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Abstract—A brain-computer interface (BCI) is a communica-
tion system which allows to control a computer or any other
devices thanks to the brain activity. The BCI described in this
paper is based on the P300 speller BCI paradigm introduced by
Farwell and Donchin [1]. An unsupervised algorithm is proposed
to enhance P300 evoked potentials by estimating spatial filters;
the raw EEG signals are then projected into the estimated signal
subspace. Data recorded on three subjects were used to evaluate
the proposed method. The results, which are presented using a
Bayesian linear discriminant analysis (BLDA) classifier [2], show
that the proposed method is efficient and accurate.

Index Terms—Brain computer interface, P300-speller, xDAWN
algorithm, spatial enhancement.

I. INTRODUCTION

Brain-Computer Interfaces (BCI) enable direct communica-
tion between the user’s brain and a computer by analysing
brain activities measured with electroencephalogram (EEG)
for example [3]. Such human-computer interfaces provides a
new non-muscular powerful channel for communicating with
the external world. BCIs are thus suitable for people that are
incapable of any motor functions: e.g., people with severe
neuromuscular disorders or ‘locked-in’ syndrome patients [4],
[5]. Present-day BCIs determine the intent of the user from
different electrophysiological signals: for instance, the user
may control the modulation of some brain waves (e.g., mu or
beta rhythms [6], [7]) or the BCI may exploit natural automatic
responses of the brain to external stimuli (e.g., event-related
potentials [8], [9], [10], [2]). See [3] for a more detailed review
of BCIs.

The BCI problem addressed in this paper concerns the P300
speller introduced by Farwell and Donchin [1], [8]. It enables
people to spell words on a computer by sequentially choosing
letters from the alphabet without doing any movement: a
6 × 6 matrix, that includes all the alphabet letters as well
as other symbols, was presented to the user on a computer
screen (Fig. 1(a)). The procedure used in this BCI is actually
derived from the oddball paradigm, in which the subject
is asked to distinguish between a common stimulus (also
called non-target) and a rare stimulus (also called target) by
a mental counting of the target stimulus. As a result of the
attentional focus which is enhanced by mental counting, a

(a) (b)

Fig. 1. Brain-Computer Interface “P300 speller”. Fig. 1(a): screen display as
shown to the subjects with the third highlighted row. Fig. 1(b): time course of
the actual signal waveforms at Cz . The continuous line represents the average
over rare (i.e. target) stimuli and the dashed line corresponds to the average
over common (i.e. non-target) stimuli.

typical automatic potential is evoked in the brain. Applied to
the P300 speller BCI, the stimuli are visual: they consist in
the intensification of each of the rows and of the columns
of the spelling matrix in a random order. The user focuses
her/his attention on the symbol she/he wishes to communicate
and mentally counts the number of times the row and the
column containing the symbol are intensified. One of the
component of the spontaneous response elicited in the user’s
brain by the target stimuli is known as a P300 evoked potential
corresponding to a positive deviation occurring around 300
ms after the stimuli (Fig. 1(b)). The prediction of the desired
symbol consists in discriminating between row/column stimuli
leading to a P300 evoked potential from row/column stimuli
which do not generate a P300 potential: the desired symbol is
so determined as the intersection of the row/column targets.

The recorded EEG signals contain P300 potentials as well as
other brain activities, muscular and/or ocular artifacts leading
to a very low signal-to-noise ratio (SNR) of P300 potential. As
a result, the detection of target stimuli is very difficult from a
single trial which is defined as a sequence of intensifications
in a random order of each of the 6 rows and the 6 columns
of the spelling matrix. To increase the classification accuracy,
each symbol is spelt several consecutive times and the epochs
corresponding to each row/column are averaged over the trials.
However, these repetitions decrease the number of symbols
spelt per minute: e.g., with 15 repetitions, only 2 characters
are typically spelt per minute [1], [8]. Several ways were
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proposed to limit the number of necessary repetitions given
a high prediction accuracy. The first way is to use a more
complicated classifier than a simple average. For instance,
Rakotomamonjy et al. [11] used as classifier an ensemble of
several linear support vector machines (SVM) [12] with an au-
tomatic channels selection, and Hoffmann et al. [13] proposed
a boosting approach. Another way to improve the symbol
prediction accuracy is to enhance the P300 evoked potentials
by a spatial filtering of the channels. Several methods, based
on independent component analysis (ICA) [14], [15], [16],
were thus proposed to enhance the SNR and to remove the
artifacts, e.g. [17], [10]. However, the major drawback of such
methods is that they are not specifically designed to separate
brain waves. In most of BCI systems using ICA, after the
decomposition in independent components (IC) it is necessary
to select (manually or thanks to spatiotemporal prior) the ICs
which mainly contained the desired evoked potentials.

In this paper, we address the problem to enhance the P300
evoked potentials for the P300 speller BCI. The proposed
method is unsupervised and specifically designed to the P300
speller paradigm: indeed, it only exploits the instants of the
visual stimuli. In preliminaries studies [18], [19], we have
shown how to automatically estimate P300 subspace from
raw EEG signals. P300 evoked potentials are then enhanced
by projecting raw EEG on the estimated P300 subspace. In
the present study, we extend the proposed algorithm in a
more robust way. Moreover, we present in this paper a deeper
analysis of the proposed method and more experiments results
using a new database confirming the interest of the proposed
algorithm.

This paper is organised as follows: Section II describes
the evoked subspace estimation and Section III presents the
BCI methodology. Section IV presents the results that have
been achieved whereas Section V concludes the paper with
comments and perspective on the work.

II. XDAWN ALGORITHM TO ENHANCE EVOKED
POTENTIALS

The raw EEGs recorded from the user’s scalp not only
contain the desired P300 evoked potentials but also ongoing
activity of the brain and muscular and/or ocular artifacts.
As a result, the SNR is very low and the classification task
(i.e. the character prediction) is not easy. The aim of this
study is thus to provide a simple and unsupervised estimation
of the evoked subspace (i.e. the subspace which contains
most of the P300 evoked potentials) so that the P300 evoked
potentials are enhanced by projecting the raw recorded EEGs
on the estimated evoked subspace. The classification between
target/non-target stimuli is so simplified leading to a faster
spelling device as shown in Section IV.

A training database is used to estimate evoked subspace
and then to train the classifier (Section III-B). It consists in a
database for which the spelled symbols are known as well as
the order of rows/columns intensifications and the correspond-
ing stimulus onsets (i.e. beginning time of illumination).

The proposed method is based on two main ideas:
• the rare events in the oddball paradigm elicit the P300

component of the event-related potential (ERP),

• this synchronous response occupies a small spatial sub-
space of space spanned by the recorded EEG.

In other words, there exists a typical response synchronised
with the target stimuli, and then this synchronous response can
be enhanced by a spatial filtering. The proposed method is thus
divided into two parts. The synchronous responses are first
estimated for each sensor and these responses are then used
to estimate spatial filters such that the evoked P300 potentials
are enhanced.

Let xj(t) denote the EEG signal recorded by the jth sensor
at time index t and let X ∈ RNt×Ns be the matrix of recorded
EEG signals whose (i, j)th entry is xj(i). Ns is the number
of sensors and Nt the number of temporal samples. Let aj(t)
denote the ERP signal for the jth sensor at time index t, and
let A ∈ RNe×Ns be the matrix of ERP signals whose (i, j)th

entry is aj(i). Ne is the number of temporal samples of the
ERP (typically, Ne is chosen to correspond to 600 milliseconds
or one second).

The fact that the target stimuli elicit a P300 evoked potential
leads to the following model

X = DA+N. (1)

D ∈ RNt×Ne is the Toeplitz matrix whose first column is
defined such that Dτk,1 = 1, where τk is the stimulus onset of
kth target stimulus (1 ≤ k ≤ K, with K the total number
of target stimuli) and such that all the other elements are
null. DA in (1) thus represents the synchronous response with
target stimuli and matrix N the on-going activity of the user’s
brain as well as the artifacts. The least square estimation of
response A is simply performed by

Â = arg min
A

∥∥X −DA
∥∥2

2
,

whose solution is given by

Â =
(
DT D

)−1
DT X, (2)

where .T is the transpose operator. Note that a classical
epoching of matrix X to estimate A leads to

A† = DT X, (3)

which could be quite different from (2) if (DT D)−1 is quite
different from a diagonal matrix. This is typically the case
if synchronous response A extends over several consecutive
stimuli: i.e. if Ne ≥ min∆τk, where

∆τk = τk − τk−1 (4)

is the interval between two consecutive target stimuli. As
copied out in Fig. 2, least squares estimation (2) leads to a
very redundant solution which is confirmed by the principal
components of Â (Fig. 2(b)) since in this case the two greatest
principal values explain 91% of the total variance of Â.

The second idea of the proposed method consists to estimate
Nf spatial filters ui (1 ≤ i ≤ Nf ≤ Ns) such that the
synchronous response is enhanced by the spatial filtering

X U = DAU +N U, (5)

where U ∈ RNs×Nf is the spatial filters matrix whose ith

column is ui. An intuitive solution should be first to perform
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(b) Principal components
of Â.

(c) Projection of the first
principal component of Â
on user’s scalp.

(d) Projection of the sec-
ond principal component
of Â on user’s scalp.

(e) Projection of the third
principal component of Â
on user’s scalp.

Fig. 2. Least squares estimation of P300 evoked potentials for the first subject of the recorded database (cf. Section III-A). Fig. 2(a): projection of Â (2)
on the user’s scalp. Each plot corresponds to an ERP of 1 s and plots at the sensor position on the user’s head. Fig. 2(b) shows the principal components
of Â (2). These principal components are normalised such that their sum is equal to one. Fig. 2(c), 2(d) and 2(e) projection of the first, second, and third
principal component of Â on the user’s scalp, respectively.

a principal component analysis (PCA) of Â (2) and then to
project the recorded signals X on the Nf main components
associated with the Nf largest principal values. By doing this
thanks to the singular value decomposition (SVD) of Â

Â = Σ∆ ΠT , (6)

where Σ and Π are unitary matrices and ∆ is a diagonal matrix
with nonnegative diagonal elements in decreasing order, and
by splitting these matrices into signal and noise subspaces

Σ =
[
Σs Σn

]
,

∆ =
[
∆s 0
0 ∆n

]
,

Π =
[
Πs Πn

]
,

spatial filters U , which are defined as the projector on the
signal subspace, are expressed as

Upca = Πs. (7)

Moreover, one can then rewrite Â as

Â = Σs ∆s ΠT
s + Σn ∆n ΠT

n . (8)

and model (1) is finally formulated as

X = DA′
pcaW

T
pca +N ′,

where A′
pca = Σs ∆s is the synchronous response of reduced

dimensions, Wpca = Πs is its spatial distribution over sensors
and N ′ = N +DΣn ∆n ΠT

n . Even if the PCA enhances the
evoked potentials, the major drawback of this solution is that
the noise N is not directly taken into account to estimate the
spatial filters. Indeed, filtered signals are then obtained by

Ŝpca = X Upca

= DA′
pca +N ′ Upca,

where noisy term N ′ Upca = N Upca (since Πn and Πs are
orthogonal) could also be largely amplified compared to noisy
term N in (1).

To overcome this problem, we propose to design spatial
filters U such that the signal to signal plus noise ratio is
maximised:

Û = arg max
U

Tr
(
UT ÂTDT DÂU

)
Tr

(
UTXT XU

) , (9)

where U ∈ RNs×Nf is the spatial filter matrix whose ith

column is equal to ui and Tr(·) is the trace operator. By
computing the QR factorisation [20] of X and D respectively
and by replacing Â by (2), criterion (9) can be expressed as

V̂ = arg max
V

Tr
(
V TQT

XQD QT
DQXV

)
Tr

(
V T V

) , (10)

with V = RX U , X = QX RX and D = QD RD, where
QX and QD are orthogonal matrices, and RX and RD

are upper triangular matrices respectively. Matrix V̂ is thus
obtained from the Rayleigh quotient (10) whose solution is
the concatenation of Nf eigenvectors associated with the
Nf largest eigenvalues of matrix QT

XQD QT
DQX [20]. These

vectors can be computed efficiently from the SVD of QT
DQX :

QT
D QX = ΦΛ ΨT , (11)

where Λ ∈ RNs×Ns is the diagonal matrix of singular values
sorted in descending order (1 ≥ Λ1,1 ≥ · · · ≥ ΛNs,Ns ≥ 0),
Φ ∈ RNe×Ns and Ψ ∈ RNs×Ns are two column orthonor-
mal matrices. Splitting these matrices into signal and noise
subspaces

Φ =
[
Φs Φn

]
,

Λ =
[
Λs 0
0 Λn

]
,

Ψ =
[
Ψs Ψn

]
,

leads to
V̂ = Ψs.

The solution of criterion (9) is so obtained by

Û = R−1
X Ψs. (12)

Moreover, one can rewrite Â (2) as

Â = R−1
D Φs Λs ΨT

s RX +R−1
D Φn Λn ΨT

n RX , (13)

thanks to the QR decomposition of D and X , and by us-
ing SVD expression of QT

D QX (11). Model (1) is finally
expressed as

X = DA′WT +N ′, (14)
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where

A′ = R−1
D Φs Λs (15)

W = RT
X Ψs. (16)

A′ is the synchronous response of reduced dimensions, W
is its spatial distribution over sensors, and N ′ = N +
DR−1

D Φn Λn ΨT
n RX is the noise term, respectively. The I

dimensional evoked subspace is thus defined by the I couples(
ûi, â′i

)
defined by (12) and (15) respectively. Note that this

final result is related to the canonical or principal angles
notion [20], [21], [22], which is a generalisation of canonical
correlation analysis (CCA) [23]. Indeed, it can be shown that
the singular value decomposition of QT

D QX provides the
principal angles whose cosines are the singular values Λi,i

and the associated singular vectors pair (φi, ψi) recursively
minimises the quadratic error, for i = 1, · · · , Ns:

(φi, ψi) = arg min
‖QXψ‖2 = ‖QDφ‖2 = 1

QXψ ⊥ {QXψ1, · · · , QXψi−1}
QDφ ⊥ {QDφ1, · · · , QDφi−1}

‖QXψ −QDφ‖2
2.

In this case, âi is obtained by R−1
D φi.

The enhanced signals are then computed by

Ŝ = X Û,

= DA′ +N R−1
X Ψs. (17)

Finally, the algorithm to estimate an I dimensional evoked
subspace is summarised in Algorithm 1 and is denoted
xDAWN regarding model structure (14). Note that the com-
putation of synchronised responses (2) is finally unnecessary
to estimate enhancing spatial filters ûi (12).

Algorithm 1 xDAWN algorithm to estimate evoked subspace.
1: Compute QR factorisation of X ⇒ X = QX RX

2: Compute QR factorisation of D ⇒ D = QD RD

3: Compute SVD of QT
D QX ⇒ QT

D QX = ΦΛ ΨT

4: Select the I couples of singular vectors
(
Φi,Ψi

)
associ-

ated with the I largest singular values λi

5: Finally ∀ 1 ≤ i ≤ I,
(
ûi,a′i

)
=

(
R−1

X ψi, R
−1
D φi λi

)
6: Estimate sources: ∀ 1 ≤ i ≤ I, ŝi(t) = ûT

i x(t)

III. APPLICATION TO THE P300 SPELLER BCI

In this section, the data acquisition and the preprocessing of
the recorded signals are described in Subsection III-A, while
the BCI classification problem is presented in Subsection III-B.

A. Data acquisition and preprocessing

1) Data acquisition: Three healthy male subjects (two
French and a German, ages 29, 31 and 31 respectively)
participated voluntarily in the experiment. They were all free
of neurological diseases and had no previous experience with
the P300 speller paradigm.

EEG activity was recorded from 29 Ag/AgCl scalp elec-
trodes placed at standard positions of an extended 10-20
international system referenced to the nose and grounded to

the forehead. Horizontal and vertical electrooculograms (EOG)
were recorded from the right eye. All impedances were kept
below 10 kOhms throughout the experiments. Signals were
amplified and digitised at a rate of 500 Hz using a BrainAmp
amplifier (BrainProducts GmBH, Munich). The EEG was
collected and stored using the BCI2000 system with the P300
speller scenario [24].

The subjects were seated in a comfortable chair at a distance
of 60 cm from the computer screen in a quiet room. They were
watching a 6×6 matrix of letters as shown in Fig. 1(a). The
matrix subtended 10.2 ˚ H × 11.9 ˚ W of angular view. The
experiment paradigm was controlled by the BCI2000 software
and was similar to the one used for the BCI Competition
2003 - P300 Speller data set [25]. Each run corresponded to
one word (a French word, or a German word for subject 3)
and each word could be composed of two to six characters.
Before each run, the entire word to be spelt was indicated
at the top of the display. Subjects were asked to focus on the
current letter (which was shown after the word in parentheses)
and to mentally count the number of times this letter was
intensified. Each row and column in the matrix was randomly
intensified for 100 ms and the delay between two consecutive
intensifications was 80 ms thus leading to an interstimulus
interval (ISI) of 180 ms. For each letter, the 12 columns and
rows were intensified 15 times. There was a 2.5 second period
between each character of a run, allowing the subject to focus
the attention on the next character. The subject could make a
short break after each run. In total, there were at least about
fifty characters for each subject distributed among several runs
(73 letters for 19 runs for subject 1, 63 letters for 14 runs for
subject 2, and 66 letters for 16 runs for subject 3).

2) Pre-processing: Before estimating the spatial filters by
the xDAWN algorithm to enhance the P300 evoked potentials
(Section II) the following pre-processing stages were applied.
The data were first filtered by a fourth order forward-backward
Butterworth bandpass filter. Cut off frequencies were set to 1
Hz and 20 Hz. For each sensor, the bandpass filtered signals
were then normalised so that they had zero mean and a
standard deviation equal to one. The temporal length of the
synchronous response (2) was chosen to be one second.

B. BCI classification

In the P300 speller BCI problem, the spelled character
is identified by the detection of a P300 evoked potential
related to a given row and to a given column illuminations
for each sequence. Feature vector pj corresponding to the
jth illumination is given by the concatenation of I epochs
of estimated sources f (j)

i = [f (j)
i (0), · · · , f (j)

i (Ne)]T defined
by

f
(j)
i (t) = (ŝi(t)×ΠNe

(t− τj)) ∗ δ(t+ τj), (18)

where si(t) is the estimated sources (17) obtained by the
proposed ‘xDAWN’ algorithm (Section II), τj is the stimulus
onset of the jth illumination and ΠNe(t) is the boxcar function
equal to 1 on its support [0, Ne] and equal to 0 elsewhere
(typically Ne is chosen to correspond to 600 milliseconds or
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Fig. 3. Estimations of P300 evoked potentials for the three subjects. First row (Fig. 3(a), 3(b), 3(c)) corresponds to a classical epoching estimation A† (3).
Second row (Fig. 3(d), 3(e), 3(f)) corresponds to the proposed estimation Â (2) obtained by least squares minimisation. The evoked potentials for all the
sensors are stacked on the same plot.

one second). Thus pj is defined by

pj =
[
f (j)T

1 , · · · , f (j)T

I

]T

. (19)

Moreover, let tj denote the associated class with jth illumina-
tion, tj = 1 if the jth illumination contains the spelled symbol
and tj = 0 otherwise.

Among the proposed classifiers for BCIs, Bayesian linear
discriminant analysis (BLDA) [2], [26] is chosen since it was
proved to be efficient and was fully automatic (i.e. no hyper-
parameters to adjust) [2]. It aims at finding, using a Bayesian
framework, a discriminant vector w such that wT p is as close
as possible to the class t associated with the corresponding
feature vector p. This discriminant vector w is thus estimated
from the set of couples {pj , tj}j obtained from the training
database.

Let hr/c denote the output of the classifier corresponding
to the illumination of row/column r/c. The score Hr/c(k) of
row/column r/c after k repetition is given by

Hr/c(k) = Hr/c(k − 1) + hr/c, (20)

where Hr/c(0) = 0. After the kth repetition, the recognised
symbol is the one with maximal row and column scores.

IV. RESULTS

In this section, evoked subspace estimation results are
presented in Subsection IV-A while the complete P300 speller
BCI results are presented in Subsection IV-B.

A. P300 subspace estimation

In this set of experiments, the proposed method to estimate
the evoked subspace (Section II) was applied to the recorded
database.

Estimated synchronous responses Â (2) for each subject are
shown in Figure 3 and compared with the classical epoching
estimation (3). For each subfigure, the 29 evoked potentials
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Fig. 4. Histogram of interval between two consecutive target stimuli ∆τk (4)
for the three subjects. The vertical dashed line is located at one second which
is the temporal length of the estimated synchronous response A (2).

corresponding to the 29 sensors are stacked on the same
plot. One can see that, for each subject, these estimations
include a periodic component at 5.6 Hz. This component,
whose frequency is the inverse of the ISI (180 ms), is thus
due to the visual stimulation (i.e. the intensifications of
the rows/columns). The proposed estimation of synchronous
response (2) slightly improves the result compared to the
classical epoching (3): for instance, one can see that the
residual oscillations in Figures 3(d), 3(e), and 3(f) are slightly
reduced compared to Figures 3(a), 3(b), and 3(c), respectively.
This can mainly seen from 600ms to 1s. These differences,
which are due to the fact that DTD is not diagonal, are
the expression of the fact that the temporal length of the
estimated evoked potentials (here chosen equal to one second)
is sometimes greater than the interval between two consecutive
target stimuli ∆τk (4). Indeed, as shown in Fig. 4, around 50
percent of two consecutive target stimuli leads to overlapped
synchronous responses. These figures finally show the impor-
tance of taking into account this overlapping for the estimation
of the synchronous response.

The proposed xDAWN algorithm (cf. Algorithm 1) is then
applied to estimate the P300 subspace for the three subjects.
The results are presented in Fig. 5, where we plot the enhanced
synchronised response a′i (15), the spatial filter ui (12), and
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Fig. 5. P300 subspace estimation for the three subjects. Each row corresponds to one subject: Fig. 5(a), 5(b), 5(c), 5(d) and 5(e) are related to subject 1,
Fig. 5(f), 5(g), 5(h), 5(i) and 5(j) are related to subject 2, and Fig. 5(k), 5(l), 5(m), 5(n) and 5(o) are related to subject 3. For each subject, Fig. 5(a), 5(b), 5(c),
Fig. 5(f), 5(g), 5(h), and Fig. 5(k), 5(l), 5(m) show the triplet: enhanced synchronised response a′

i (15), spatial filter ui (12) and spatial distribution wi (16)
(top, bottom left and bottom right, respectively) for the three first components estimated by the xDAWN algorithm. Fig. 5(d), 5(i), 5(n) show the SNR obtained
by different methods of enhancement for the three subjects: ‘reference’ means no enhancement (Û = I and Â′ = Â), ‘PCA’ corresponds to an enhancement
obtained by PCA thanks to (7) and (8), ‘xDAWN’ results are obtained by the xDAWN algorithm (12) and (15), and ‘ICA’ results refer to spatial filters Û
estimated by the JADE blind source separation algorithm [27], respectively. Note that ‘reference’ and ‘ICA’ SNR are sorted in descending order of SNR,
while ‘PCA’ and ‘xDAWN’ are sorted in descending order of principal values ∆ (6) and in descending order of singular values Λ (11), respectively. Finally,
Fig. 5(e), 5(j) and 5(o) show the projection of SNR related to ‘reference’ over the subjects’ scalp.

the spatial distribution wi (16) for the three first estimated
components, as well as the signal-to-signal plus noise ra-
tio (SNR) provided by different methods of enhancement,
which is computed as the ratio between the power of the signal
defined as Da′i and the power of signal plus noise defined as
Xui. Let ‘reference’ denotes the input SNR computed before
spatial enhancement (i.e. a′i = âi where âi is the ith column
of Â (2) and ui = 1i, where 1i denotes the vector of zeros
excepted the ith component equal to 1). First of all, as claimed
in the introduction of Section II the input SNR is very low:
typically included between -15 dB and -30 dB, depending of
the subject and the sensors (see ‘reference’ in Figs. 5(d), 5(i),
and 5(n)). Moreover, even if the PCA analysis (8) allows

decomposition of Â (2) such that its first components combine
the maximum of signal, the associated spatial enhancing filters
Upca (7) would not provide good output SNRs, as shown in
Figs. 5(d), 5(i), and 5(n). Indeed, the output SNRs (‘PCA’)
are even lower than input SNRs (‘reference’): this can be
explained by the fact that the noise N is not taken into account
to design these spatial filters, leading to a poor estimation of
enhancing filters. Moreover, this latter fact also leads to not
ensure that the first principal components have the best output
SNRs: the descending order of SNR is quite different from
the descending order of principal values ∆ (6) (Fig. 5(d), 5(i)
and 5(n)). On the contrary, the proposed xDAWN algorithm
provides quite good estimation of spatial enhancing filters U
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Fig. 6. Enhancement of the synchronised response with the target stimuli for
subject 1. In the four figures 6(a), 6(b), 6(c), and 6(d) the blue lines correspond
to the enhanced signals XÛ , and the red lines correspond to the estimated
synchronised model DA′ estimated by different methods: Fig. 6(a) without
enhancement (Û = I and A′ = Â), Fig. 6(b) by PCA using (7) and (8),
Fig. 6(c) by the xDAWN algorithm (12) and (15), and finally Fig. 6(d) by
the JADE algorithm [27], respectively. The vertical dotted lines correspond
to the target stimulus onsets. The left y-axis refers to the SNR (in dB), while
the right y-axis refers to the sensor (‘reference’) or to the index component
(’PCA’, ’xDAWN’ and ‘ICA’).

since the output SNR (‘xDAWN’) of the first components is
larger than the best input SNR (‘reference’). The improvement
is thus included between 1.2 dB to 7.2 dB for the three first
xDAWN components compared to the best input SNR for each
subject: by only considering the first xDAWN component, the
gain is from 5 dB to 7.2 dB compared to the best input SNR
for each subject. Finally, one can see that spatial filters Û
estimated by the JADE blind source separation algorithm [27]
(denoted ‘ICA’) improve the output SNRs compared with
no spatial enhancement (‘reference’). Indeed, the first ‘ICA’
components have a higher SNR than the first ‘reference’
components. However, the best ‘ICA’ output SNRs are lower
than the best SNRs provided by the ‘xDAWN’ algorithm:
the proposed ‘xDAWN’ algorithm provides a better estimation
of the P300 evoked potentials. It is also quite interesting to
note that the best input SNRs are related with sensors mainly
located at the back of the head rather than sensors located
at the top of the head (Fig. 5(e), 5(j) and 5(o)). Finally, for
each subject, the three first xDAWN components are plotted
(Fig. 5(a), 5(b), 5(c), and 5(f), 5(g), 5(h), and 5(k), 5(l), 5(m)).
In some of these components, the presence of a (strong) wave
at 5.6 Hz suggests that a specific synchronised response with
the visual stimulation should be introduced in model (14).
Moreover, it is quite interesting to note that for the three
subjects the first xDAWN components are mainly located at
the back of the head (e.g. see w1 and w2).

Fig. 6 illustrates the enhanced noisy signals Xui and
the model Dai by different methods: without enhancement
and with spatial filters provided by PCA, by the proposed
xDAWN algorithm or by the JADE blind source separation
algorithm [27]. As already mentioned above, the PCA de-
composition provides poor estimation of enhancing spatial
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(d) Distribution: Nc = 5, I = 4

Fig. 7. Performance curves. Fig. 7(a), 7(b) and 7(c) show the percentage of
good symbol prediction versus the number of repetitions of the same symbol
for different numbers of training symbols Nc = 2, 5or 20, respectively.
In each figure, the legend refers to the reference method (‘reference’) or to
the number of kept xDAWN components (I) with the xDAWN algorithm.
Fig. 7(d) shows the distribution of the obtained results with Nc = 5 and
I = 4 by the reference method (‘reference’) and by the xDAWN algorithm
(‘xDAWN’). The dotted lines correspond to the minimum and maximum
classification accuracies. The continuous lines show the median values, while
the surfaces extend from 5% to 95% of the classification accuracies.

filters leading thus to a SNR lower than without spatial
filtering (Fig. 6(a) and 6(b)). On the other hand, using an
appropriate spatial enhancement (‘ICA’ or ’xDAWN’) may
improve the SNR (Fig. 6(c) and 6(d)). the xDAWN decompo-
sition leads to really enhance the evoked potentials as shown
in Fig. 6(c): even if the SNR is still small (−9.2 dB for the
first xDAWN component), the evoked potentials might be seen
on the enhanced signal Xû1.

B. BCI P300 speller classification

In this set of experiments, the results of BCI classification
obtained by different methods are compared: spatial filters U
are estimated by different algorithms while the linear classifier
w is estimated by BLDA for each case. In each experiment, Nc

symbols are used to train spatial filters U and to train linear
classifier w. The BCI performance is then tested on all the
others symbols of the same subject. Note that after epoching
estimated sources ŝi(t) (17), f (j)

i is decimated with a factor
10 before computing feature vector pj (19).

The first method uses no spatial filters (i.e. U is chosen
equal to the identity) and is denoted ‘reference’: this cor-
responds to a simple BLDA on time samples. The second
method, denoted ‘xDAWN’, estimates spatial filters U thanks
to the proposed xDAWN method (Section II). The averaged
results (for the three subjects) of BCI classification are pre-
sented in Fig. 7, which shows the percentage of success
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versus the number of repetitions of the same symbol for
different numbers of training symbol Nc. For each subject
and for each configuration (Nc, I), where I is the number
of estimated xDAWN components, 100 different allocations
between training and testing database are randomly chosen
among the entire set of symbols (i.e. 73 symbols for subject
1, 63 symbols for subject 2 and 66 symbols for subject 3). The
curves presented in Fig. 7(a), 7(b) and 7(c) are thus the average
results for all 300 different configurations: three subjects times
100 training databases randomly chosen per subject.

As expected, for each configuration the number of repeti-
tions increases the performance. The same positive correlation
is found with respect to the number of training symbols Nc.
It is quite interesting to consider the case where only a few
number of symbols (i.e. Nc ≤ 5) are used to train both
spatial filters U and linear classifier w. Indeed, the proposed
‘xDAWN’ method outperforms the ‘reference’ method, ex-
cept when only the first xDAWN component is considered
(Fig. 7(a) and 7(b)). However, with two (or more) main
xDAWN components, the proposed method provides better
performance than the ‘reference’ method. Moreover, it seems
that a limited number of xDAWN components (around four)
is sufficient to mainly gather the evoked potentials: for each
configuration, the best performance are obtained by only using
four xDAWN components. This latter result confirms the SNR
results (Fig. 5(d), 5(i), and 5(n)) where a limited number of
xDAWN components differ with a quite higher SNR than other
components. Finally, using too many xDAWN components (15
for instance) sightly decreases the performance. This can be
explained by the fact that these additional components have
poor SNR thus corrupting the feature vector pj (19) with
additional components f (j)

i (18) that contain more noise than
signal. Furthermore, Fig. 7(d) shows the distribution of clas-
sification accuracy, corresponding to the 300 configurations
with five training symbols (Nc = 5) and with four xDAWN
components (I = 4). One can see the benefit of using xDAWN
algorithm to enhance evoked potentials: the ‘xDAWN’ results
are better than the ‘reference’ results. For instance, with only
five repetitions of the same symbols, 95% percent of the 300
tested configurations provide more than 60% of classification
accuracy with the ‘xDAWN’ method, while only 50% of
‘reference’ results provide more than 60% of classification
accuracy. Finally, with five repetitions (i.e. about 11 seconds),
more than 50% of the ‘xDAWN’ results insure more than 80%
of classification accuracy.

In the last set of experiments (Fig. 8) we compare the
classification accuracy provided by different spatial filtering
methods with five training symbols (Nc = 5). ‘reference’
means that no spatial filtering enhancement is performed: it
is a simple BLDA on time samples. ‘ICA’ refers to spatial
filters estimating by JADE [27] blind source separation (BSS)
algorithm, and the 15 components kept after BSS are chosen
thanks to their high SNR: these 15 components provide the
best classification accuracy. ‘PCA’ corresponds to a principal
component analysis of synchronous response (2) given by (7)
and (8): the four first components where selected since they
represent more than 95% of the total variance of Â (2). Finally
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Fig. 8. Comparison of classification accuracy achieved by different spatial
enhancement with five training symbols (Nc = 5). ‘reference’ means that
no spatial enhancement is performed before BLDA classifier, ‘ICA’ refers
to the JADE blind source separation algorithm [27], PCA corresponds to an
enhancement obtained by PCA thanks to (7) and (8), while xDAWN results
are obtained by the xDAWN algorithm (12) and (15), respectively.

‘xDAWN’ refers to the proposed method (Algorithm 1) and
four components where selected since the previous set of
experiments show that this choice provides the best classifica-
tion accuracy. Not surprisingly, ‘PCA’ method provides poor
classification accuracy due to the weakness of the method
which does not take into account the noise to estimate the
spatial filters. Moreover, as one can expected ‘ICA’ and
’xDAWN’ enhancements before BLDA classifier improve the
classification accuracy compared to a simple BLDA classifier
(‘reference’). Finally among the tested methods, the proposed
‘xDAWN’ algorithm provides the best classification accuracy:
with only five symbol repetitions it achieves 80% of classifi-
cation accuracy while ‘ICA’ achieves 71%.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, a new unsupervised method to enhance
evoked response by target stimuli in an oddball paradigm
was presented. Only given the time indexes of rows/columns
intensifications, the proposed algorithm estimates the main
components of the P300 subspace by providing the best
SNR. It was shown to efficiently improve the quality of the
evoked responses by taking into account the signal and the
noise, as opposed to principal component analysis, which
only considers the signal. Using this method to enhance P300
subspace before the BCI classification task speeds up the
BCI since less words are required to train the spatial filters
and the linear classifier, given a certain percentage of good
symbol prediction. Moreover, using this spatial enhancement
significantly reduces the dimension of the feature vector used
to predict words.

To further improve the performance of the P300-speller
BCI, additional work should be considered. For instance, to
better estimate the response evoked by target stimuli, a multi-
stimuli model should be deemed by assuming that all the non-
target stimuli – as well as the target stimuli – evoked specific
responses. Finally, sensor selection should also be considered,
in order to drastically reduce the number of required EEG
electrodes, leading thus to a more ergonomic BCI.
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A. Schlögl, R. Scherer, B. Graimann, C. Keinrath, D. Skliris, M. Wörtz,
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pour les interfaces cerveau-machine,” in Proc. GRETSI, Troyes, France,
September 2007, pp. 625–628, (in French).

[19] ——, “Subspace estimation approcah to P300 detection and application
to Brain-Computer Interface,” in Proc. Int. Conf. IEEE Engineering in
Medicine and Biology Society (IEEE EMBC), Lyon, France, August
2007, pp. 5071–5074.

[20] G. H. Golub and C. F. Van Loan, Matrix Computation, 3rd ed. Johns
Hopkins University Press, 1996.

[21] G. H. Golub and H. Zha, “The Canonical Correlations of Matrix Pairs
and Their Numerical Computation,” Stanford University, Tech. Rep. NA-
92-13, 1992.

[22] ——, “Perturbation analysis of the canonical correlations of matrix
pairs,” Linear Algebra and its Applications, vol. 210, pp. 3–28, October
1994.

[23] H. Hotelling, “Relations between two set of variables,” Biometrika,
vol. 28, no. 3–4, pp. 321–377, 1936.

[24] G. Schalk, D. J. McFarland, T. Hinterberger, N. Birbaumer, and J. R.
Wolpaw, “BCI2000: A General-Purpose Brain-Computer Interface (BCI)

System,” IEEE Transactions on Biomedical Engineering, vol. 51, no. 6,
pp. 1034–1043, June 2004.

[25] B. Blankertz, K.-R. Müller, G. Curio, T. M. Vaughan, G. Schalk,
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à l’Énergie Atomique (CEA), Saclay, France. From
1993 until 2001, he was a Research Scientist with
Schlumberger, Montrouge, France. His research in-
terests are in the area of statistical signal processing

and its applications, with emphasis on point processes, biomedical signal
processing, and independent component analysis (ICA) or blind source
separation (BSS).

Virginie Attina received a Ph.D. degree in cognitive
sciences from the Institut National Polytechnique de
Grenoble, Grenoble, France, in 2005.

She is currently a postdoctoral research fellow
at the Brain Dynamics and Cognition unit (U821)
(National Institute of Health and Medical Research),
Lyon, France. Her general research interests concern
human behavior, cognition and communication and
methods of rehabilitation of disabled persons.

Guillaume Gibert received a Ph.D. degree in signal,
image and speech processing from the Institut Na-
tional Polytechnique de Grenoble, Grenoble, France,
in 2006.

He is currently a postdoctoral research fellow
at the Brain Dynamics and Cognition unit (U821)
(National Institute of Health and Medical Research),
Lyon, France. His general research interests concern
signal processing methods applied to commnication
systems for disabled persons.


