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Abstract. A Brain-Computer Interface (BCI) allows the direct com-
munication between humans and computers by analyzing brain activity.
The oddball paradigm allows detecting event-related potentials (ERPs),
like the P300 wave, on targets selected by the user. While this paradigm
provides the location of the P300 wave in the signal, its exact location
remains a hypothesis and depends on the subject. This paper deals with
the choice of the time segment for the signal analysis and its impact on
the classification. A method for selecting the relevant part of the sig-
nal that contains the P300 wave is proposed. First, spatial filters are
estimated for enhancing the signal. Second, a part of the enhanced P300
wave is selected based on its magnitude. This selection aims at providing
an optimal start for the time window representing the P300 wave. Three
window lengths are compared. We show that a window length of 500ms
provides on average the best results, but the optimal window length
should be set individually. The proposed technique has been validated
on data recorded on 20 healthy subjects.
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1 Introduction

A Brain-Computer Interface (BCI) allows the direct communication between hu-
man and computers by analyzing brain activity. This is thanks to particular brain
responses to which a specific command can be assigned when they are detected.
The detection of event related potentials (ERP) is one way for creating a BCI.
A typical ERP based BCI is the P300 speller, which allows people to spell char-
acters. Oddball paradigms are used in BCI to generate event-related potentials
(ERPs), like the P300 wave, on targets selected by the user. These paradigms
provide random visual stimuli that give a surprise effect to the subject. In this
paper, we consider the classical P300 speller in which a 6× 6 matrix containing
all the available characters is presented to the user on a computer screen [1, 2].
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During the experiments, the user has to focus on the character s/he wants to
spell. When the user focuses on a cell of the matrix, it is possible to detect a
P300 (a positive deflection in voltage at a latency of about 300 ms relative to
the stimuli onset in the EEG) time-locked to the onset of the cell intensification.
To generate ERPs, the rows and columns are intensified randomly. Row/column
intensifications are block randomized in 12 events (6 rows and 6 columns). The
sets of 12 intensifications is repeated Nepoch times for each character. Therefore,
2Nepoch possible P300 responses should be detected for the recognition of one
character (Nepoch times for each row and column).

The first step in the P300 speller represents the detection of P300 waves in
the electroencephalogram (EEG) signal. The second one combines several P300
responses for determining the right character to spell. The order of the intensi-
fications in the paradigm during the experiment allows estimating when a P300
response is expected. In the character recognition step, the outputs of the P300
classification are combined to classify the main classes of the application (charac-
ters). In the oddball paradigm, a character is defined by a couple (row,column).
The character is supposed to correspond to the intersection (row/column) of the
accumulation of several P300 waves (2Nepoch). The best accumulation of P300
waves for the horizontal (resp. vertical) flashing lights determines the row (resp.
the column) of the desired character. For the P300 detection, we consider a sig-
nal X ∈ RNt×Ns where Nt is the number of sampling points in the time domain,
and Ns is the number of electrodes that are used for the signal acquisition. Nt

corresponds to a duration T of the recorded signal and a sampling frequency Fs.
We denote by t0 the moment when a visual stimulus is presented to the zone
on the screen observed by the subject. We define by ∆t the duration between
t0 and the moment where an extract of the signal X of duration N1/Fs seconds
is recorded. A challenge in P300 based BCI is to find that ∆t and N1, i.e. the
latency and the duration of the P300 wave, which result in the best P300 detec-
tion. While it is possible to detect the P300 wave with a large N1, finding the
location of the P300 wave in relation to a subject can reduce the signal length
to analyze and thus increase the signal-to-noise ratio by focusing only on the
relevant part of the signal.

Several individual characteristics significantly influence the amplitude and
the latency of the P300 wave. Indeed, the age, gender, intelligence and the per-
sonality are reported parameters that have an impact on the P300 wave [3].
Elderly have a higher latency and it increases linearly over the years. It is in-
deed reported that the latency increases of about 17ms every decade. In addition,
the latency of the P300 wave is usually more important in the morning than in
the evening [4]. A depression can also involve modifications in the amplitude and
the latency of the P300 wave. Such psychological disorder is often present for
disabled people with locked-in syndrome. In this paper, we address the problem
of the window length choice for detecting the P300 wave. The starting point and
the length of this window are usually set empirically and centered around the
expected P300 wave occurrence at 300ms after the visual stimulus. The purpose
of this paper is to identify the impact of ∆t and N1 on the classification, i.e., on



Impact of the time segment for P300-BCI 3

the P300 speller accuracy. This research is part of an ongoing effort in the BCI
community to determine what parameter of a P300 speller should be adapted
to each individual.

2 System overview

2.1 Spatial filtering

The EEG signal containing ERP is very noisy. One usual step for enhancing
a particular brain response is to use spatial filters. Several methods for spatial
filtering are described in the literature. The bipolar and Laplacian operators
are usually used on sets of the electrodes for canceling the common nuisance
signals [5]. Adaptive spatial filters obtained through Independent Component
Analysis [6, 7] and Common Spatial Pattern [8, 9] are also commonly used. Spa-
tial filters can also be embedded in the classification procedure as described
in [10].

The spatial filtering method that is considered in this paper is based on the
xDAWN algorithm [11]. This method assumes two main hypotheses:

– There exists a typical response synchronized with the target stimuli superim-
posed on an evoked response to all the stimuli (target and non-target). This
hypothesis assumes the presence of a P300 wave only after the flashing light
corresponding to the target on the screen. This hypothesis is common to P300
classifiers. Nevertheless, we can point out the relative confidence of the ground
truth for training the classifier. In addition, the optimal location of the P300
wave may be difficult to identify. The responses are not always correlated in
time to certain stimuli.

– The evoked responses to target stimuli could be enhanced by spatial filtering.
This hypothesis is validated by several previous works that proved the interest
of enhancing the input signal. The P300 is a spatially stationary waveform that
has origins different from the background, i.e., the current ongoing EEG.

We consider an algebraic model of the recorded signals X that is composed
of three terms: the P300 responses (D1A1), a response common to all stimuli,
targets and non-targets confound (D2A2) and the residual noise (H)

X = D1A1 +D2A2 +H. (1)

where X ∈ RNt×Ns . The choice of Nt is one of the problems addressed in this
work. Nt should be large enough to contain the P300 wave but ideally, it should
not contain the noise parts of the signal.D1 andD2 are two real Toeplitz matrices
of size Nt × N1 and Nt × N2 respectively. D1 has its first column elements set
to zero except for those that correspond to a target onset shifted by ∆t, which
are represented with a value equal to one. For D2, its first column elements are
set to zero except for those that correspond to stimuli onset. N1 and N2 are
the number of sampling points representing the target (the P300 response) and
superimposed evoked potentials, respectively. H is a real matrix of size Nt×Ns.
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The purpose of applying spatial filters U ∈ RNs×Nf is to enhance the signal to
signal-plus-noise ratio (SSNR) of the enhanced P300 responses (D1A1U), where
Nf is the number of spatial filters

XU = D1A1U +D2A2U +HU. (2)

We define the SSNR in relation to the spatial filters by:

SSNR(U) = Tr(UT ÂT
1 D

T
1 D1Â1U)

Tr(UTXTXU) (3)

where Â1 corresponds to the least mean square estimation of A1 :

Â =
[
Â1
Â2

]
= ([D1;D2]T [D1;D2])−1[D1;D2]TX (4)

where [D1;D2] is a matrix of size Nt × (N1 +N2) obtained by concatenation of
D1 and D2.
The SSNR is maximized by:

Û = argmax U SSNR(U). (5)

In the definition of the SSNR, we replace Â1 by BT
1 X where BT

1 is a part of the
least mean squares estimation Eq. (4). Then, we apply two QR decompositions
yielding D1 = Q1R1 and X = QxRx. Finally, one can express Eq. (3) as:

SSNR(V ) =
Tr
(
V T (QT

xB1R
T
1 R1B

T
1 Qx)V

)
Tr (V TV ) , (6)

where V = RxU . V is therefore obtained from the Rayleigh quotient, whose
solution is the concatenation of Nf eigenvectors associated with the Nf largest
eigenvalues of QT

xB1R
T
1 R1B

T
1 Qx [12]. These vectors are estimated thanks to a

singular value decomposition (SVD) of R1B
T
1 Qx = ΦΛΨT , Φ and Ψ being two

orthogonal matrices and Λ being a diagonal matrix with nonnegative diagonal
elements in decreasing order. The solution of Eq. (5) provides the spatial filters.
They are ordered in decreasing order by relevance impact. Finally, the enhanced
signal X̂ can be estimated:

Û = R−1
x Ψ X̂ = XÛ. (7)

2.2 Classifier

The input of the classifier for the P300 detection corresponds to the four first
components of the enhanced signal (Nf = 4). The Bayesian linear discriminant
analysis (BLDA) classifier is considered for the detection of the P300 wave [13].
This classifier is fast to train and does not require hyperparameters to adjust [14].
It finds a discriminant vector w such that the following expression is minimized:

|wT p−O(c)| (8)
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where p belongs to the class c and O(c) represents the associated scalar of a
class c. For the class representing the P300 (resp. non P300), O(c) = 1 (resp.
O(c) = 0). The vector p is obtained by the concatenation of the different time-
course signals across the different spatial filters.

3 Latency estimation

The latency is estimated thanks to the enhanced P300 response defined by
Â1U = Â1Û . The first component of Â1U represents by interpretation of Eq. (3)
the application of the filter that maximizes the SSNR on the wave form of the
P300. Therefore, Â1U represents an enhanced wave form of the P300 wave. Thus,
only the first component of Â1U is taken into account for estimating the P300
latency. We consider the vector (ζ1, . . . , ζN1) that contains the magnitude of the
P300 wave enhanced by the first spatial filter, where ζ = |Â1U(:, 1)|.

The p highest values of ζ are chosen as a subset of the best observations that
describe the P300 wave. In the experiments p is chosen as p = N1/2 or p = N1/4,
which represents the best 500ms or 250ms part of the signal to consider. The
selected signal parts are denoted by ζ̂ = (ζj1 , . . . , ζjp

). ζj1 corresponds to the
first sampling point to consider after a visual stimulus. Therefore, we have that
∆t = arg(ζj1)/Fs and Nt = arg(ζjp) − arg(ζj1). arg(.) provides the index of
the selected ζ value. The newly selected window is then used for creating new
spatial filters. The selected signal is estimated again with the procedure described
before. These steps are iterated until the selected signal parts converge.

4 Experiments

The EEG signal was recorded on 20 healthy subjects (average age= 26 years,
standard deviation = 5.7 years, 17 males, 7 females). Subjects were wearing an
EEG cap with 32 electrodes [15]. For the further analysis, we consider also a
subset of eight electrodes: FZ , CZ , P7, P3, PZ , P4, P8, OZ . Such electrode subset
represents an acceptable comparison for what could be a commercial BCI. For
each subject, two sessions are recorded. The first session is dedicated to the
training part of the classifier. 50 characters were used for each subject. In the
second session, the test session, 60 characters were spelled by each subject. Before
the classification steps, the signal initially acquired with a sampling rate of 100Hz
was first filtered by a bandpass filter with cut-off frequencies at 1Hz and 20Hz.
Finally, the signals were normalized independently for each sensor and for each
character as to have a zero mean and standard deviation equal to one.

5 Results

Figure 1 presents the speller accuracy (in %) across the 20 subjects and for
four different ways to select the window for classifying the P300 waves. The
speller accuracy corresponds to the character accuracy after combination of the
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different P300 waves. Three fixed window lengths are considered: 1s, 500ms,
and 250ms. With a window of 1s, the classifier input signal is taken directly
after the start of a visual stimulus. The windows of size 500ms and 250ms are
centered on 300ms after the start of a visual stimulus. The adaptative windows
are defined in relation to the latency estimation described in section 3. For a set
of eight electrodes, the average accuracy of the speller across the 20 subjects is
90.17%, 90.42% and 85.92% with a fixed window length of 1s, 500ms and 250ms,
respectively. With an adaptive window, the average accuracy is 87.75% and
82.66% respectively for 500ms and 250ms. When all sensors are considered, the
average accuracy is 96.17%, 96.33% and 94.17% with a fixed window length of
1s, 500ms and 250ms, respectively; with an adaptive window, we obtain 95.33%
and 92.92% for 500 and 250ms. For the non-adaptive procedure, we performed
1-way repeated measure ANOVA with random factor “window length” (three
levels: 1s, 500ms and 250ms), separately for 32 and 8 electrodes. We have used
Geisser-Greenhouse correction for covariance circularity violation and we have
performed Bonferroni-corrected all pair-wise post-hoc comparisons by paired
t-tests. For the adaptive procedure we performed paired t-tests on the factor
“window length” comparing the means obtained using 500ms and 250ms.

The ANOVA for the non-adaptive procedure was significant, both for the
32 electrodes configuration (F(2)=4.57, p=0.045) and 8 electrodes configuration
(F(2)=6.72, p=0.018). Table 1 presents pairwise comparison between the differ-
ent window lengths with the non-adaptive method. The t-test for the adaptive
procedure was significant only using the 8 electrodes configuration (t(19)=2.50,
p=0.021).

# Electrodes 1s vs 500ms 1s vs 250ms 500ms vs 250ms
t(19) p t(19) p t(19) p

8 X 2.58 0.053 5.06 0.021
32 X 2.35 0.019 2.87 0.009

Table 1. Pairwise comparison of means. X means that the difference is not significant.

These results suggest that using the non-adaptive procedure, a time segment
of 500ms is the minimum length to keep a good accuracy, by both using the 8
and 32 electrodes configuration. With the adaptive procedure, the above result is
only true when using the 8 electrode configuration. On the other hand, there is no
difference between 500ms and 250ms window length by considering all available
electrodes. In summary, the adaptive procedure allows us to reduce the window
length down to 250ms without significantly affecting the accuracy of the P300
speller, however it appears that a large number of electrodes must be used for
this purpose. This proves that not only the classifier but also the normalization
of the input data like the choice of the input vector size could ideally be set in
relation to each subject. Alternatively, one may also chose the electrode subset
adaptively. On average, the choice of a predefined window length can be a good
solution.
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(a) 8 electrodes (FZ , CZ , P7, P3, PZ , P4, P8, OZ) [15]
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(b) 32 electrodes

Fig. 1. Accuracy of the P300 speller for the different methods. Fig. 1(a): with 8 elec-
trodes, Fig. 1(b): with 32 electrodes

6 Conclusion

Current state-of-the-art methods for the classification of the P300 wave do nei-
ther exploit the latency nor the length of the P300 wave [10]. Feature selection
strategies are predominantly based on an optimisation in the spatial domain,
i.e., electrodes selection. According to our results, the choice of the length and
the starting point can have an impact on the classification rate of the speller
for several individuals, particularly for persons who obtain relatively bad results
with the speller. The choice of the window length and the estimated location of
the P300 peak could jeopardize the BCI literacy for some subjects. A method
for the estimation of the P300 latency has been proposed. It includes a step for
enhancing the P300 wave and a step for selecting the best part of the signal for
estimating the P300 wave. These preliminary but promising results provide hints
on the need of models for solving this problem individually. Models like hidden
Markov Models could help defining the temporal elasticity and elusiveness of
the P300 wave over time. While the adaptive windows can provide a way for
increasing the efficiency of the system, the signal variability over sessions could
be an obstacle for such adaptivity. Further works could deal with the dynamics
of the P300 wave over time and for each subject.
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