between

accuracy & efficiency, which can be
“tuned” via CG-Rep selection

44



[ Exact

Constrained Zonotope 107
[_1Zonotope
HJB

KXunsate

Less conservative then
zonotope-based approach

Deal with constraints
(convex or nonconvex)
More scalable than HIB

WiTarget set

I Obstacles

—HJB

il Constrained Zonotopes

T2

_ . _10D
| nonlinear 7 nonlinear
" Noriconvex Nonconvex
X
safe " . X safe
n k Splitting Scaling HJB
Example 2 2 100 N/A 56.1s — 45.2s
Example 3 10 10 226.7s N/A (Memory error\
Example 4: 3 478.9s 282135 |y temory error |
Convex constraints (k = 25) (k = 400) , y |
N Example 4: 320 | 1564.1s NA | 45216s |
onconvex constraints ' .
Example 5 10 340 951.6s N/A I Memory error, '

HJB: hard to scale

45



How to use backward reachable sets (BRS)
in falsification?

46



=TT J{ """ ' Falsification problem: Given a plant model, a (blackbox)
controller and a specification, can we find an initial
Wo—| Plant —T>¥yF¢ condition and an external input sequence (disturbance
sequence) so that the specification is violated?

S

Assumptions:

 “simple enough” plant model

C o S X = f(x:, Up, W
Zo: initial condition t+1 = f (e, ug, we)
u: control input  “simple enough” specification: we will focus on

y: output safety (invariance) and reachability specifications

w disturbance (external input)

©: specification

“simple enough”: almost anything for which you can
compute the validity domain (i.e., winning set) of the
synthesis problem

Chou et al. EMSOFT 18



I ' Approach:

I I
I I .
Wa—s{ Plant —T>y¥ ¢

S

w disturbance (external input)
Zo: initial condition
u: control input
y: output
©: specification
Plant model:

Xer1 = f (e, up, W)

|deal result of the synthesis problems:

Unsafe Synsafe

Ignore the controller, focus on safety-critical part of
the spec.

Given the plant model and safety (invariance) part
Xsafe Of the spec, consider the safety and dual
reachability synthesis problems:

Invariance in Xqz

Reachability to
Xunsafe :_'Xsafe

N. Ozay, Univ. of Michigan

48



w_l_> Plant _ﬁy# ¥

Invariance in Xqz,

S

w disturbance (external input)
Zo: initial condition
u: control input

J output Reachability to T w,

©: specification Xunsafe ==X safe X1
Plant model:

Xer1 = f(xe, ue, we) - - l/VQ

| |

|deal result of the synthesis problems: | |

Unsafe Synsafe I xO [

| |

' Xipit !

N. Ozay, Univ. of Michigan 49



W——>| Plant _r>y#()0

w disturbance (external input)
Zo: initial condition
u: control input
y: output
©: specification
Plant model:

Xer1 = f (e, up, W)

|deal result of the synthesis problems: )

Unsafe Synsafe

l Approach:

Ignore the controller, focus on safety-critical part of
the spec.

Given the plant model and safety (invariance) part
Xsafe Of the spec, consider the safety and dual
reachability synthesis problems.

Comments:

* Synthesized X;,, is the validity domain W of the best
safety controller (i.e., the maximal invariant set)

* Synthesized X, is the validity domain of “best”
disturbance policy

* OK to use approximate computations/models

Can use any synthesis approach: iterative polytopic

computations, Hamilton Jacobi Bellman, control

barrier functions, abstractions

N. Ozay, Univ. of Michigan 50



* Hypotheses:

— Hard initial conditions: boundary of the control invariant set

(small # of safe control inputs)

— Hard external inputs: solutions of a dual reachability problem
(when out of S, pick best effort input to get closeto S,,,/)

(i)
1

System

>
u

Controller

/I Blackbox

T\

Input generator:
— if x € Sqyal. d = g(x)
else d = g°(x)

51



Some example “bugs” found in the
open-source autonomous driving
software CommaAl (using its
python source code directly!)

Similar results with Stanford DARPA
Grand Challenge code (C++ code)

Can use the synthesis artifacts for
“sandboxing” (supervising)
complex controllers

Our software is available online:
integration of several driving
software with car dynamics models

Can handle any (learning-based) state-
feedback controller (e.g., NNs, RL, etc.)
—> so far no perception modules

Distance headway (m)

Deviation from centerline (m)

D
o

N
o
T

N
o
T

o

Adaptive cruise control

— Unsupervised
— Supervised

o
[

o
o

'
—_
O [T

o
T

| |
5 10 15
Time (sec)

Lane keeping

- |=——Unsupervised

—— Supervised

Time (sec)
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known & simple
(can be uncertain)

Plant

A\ 4

n g
CUT < Sensor <
unknown & known & simple
complicated (can be noisy)

an abstraction of a

complex perception
module

Plant model including sensor:
Xer1 = f (e, U, wy)

Ve = g(x¢, V)

d Given:
= A gray-box system
"  Anunsafe set X, jsafe, and an initial set Xj,it
[ Find one adversarial example:
=  Atrajectory xg, X1, ..., X1
=  External inputs wy, wq, ..., Wr_1, Vg, V1, «or) UT—1
" Xp € Xinit and Xt € Xunsafe
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known & simple
(can be uncertain)

»  Plant
T g
CUT < Sensor <
Wr_1,Vp_
unknown & known & simple r-1%T-1
complicated (can be noisy)
an abstraction of a
complex perception
module
Plant model including sensor: A
. W1, V1
Xer1 = f Qe Up, W) X
1
)

= .
y o



Key Idea
Verification: compute = U Xy

Xo = Xunsafe
Xi+1 = Pre(Xy): = Xp U {x|3w, v: f (x, 7(x, v), W) € X}
NG ~ J
Closed-loop dynamics: complex due to m,
even if f itself is simple (precisely why
verification is hard)

X unsafe

Synthesis-guided Adversarial Example Generation



Key Idea
Synthesis: compute PRIENER I VEI( N=EIog Bl R = U )?k

AN

)EO = Xunsafe ~ ~ ~
Xpr1 = CPre(Xk): = X U {x|Vu: 3Iw: f(x,u,w) € X}
g /

~

Open-loop dynamics: simple, independent of T
* The adversarial examples are trivial (generic)
* Noise v is not essential for violation

2-player
backward

reachable set
(perfect info)

X unsafe

Synthesis-guided Adversarial Example Generation




Key Idea

Synthesis guided Falsification: compute

. CX =42 —player backward reachable set

Y= CPrey()_(k): = {y|Vu:3Ax,v:y = g(x,v), f(x,u,w) € X}

.« Vi+1 € Yig1 U1 = T(Vi+1),

Xp1 = Pre()_(k|Yk+1): = {x|3w, v: Y41 = g(x, V), <_independent
fOou,w) €% ofm!

, Where

£ W N R

2-player
backward Xunsafe

reachable set
(perfect inifo)

Synthesis-guided Adversarial Example Generation



Key Idea

Synthesis guided Falsification: compute

. CX =42 —player backward reachable set

. Y11 = CPre,(Xy): From where it is challenging to satisfy the spec
“query at the challenging region of the state space

Xpe+1 = Pre(Xi|yx+1) 1-player backward reachability _independent
based on the query result of m!

, Where

BwNop

2-player
backward Xunsafe

reachable set
(perfect inifo)

Synthesis-guided Adversarial Example Generation



known & simple
(can be uncertain)

» Plant
n g
CUT < Sensor |«
unknown & known & simple
complicated (can be noisy)

an abstraction of a

complex perception
module

Plant model including sensor:
Xer1 = f (e, up, we)

Ve = g(x¢, v¢)

Moving down stream

Obstacle avoidance: Needs to avoid obstacle

Can go left or right (controller decisions)

Two different controllers for this task
(unknown to the algorithm):

X s
o
15 Ujusuy
10
5
SRR
0 5 10 15 20
Controller 1 Controller 2
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Interesting insight: falsifying “sensor
noise” trajectories at the discontinuities
of the controller

known & simple
(can be uncertain)

*| FPlant 20 Hiease e deses IFFFFIITELE ' 20 [HAAAAR PR A EE & KRS T \
1 Kinit (X ! I ALinit 1
1200000000880 0 0900000 e =
T 4 UTUALS U UgU3
15 sux\wa,
CUT < Sensor |« ::
10 2 10
unknown & known & simple eclse T/ dual
complicated (can be noisy) 5 eececessss perfect 5
LN N N N NN N NN X
an abstraction of a Teseeseseeeeeeesl el e W Xunste
complex perception 0 2090009009000 900 0 ooooooooooocoo?fl
module 0 5 10 15 20 0 5 10 15 20
|
. . . oglmmmmmmmmssmssssmnooa . 20 !
Plant model including sensor: 200 x, - ' Xinit :
0000000000000 00000 ¢ ! CEEESISIIE S SN EEEE ...,.' Y o
AN e N
— UIUAL ujusu3
Xep1 = f (g Up We) lipeees U X, 15
oo’
LN
ve = g(x¢, vt) 10 .3 10
LN NN J
LR NN 17dual
5 oot s20 8 s W pertect .
LN N N NN NN NN
0000000 CGOOSOSSOS Xu.nsa.fe X \saf
Ioooooooocoooocool Fe 0000000000000 Laale
0 9000000000600 0000 ...............:I

‘ 0
0 5 10 15 20 0 5 10 15 20



More examples with
complex models/
controllers -

> 26

Buck converter with rule-based switching
controller - forced to overvoltage

32

24

Two cars at an intersection, 8-D

22

estimation
Dotted: the other car’s position
estimation

dynamics, complex hybrid MPC T
controllers, each car has partial |
information of the other * Black: falsifying trajectory
* Yellow: simulations with random noise &
10 disturbance (no violation)
0 More complex specification including a
R = ) deadline
” D(-T € Xsafc) A O[O,T]D(-’I: € Xtargct)
Car2 *
-50 b . ‘ — : | 12:
? ¥ I O VAR R R z ] .

{ Dashed: ego position
m

!
{3




So far, we have

known & simple
(can be uncertain)

»  Plant
n g
CUT < Sensor <
unknown &

known & simple

complicated (can be noisy)

known & simple
(can be uncertain)

Yet, we want

A4

Plant

Vision-based CUT Camera

A

unknown &
complicated

complicated
(can be noisy)

Vision-based CUT can be a modular
design or an end-to-end controller..

{

Searching for falsifying noise
(adversary) in the semantic (state)
space instead of image space

known & simple \

(can be uncertain) “n»

g

v

Plant noise

N

known & simple

___________________________________________________

unknown &
complicated
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known & simple
(can be uncertain) “w”

v

Plant noise

A

known & simple

___________________________________________________

unknown &
complicated

Learn an end-to-end vision-based neural network
controller from demonstrations generated by a state-
feedback MPC
e Input: low resolution image
e Output: control input u (i.e., acceleration along
x-direction)
e Camera model implemented in Matlab (or
CARLA)

I O
0

0 5 10 15 20

a vehicle moving on the 2d plane
dynamics along x-direction: double integrator
x(t+1) =x(t) + T *v(t)
v(t+1) =v.(t)+T*u(t)
acceleration c is the control input
dynamics along y-direction:
constant velocity + bounded disturbance w

y(t+1) = y(6) + 7 (v, (&) + w(t))
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Randomly perturbed images

Adversarially perturbed images with
our falsification algorithm (similar
perturbation magnitude)

|
I
1
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z=9(x)

Nonlinear system — Koopman over-approximation
— +
+
xT = f(x,u) x =Cz z"€Az+Bu+W
Hard l Easy
Inner approximates
Backward Reachable Set =~ €= == == == = == Backward Reachable Set
Xt Zt

Two key ingredients:
- Koopman over-approximation (KoA): a simulation-like relation between the
original system and Koopman-inspired abstraction

- Implicit inner-approximation Z of target set X where {x| ¥(x) € Z} € X.

P(z)

Balim, Aspeel, Liu, Ozay, L-CSS’23
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z = P(x)
Nonlinear system — Koopman over-approximation
— +
+
xT = f(x,u) x =Cz z"€Az+Bu+W
Hard l Easy
Inner approximates
Backward Reachable Set =~ €= == == == = == Backward Reachable Set
Xt Zt

Some properties:

Any lifting function 1 including x in its coordinates can be used;
The Koopman over-approximation is learned from data;

If we can estimate local Lipschitz constants, can improve computation further by
updating the linear representation locally

Forced Duffing Oscillator

— H|B
Our Method
1.0 A Target Set

Balim, Aspeel, Liu, Ozay, L-CSS’23
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z = (x)
Nonlinear system — Koopman over-approximation
C— .
xt = f(x,u) x=Cz zt € A;z+ Bu+ W, ifx €D

Hardl l Easy

Backward Reachable Set Backward Reachable Set
Xt Zt

Inner approximates
* L8 B B N |
Single linearization is not enough:

- Different over-approximations are learned over local subdomains (leading to a
PWA system) for better accuracy:

- Experiments show that to obtain BRSs with similar sizes, the Koopman over-
approximation requires less pieces than direct linearization (hybridization).

Why do we need hybridization in the lifted space? See Liu, Ozay, Sontag IFAC

W(C’23 paper on non-existence of linear immersions for systems with multiple

omega limit sets

Forced Duffing Oscillator

— H|B

Our Method
1.0 A Target Set

Inverted Pendulum

T
0.4

— H|B

Ours y(x) = (x, sin(6))

> 7\ Ours y(x) = x
Target Set

= Trajectory

24

—4

0 1 2 3 4

6
Balim, Aspeel, Liu, Ozay, L-CSS’23
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Koopman-Inspired Safety Control for Unknown Nonlinear

Systems
Forced Duffing Oscillator

Z - lp (x) B | l ﬁ — gjl?r Method
N C t — 0 mes Target Set
4

—— Trajectory
BRS

50 - o Target Set

21 e Current State

Backw %0

0.2 04
150 A

Single linea

200 A

- Different
PWA syst ___ |
- Exp
app ' ' ' . .
Why d 0 50 100 150 200 250
tomorT _ .
with multiple omega limit sets

t T T T T
0 1 2 3 4

0
Balim, Aspeel, Liu, Ozay, L-CSS’23



Key takeaways:

Zonotopes and constrained zonotopes
for backward reachability 2
applications in synthesis and
falsification

A new framework: synthesis-guided
falsification:
— Leads to explainable counterexamples
— Works with blackbox controllers (code)

— Extends to vision/perception-based control
or end-to-end learning controllers

An interesting connection between
adversarial examples in machine
learning and those in decision-making

We can also do backward reachability
for nonlinear systems using liftings

Machine learning:

“panda” “gibbon”

Adversarial examples occur at
decision boundaries in classification

Decision making (obstacle avoidance):

(— Controller 1L r—— Controller 2:

‘ j— ‘ —

_Adversarial examples occur at decision boundaries

i.e., discontinuities of the controller
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* An optimization problem

minimize  fo(z)
subject to  fi(x) <0 foralli=1,...,m
hi(x) =0 foralli=1,...,p

is an LP problem if f; for i=0,...,m and h; for i=1,...,p are affine
functions. An LP is typically written in the following form:

minimize, ¢

subject to Ax <b
Cr=d

In other words, an LP problem is an optimization problem whose objective function is
linear and feasible set is defined by a polyhedron.



