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Pole and Zero Assignment by Proportional Feedback 

P. MURDOCH 

Abslruct-A procedure is described which enables specified poles 
and  zeros of a transfer function of a linear system to  be obtained by 
using proportional state feedback to two inputs in  a  restricted  class 
of problem. 

IXTRODUCTIOS 

The problem considered is that in which it is desired to achieve a 
specified transfer function between one input variable and one output 
variable of a timeinvariant linear system by the w e  of proportional 
state feedback. The system  has two inputs, the second input being 
used only for positioning the zeros. The procedure is restricted to 
systems  in R-hich the inner product of the relevant input  and  output. 
vectors is nonzero. For  both zero and pole posit.ioning, it. uses 
established results in modal cont.ro1 t.heory. 

SYSTEM DESCRIPTIOK 
The system is described by the equations 

2 = A X  + BIL + Bu', y = cT1: (1) 

where I is an n-dimensional state vector, I /  and x' are tm-dimen- 
sional input vectors, and 

11 = r 
LusJ 

ahere ul and IL? are scalar inputs, y is a scalar output, A and B are 
constant matrices, and 

B = [bl j bz] 

%-here bl and b? are n-vectors, and cT is a  constant measurement 
vector. 

The case considered is that in which cTbl + 0. The syatenl (1) is 
controllable and observable. 

PROBLEM STATEJIEXT 

The problem is to find the  state feedback gain vectoM PiT and 
where 

We  now  check the pair (&,bo) for controllability, using Gilbert.'s 
method, so as to reveal which eigenvalues are uncontrollable. AO has 
the eigenvalue 0, which is uncontrollable through bo. However, 
provided that  the other eigenvalues are controllable, we may use t.he 
results of modal control theory, e.g., [2] ,  [3], to determine h T  such 
that t.he matrix ( A 0  + b&rT) has any ( n  - l j  specified eigenvalues 
and  the eigenvalue 0. The (n - 1) eigenvalues n-ill be the zero5 of 
the transfer function. The eigenvalue 0 has no physical significance, 
and arises only because the degree of the  numerator of the  transfer 
function is ( n  - 1). 

step 2 

The system poles  will have been changed by  the application of 
feedback kzT, and we now determine klT to locate the poles as re- 
quired. 

It is first necessary to check the pair ( ( A  + b&P),b1) for controlla- 
bility. If this  test S satisfied, PiT map be found by again using the 
results of modal control  theory [ 2 ] ,  [3] to move the poles to  any 
desired locations. The feedback PIT will have  no effect on the zeros 
which %-ere established in Step 1 because this feedback is applied to 
the  input from which the transfer  function is taken. 

For a  restricted class of problem, the procedure enables the poles 
and zeros of the transfer function to be given specified values, and i t  
provides a check at  earh  stage for the existence of a  solution. Failure 
of the test for controllability a t  Step 1 does not necessarily imply 
that a  satisfactory  solution cannot be obtained if the uncontrollable 
zeros have  acceptable value. An observer may be used, if necessary, 
to provide the feedback, and this will not affect the transfer  function. 

REFEREWES 

so that  the t.ransfer function  relating y to u 1  h s  specified poles and On Determining the Zeros Of State-Space Systems 
zeros. W. A. ROLOVICH 

PROCEDURE 

Stvp 1 

We first determine krT to locate the zeros. Let X.lT be a zero vector 

Using a result obtained by Brockett 111, the zeros of the transfer 
at  t,hk stage. 

function  relating y to u 1  are eigenvalues of the matrix 

which may be written f ~ s  

A o  + bobT 

where 

(2) 
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Abstracf-The zeros of a linear, time-invariant,  state-space 
system  are defined, and a matrix rank  test  for determining their 
locus is formally established  and illustrated by example. - 

INTRODUCTIOS 

The primary purpose of thij correspondence is to present  a state- 
space matrix  rank  test w-hich can be employed to determine the 
location of the zeros of a linear, time-invariant,  multivariable  system. 
The importance of this  test in  locating  system zeros a t  s = 0 has 
already been denlonst.rated in a variety of applications, e.g., in s k p  
disturbance  elimination  studies [l]: static decoupling [ Z ] ,  the design 
of integral  feedback and feedforward regulato~s [3] ,  and in classifying 
mult.ivariable systems according to "type" [4]. 
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PRELININARIES 
We begin by assuming comp1et.e knowledge of t,he dynamical be- 

havior of an nth order, m-input, p-output  (with m and p no  greater 
than n) ,  linear, time-invariant. system in  terms of the state-space 
representation 

5(t) = A z ( t )  + Bu(t); y ( t )  = Cs(t) + E(D)u(t) (1) 

wit,h D = d/d t ,  the differential operator. In  terms of (l), the ( p  X m) 
rational  transfer mat.rix T(sl of t,he  system can readily be determined, 
i.e., given (l), 

T(s)  = C(SI - A)B-' + E(s), (2) 

and given T(s) ,  any least  order (n) statespace  system of t.he form (1) 
which satisfies (2)  is called a minimal staie-space  real.izution of T(s).  

We now recall [ 5 ] ,  [6] that  any  (p X m )  rational  transfer matrix 
can be factored in  either of two  (nonunique) aays, Le., 

T ( s )  = R(s)Pc-'(s) = P~-'(s)&(s) (3 1 

with R(s)  and P J s )  relaiively  right pr ime  polynomial mat.rices in  the 
Laplace  operator s and Po(s) and Q(s)  relatwely kjt prime polynon&l 
mat,rices in s [j]. In a recent report [7] i t  was shown that any 
numerator of T(s),  i.e., any (p X .m) polynomial matrix R(s)  cr Q(s)  
resulting from a prime  factorization of T(s) ,  as in (3), is unintodular 
equivalent' to  any  other numerator of T(s )  and, furthermore,  that a 
zero of T ( s )  is any  scalars* in e, the complex field, for which the  rank 
of R(s*) (or Q(s* ) ) ,  denoted as p {  R(s*)] ,  over e is less than its 
normal rank [8 ] ,  [ Q ] ,  defined as p {  R(s)]  over @(s), the field of rational 
funct.ions in s. This notion of t,he zeros of T(s)  d now be extended 
t.0 include  state-space  systems as well,  Le., s* is a zero of (1) if and 
only if it is a zero of T(s) ,  as given by (2). In view of these  pre- 
liminaries, we can now d a t e  and  establish our main result,. 

THE M A I N  RESULT 
Thewem: Any s* in  e i s  a zero of a minimal state-space system of the 

form ( 1 )  if and only i f  

over @(s). (41 

Proof: The proof of this theorem follows rather easily from the 
results given in [7] and  the following lemma which is due  to Rosen- 
brock [ 5 ] .  

Lemma: If ( 1 )  is a minimal realizuiwn of T(s) ,  as given by (21 
and (3) ,  ihen 

are a[ .  unimodular equivalent. 
Proof: See (5, t.heorem 2.1, chapter 3, section 21. 

By Rosenbrock's lemma, it now follows that over @(s), 

or that 

~ T X T O  polynomial  matrices of the  same dimensions. such as R ( s )  and Q(s) '  
are  said  to  be (unimodular)  equicalent ii  and  only if C L ( ~ ) R ( ~ ) L ' R ( ~ )  = Q ( s )  for 
some pair (CL(S),LYR(S)) of unimodular matrices. i.e., nonsingular  polynomial 
matrices  whose  determinant.s  are  nonzero  scalars  in  the real field (3. 

i.e., the rank of the minimal system mat.rix [ A, is 

solelv deDendent on the  rank of a numerator of T(sl Since s* is a 
zero'bf (i) if and only if P {  R(s*)} over e < p {  R(s)]  over @(s), it  is 
clew  in view of (6) that s* is a zero of (1) if and only if (4) holds, thus - 
est.ablishing the theorem. 

REMARKS 

A number of remarks  are now in order. In particular, we have t.he 

Remark 1: We first note t.hat i f  p {  B and C )  2 nain(p,-m) 2 r over 
following. 

a, then the  normal rank of [-'I; A' will be n + r, an 

observation which directly follows from  the results given in [lo], 
although  the details associated wit.h t.he formal  establishment of this 
fact will not be presented here. Under t.hese conditions, the zeros of a 
minimal state-space  system can be found by simply  determining 

those s* which reduce the normal rank (?a + r )  of 

E(s*' " 1  
space  system of the  form (l), with 

[-s*'cr' 

. To demonst.rate, let us consider t.he  following minimal state- 

and = [ 0 ]  
0 0  

Since B and C are bot,h of rank r = 2, the normal rank of 

E(s )  
for which t,be system  matrix 

is 5 = n + r, and  the zeros of this system are given by t.hose S* 1 
r-s* 1 0 0 01 

1 -s* - 1 2  
0 1  -s* - 3 0 1 
1 1  -2 0 0  2 l  

L-1 0 1 o oJ 

is singular. Therefore, since t.he determinant of t.he system matrix is 
equal t.o -s* - 3, we conclude that  the system has a single zero at 
s = -3. To verify this observation in light of the results given in [7], 
we first note  that T ( s )  = C(sI - A)B-' + E(s) can be factored as 

R(s)P-l(sl with, for example, R(sl = Is :21 and P(s)  = 

Lnly scalar in e which reduces the normal rank of the  numerator 
R(s), which confirms t.he fact  that -3 is the only zero of the system. 

R m r k  2: In  view of Remark 1, i t  is now clear that i f  p {  B and C )  
2 r, then the  min.ima1  system (I) has a zero  at  the origin (s* = 0) if 
and only i f  

It is of interest and  importance to  note  that  the determination of t,he 

rank of [ E(0)]  (usually with E(s)  = E, a constant matrix) is 
A B  

equivalent to  the determination of t.he presence or absence of any 
system zeros at t.he origin of the complex plane, and  as noted in  the 
1nt.roduction of t.his correspondence, this  test plays a fundament.al 
role in a variety of multivariable system applications [I]-141. 

Renark S: We finallv note  that if a given state-space  system is 
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uncontrollable, unobservable, or bot.h, then t,he uncont,rollable and,/ 
or unobservable ‘‘modes” of the system will appear as “cancellable” 
pole-zero terms in the transfer mat,rix of the system [ I O ] .  Rosenbrock 
defines any such uncontrollable (unobservable)  system modes as 
input  (output)  dewupling zeros [SI, although we prefer to call these 
modes nonminimal zeros or nonmininzal poles since they occur only in 
nonmininlal systems and “cancel out” of both  the  numerator  and 
denominator of the transfer matrix of the system. In view of this 
observation, we now note  that any  rwnmiminm.1 zeros of a system do 
not  correspond to the de-fincd (minimalj  zeros [‘7]  which  characttrize  the 
transfer m f r i x  of the  system, although both  the minimal and non- 
minimal zeros of a system can be shown to reduce the normal rank of 
a  zeneral (not. necessarily minimal)  state-space syst.em matrix 

[ ‘slcT gs)]. While the formal  establishment of this latter 

fact is relatively st.raightforward and not unlike the prcof of our main 
result, it does involve cert.ain additional steps  and not.ions which 
Kould significantly lengthen  this  report.  Furt.hermore, a more general 
result can actually be obtained, i.e., by combining the result& given in 
[ . j ] - [ i ] ,  in view of the proof of our main result., it is not. difficult to 
show that. h e  mi,zimal and nonrnininlal zeros of a n y  getjeral dijer- 
oniial operator  represenfation P(D)z ( t )  = Q ( D ) u ( t ) ;   y ( t )  = R i D k ( t )  + 
Tt-(D)~c(t) are equal to thosc s* i t t  e chi& reduce the normal rank ofthc 

CONCLCSIONS 

We have now  shown that  the zeros of a  multivariable  system of t.he 
form ( 1 )  are given by those st which reduce t.he normal rank of its 
system  matrix. The significance of this  state-space nlat.rix rank teat. 
when s* = 0 w;as noted, and an  example was presented to illust,rate 
t.he procedure. The distinction between minimal and nonnlinimal 
system zeros was also discussed. 
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On the Numerators and Zeros of Rational 
Transfer Matrices 

W. A. WOLOVICH 

Abstract-The notion of a “numerator” of a rational transfer 
matrix is defined. The  fact  that  any two numerators of the same 
transfer matrix are equivalent is then formally established  and 
employed in the development of a number of equivalent  definitions 
of the zeros of a rational transfer matrix. 
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INTRODUCTION 
In  the case of a  scalar (single input,/output) system characterized 

by a  rational  transfer  function, 

Brith r(s) and p ( s )  relatively  prime polynomials in the Laplace 
operator s ;  the zeros of the system  [or t ( s ) ]  are defined as those 
scalars si belonging to  the complex field c, which “zero” t ( s ) ;  i.e., 
si is a zero of t ( s )  if, and only if, 

It is thus clear that,  the zeros of t ( s )  are  equal  to  the zeros of its 
numerator ~ ( s ) .  Physically speaking, the zeros of a scalar system 
represent  those  dynamical “modes” of the system that will not 
appear  at. t.he system output when an  appropriate  set of initial 
conditions is placed on the  internal  state of the system and  an 
appropriate  input k applied. These are points that  Fill be clarified 
in our subsequent. discussions. 

It. is of general interet  to extend the notion of the zeros of a 
scalar  system to include the multivariable  (multi-input’output) case 
as well, and while some recent results [ I ] ,  [2] have essentially re- 
solved this extension via “different” definitions of the zeros of a 
rational t.ransfer matrix, some rather significant questions remain 
unresolved regarding not. only the equivalence of these definitions 
but  abo alternat.ive definitions and methods that can be employed to 
determine the zeros of a multivariable  system. The primary  purpose 
of t h i  note will be therefore to resolve these questions, and we  will 
begin by defining a “numerator” of a  rational  transfer  matrix and 
formally establishing the “equivalence“ of any two numerators of 
t,he same t.ransfer matrix 

THE XUMERATORS OF T ( s )  
We first  note t.hat. any ( p  x m )  rational  transfer  matrix T ( s )  can 

be factored in either of t.wo (nonunique) ways [1]-[3] ; i.e.? 

U s )  = R(s)P,-’(s) = Po-’(s)Q(s) (3 1 
with R(s)  and P,(s) relatively right. prime (RRP) [ l ] ,  [ 3 ] ,  (Po( s )  and 
Q ( s )  relatively left  prime) polynomial matrices of the  appropriate 
dimensions and P,(s)(Po(s)) nonsingular over the rational field 6. 

Dejnition: Any ( p  X f n )  polynomial matrix R ( s )  or Q ( s )  that 
sat.isfies (3) will be called a numerator of T(s) .  

Theorem: Any two numerators of a ( p  X m )  rational  transfer 
matrix are  equivalent; i.e., if R(s)  and Q ( s )  are  both  numerators of 
T(s) ,  then 

C L ( S ) R ( S ) C : R ( S )  = Q ( s )  (4) 

Proof: If T(s) = R(s)P,-l(s) = R(s)P,-l(s), both RRP fac- 

R(s)  = R(s)P,-’(s)P,(s). ( 5 )  

Since R ( s )  and P,(s) are  RRP, t.here exists [l], [3] a polynomial 
matrix pair { X(s),:V(s)} such  that. 

for  an  appr0priat.e  pair { VL(S) ,L~B(S)]  of unimodular matrices.’ 

torizations, then R(s)  and R(s)  are  both  numerators of T ( s )  with 

Jf(s)R(s) + X ( S ) P c ( S )  = I,. (6 1 

If we now represent P,-’(s) as  the  quotient of its adjoint P,+(s) and 
its detmminant IP.(s)I and then  postmultipl\; (6)  by P,+(s)P,(s), 
we obt.ain 

. l ~ ( S ) R ( S ) P ~ + ( S ) P ~ ( S )  + S(s)P,(s)P,+(s)P,(s) = P,-(s)P,(s). (7) 

Since R(s)Pc+(s)P,(s) = R(s)lP,(s)l in view of ( 5 )  and P,(s)Pc’(s) 

i r(s) I = a, a nonzero  scalar  belonging  to  the  real field a. 
1 ;i polynomial  matrix L;(s) is a unimodular  matris [ I ] .  P I  if.  and  only  if. 
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