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Pole and Zero Assignment by Proportional Feedback
P. MURDOCH

Abstract—A procedure is described which enables specified poles
and zeros of a transfer function of a linear system to be obtained by
using proportional state feedback to two inputs in a restricted class
of problem.

INTRODUCTION

The problem considered is that in which it is desired to achieve a
specified transfer function between one input variable and one output
variable of a time-invariant linear system by the use of proportional
state feedback. The system has two inputs, the second input being
used only for positioning the zeros. The procedure is restricted to
systems in which the inner product of the relevant input and output
vectors is nonzero. For both zero and pole positioning, it uses
established results in modal control theory.

SysTEM DESCRIPTION
The system is deseribed by the equations
& =Ax + Bu+ Bu',y = Tz (1)

where r 13 an n-dimensional state veector, v and «’ are two-dimen-
sional input vectors, and

where u1 and u2 are scalar inputs, y is a sealar output, 4 and B are
constant matrices, and

B = [blib‘l]

where & and b: are n-vectors, and ¢7 is a constant measurement
vector.

The case considered is that in which ¢7b # 0. The system (1) is
controllable and observable.

PROBLEM STATEMENT

The problem is to find the state feedback gain vectors k7 and k.7

where
=[]
uw =\ |z
I %

so that the transfer function relating y to ;. has specified poles and
Zeros.

PROCEDURE

Step 1

We first determine &;7 to locate the zeros. Let k17 be a zero vector
_at this stage.
Using a result obtained by Brockett [1], the zeros of the transfer
function relating y to w are eigenvalues of the matrix

blcT
I — — ) (4 + baler7 2)
( chl>( + bafT) (2)
which may be written as
Ao + bokT (3)

where
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bl(JT
Ao =1 — —}:
0 ( chl) A (4)
blcT
bo= (1 - )b 5
° ( chl) ) ®)

We now check the pair (4e,bs) for controllability, using Gilbert’s
method, so as to reveal which eigenvalues are uncontrollable. A, has
the eigenvalue 0, which is uncontrollable through b, However,
provided that the other eigenvalues are controllable, we may use the
results of modal control theory, e.g., [2], [3], to determine %7 such
that the matrix (4o + bok27) has any (n — 1) specified eigenvalues
and the eigenvalue 0. The (n — 1) eigenvalues will be the zeros of
the transfer function. The eigenvalue 0 has no physical significance,
and arises only because the degree of the numerator of the transfer
funetion is (n — 1).

Step 2

The system poles will have been changed by the application of
feedback k.7, and we now determine k7 to locate the poles as re-
quired.

It is first necessary to check the pair ((4 + b2kaT),b1) for controlla-
bility. If this test is satisfied, /;” may be found by again using the
results of modal control theory [2], [3] to move the poles to any
desired locations. The feedback £,7 will have no effect on the zeros
which were established in Step 1 because this feedback is applied to
the input from which the transfer function is taken.

CONCLUSION

For a restricted class of problem, the procedure enables the poles
and zeros of the transfer function to be given specified values, and it
provides a check at each stage for the existence of a solution. Failure
of the test for controllability at Step 1 does not necessarily imply
that a satisfactory solution cannot be obtained if the uncontrollable
zeros have acceptable values. An observer may be used, if necessary,
to provide the feedback, and this will not affect the transfer function.
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On Determining the Zeros of State-Space Systems

W. A, WOLOVICH

Abstract—The zeros of a linear, time-invariant, state-space
system are defined, and a matrix rank test for determining their
locus is formally established and illustrated by example.

INTRODUCTION

The primary purpose of this correspondence is to present a state-
space matrix rank test which can be employed to determine the
location of the zeros of a linear, time-invariant, multivariable system.
The importance of this test in locating system zeros at s = 0 has
already been demonstrated in a variety of applications, e.g., in step
disturbance elimination studies [1], static decoupling {2], the design
of integral feedback and feedforward regulators [3], and in classifying
multivariable systems according to “type’ [4].
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TECHNICAL NOTES AND CORRESPONDENCE

PRELIMINARIES

We begin by assuming complete knowledge of the dynamical be-
havior of an nth order, m~input, p-output (with m and p no greater
than n), linear, time-invariant system in terms of the state-space
representation

() = Az(t) + Bu@); y@) = Cz(t) + E(D(@) 1)

with D = d/dt, the differential operator. In terms of (1), the (p X m)
rational transfer matrix 7'(s) of the system can readily be determined,
i.e., given (1),

T(s) = C(sI — A)B~1 + E(s), (2)

and given T'(s), any least order (n) state-space system of the form (1)
which satisfies (2) is called a minimal state-space realization of T'(s).

We now recall [5], [6] that any (p X m) rational transfer matrix
can be factored in either of two (nonunique) ways, i.e.,

T(s) = R(s)P.7(s) = Py(5)Q(s) (3)

with R(s) and P.(s) relatively right prime polynomial matrices in the
Laplace operator s and Po(s) and Q(s) relatively left prime polynomial
matrices in s [5]. In a recent report [7] it was shown that any
numerator of T(s), i.e., any (p X m) polynomial matrix E(s) or Q(s)
resulting from a prime factorization of T'(s), as in (3), is unimodular
equivaleni! to any other numerator of T'(s) and, furthermore, that a
zero of T(s) is any scalar s* in @, the complex field, for which the rank
of R(s*) (or Q(s*)), denoted as p{R(s*)}, over € is less than its
normal rank [8], [9), defined as p{ R(s)} over ®(s), the field of rational
functions in s. This notion of the zeros of T'(s) will now be extended
to include state-space systems as well, i.e., s* is a zero of (1) if and
only if it is a zero of T(s), as given by (2). In view of these pre-
liminaries, we can now state and establish our main result.

Tue MaiNn Resurt

Theorem: Any s* in € 1s ¢ zero of @ minimal state-space system of the
form (1) if and only if

[—3*1+A, B ]} o< I:—sI+A, B]
p c, 1008 | Bt ¢,  E@)

over ®(s). (4)

Proof: The proof of this theorem follows rather easily from the
results given in [7] and the following lemma which is due to Rosen-
brock [5].

Lemma: If (1) is a minimal realizaiion of T(s), as given by (2)
and (3), then

_ 0, o
_ B n—m; f]
[ T+ 4, ] |:0, P.(s), 1,,,j| and
G FeOT Lo R, o0

_—Py 07 0

0, Pols), Qs)

07 I b2 O
are all unimodular equivalent.

Proof: See (5, theorem 2.1, chapter 3, section 2].
By Rosenbrock’s lemma, it now follows that over ®(s),

—sI + A, B . Pc(s), Im -
”{[ c, E(s)]} ot {[R<s>, 0]} ®)

or that

_ B
P{I: $IC’+ * E(S):I} = n+ p{R(s)}, (6)

1 Two polynomial matrices of the same dimensions, such as R(s) and Q(s)’
are said to be (unimodular) equivalent if and only if UL(s)R(s)Ur(s) = Q(s) for
some pair {UL(s),Ur(s)} of unimodular matrices, i.e., nonsingular polynomial
matrices whose determinants are nonzero scalars in the real field &.
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i.e., the rank of the minimal system matrix [_SI +4, B ] i

C, E(s)
solely dependent on the rank of a numerator of T'(s). Since s* is a
zero of (1) if and only if p{R(s*)} over € < p{R(s)} over ®(s), it is
clear in view of (6) that s* is a zero of (1) if and only if (4) holds, thus
establishing the theorem.

REMARKS

A number of remarks are now in order. In particular, we have the
following,.

Remark 1: We first note that 5f p{ B and C} > mén(p,m) 2 r over
®, then the normal rank of |: SI;: 4 E]fs)
observation which directly follows from the results given in [10],
although the details associated with the formal establishment of this
fact will not be presented here. Under these conditions, the zeros of a
minimal state-space system can be found by simply determining
—s*l 4+ A4,

c,

E(s *\:l. To demonstrate, let us consider the following minimal state-

will be n + r, an

those s* which reduce the normal rank (n 4+ r) of I:

space system of the form (1), with

0 1 0 00 11 —9

a=11 -1 z2fB=|12lc=| )

0 1 -3 0 1 1
and E(D) = [0 O:I-

00

—sl+ A,
C,

Since B and C are both of rank r = 2, the normal rank of I:
B
E (s)] is 5 = n - r, and the zeros of this system are given by those s*

for which tbe system matrix

—s 1 o 00
1 —s*—=1 2 1 2

~sT+4, B
[s+’E*:|= 0o 1 —s*—3 0 1
G (%) 11 —2 00
-1 0 1 00

is singular. Therefore, since the determinant of the system matrix is
equal to —s* — 3, we conclude that the system has a single zero at
s = —3. To verify this observation in light of the results given in {7],
we first note that 7'(s) = C(sI — A)YB~! + E(s) can be factored as

1 —
R(s)P~1(s) with, for example, R(s) = [s _'1_ 12] and P(s) =
s24+3s—1, —2:—8 . o ~ '
[ —s, s+ 3 :| Since |[R(s)] = s + 8,s = —3 is the

only scalar in € which reduces the normal rank of the numerator
R(s), which confirms the fact that —3 is the only zero of the system.

Remark 2: In view of Remark 1, it is now clear that if p{ B and C}
> 1, then the minimal system (1) has a zero af the origin (s* = 0) #f

and only if
A B
p “:C E(O)]} <n4+r (7

It is of interest and importance to note that the determination of the
A B
rank of l: c E©)
equivalent to the determination of the presence or absence of any
system zeros at the origin of the complex plane, and as noted in the
Introduction of this correspondence, this test plays a fundamental
role in a variety of multivariable system applications [1]-[4].
Remark 3: We finally note that if a given state-space system is

(usually with E(s) = E, a constant matrix) is
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uncontrollable, unobservable, or both, then the uncontrollable and/
or unobservable “modes’ of the system will appear as “cancellable”
pole-zero terms in the transfer matrix of the system [10]. Rosenbrock
defines any such uncontrollable (unobservable) system modes as
input (output) decoupling zeros [5], although we prefer to call these
modes nonminimal zeros or nonminimal poles since they oceur only in
nonminimal systems and “cancel out” of both the numerator and
denominator of the transfer matrix of the system. In view of this
observation, we now note that any nenminimal zeros of a system do
not correspond to the defined (mintmal) zeros [?] which charactcrize the
transfer mairix of the system, although both the minimal and non-
minimal zeros of a system can be shown to reduce the normal rank of
a general (not necessarily minimal) state-space system matrix

—sl+ A, B . . .
C B | While the formal establishment of this latter
R s

fact is relatively straightforward and not unlike the prcof of our main
result, it does involve certain additional steps and notions which
would significantly lengthen this report. Furthermore, a more general
result can actually be obtained, i.e., by combining the results given in
[5]-[7], in view of the proof of our main result, it is not difficult to
show that the minimal and nonminimal zeros of any general differ-
ential operator representation P(D)z(t) = @(D)u(t); y(t) = R{Dz(t) +
W (D)u(t) are equal to those s* in © which reduce the normal rank of the

~P(s) QL) ]
Wis)

system maitrix i
R(s)
CONCLUSIONS

We have now shown that the zeros of a multivariable system of the
form (1) are given by those s* which reduce the normal rank of its
system matrix. The significance of this state-space matrix rank test
when s* = 0 was noted, and an example was presented to illustrate
the procedure. The distinction between minimal and nonminimal
system zeros was also discussed.
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On the Numerators and Zeros of Rational
Transfer Matrices

W. A. WOLOVICH

Abstract—The notion of a ‘‘numerator’ of a rational transfer
matrix is defined. The fact that any two numerators of the same
transfer matrix are equivalent is then formally established and
employed in the development of a number of equivalent definitions
of the zeros of a rational transfer matrix.
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INTRODUCTION

In the case of a scalar (single input/output) system characterized
by a rational transfer function,

Us) = o(sY (1

with #(s) and p(s) relatively prime polynomials in the Laplace

operator s; the zeros of the system [or {(s)] are defined as those
scalars s; belongmg to the complex field €, which “zero’’ #(s); i.e.,
s; is a zero of t(s) if, and only if,
s
i(s:) = (s:) =0 = r(s:). (2)
p(s:i)

It is thus clear that the zeros of #(s) are equal to the zeros of its
numerafor 7(s). Physically speaking, the zeros of a scalar system
represent those dynamical “‘modes” of the system that will not
appear at the system output when an appropriate set of initial
conditions is plaeed on the internal state of the system and an
appropriate input is applied. These are points that will be clarified
in our subsequent discussions.

It is of general interest to extend the notion of the zeros of a
scalar system to include the multivariable (multi-input/output) case
as well, and while some recent results [1], [2] have essentially re-
solved this extension via ‘‘different” definitions of the zeros of a
rational transfer matrix, some rather significant questions remain
unresolved regarding not only the equivalence of these definitions
but also alternative definitions and methods that can be employed to
determine the zeros of a multivariable system. The primary purpose
of this note will be therefore to resolve these questions, and we will
begin by defining a ‘“numerator’’ of a rational transfer matrix and
formally establishing the ‘‘equivalence” of any two numerators of
the same transfer matrix

TrE NUMERATORS OF T'(s)

We first note that any (p X m) rational transfer matrix 7'(s) can
be factored in either of two (nonunique) ways [1]-[3]; i.e.,

T(s) = Py~ 4(s)Q(s) 3)

with R(s) and P(s) relatively right prime (RRP) [1], [3], (Po(s) and
Q(s) relatively left prime) polynomial matrices of the appropriate
dimensions and P.(s)(Pq(s)) nonsingular over the rational field ®.

Definitton: Any (p X m) polynomial matrix R(s) or @(s) that
satisfies (3) will be called a numerator of T'(s).

Theorem: Any two numerators of a (p X m) rational transfer
matrix are equivalent; i.e., if R(s) and Q(s) are both numerators of
T(s), then

R(s)P.Y(s) =

Ur(s)R(s)Ur(s) = Q(s) 4)

for an appropriate pair { Uz(s), Uz(s)} of unimodular matrices.!
Proof: If T(s) = R(s_)Pc‘l(s) = R(s)P.7Y(s), both RRP fac-
torizations, then R(s) and R(s) are both numerators of T'(s) with

R(s) = R(s)P.Ys)P.(s). 5)

Since R(s) and P.(s) are RRP, there exists [1], [3] a polynomial
matrix pair {M (s),N(s)} such that

M(s)R(s) 4+ N(s)Pe(s) = I (6)

If we now represent P.~!(s) as the quotient of its adjoint B.*(s) and

its determinant |Pc(s)| and then postmultiply (6) by P.+(s)P.(s),
we obtain

M($)B($)PH(s)Ps) + N(S)P(s)P.H(s)Pe(s) = P.H(s)P(s). (7)
Since R(s)P.*(s)Pc(s) = R(s)|Pe(s)| in view of (5) and P.(s)P:*(s)

1 A polynomial matrix U(s) is & unimodular matrix [1]. [2] if. and only if,

iU (s)] = «, a nonzero scalar belonging to the real field ®.
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