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ABSTRACT tries to deal with these both stages at the same time by min-

I s . : imizing the mutual information between the outputs of the
Usually, source separation in Post-Nonlinear (PNL) motsels separating system [2]. Despite the theoretical soundnkess o

achieved via one-stage methods, i.e. the two parts (jinedr asuch an approach, there are several drawbacks regarding its
nonlinear) of a PNL model are dealt with at the same time; PP ' 9 9

However, recent works have shown that the development qspphcgbmty. For example, Fhe evaluau_on of the ”."'“t“a' N
two-stage techniques may simplify the problem. Indeed, i ormation demands estimation of marginal entropies, which
: ' ‘results in a complex task. Also, given the difficulty in defin-

the nonlinear stage can be compensated separately, then,. i L :
a second moment, one can make use of the weII-estainsh%:og ?nll\jltlusa(ljiﬁ;gl::zgltie(;rpi?t/vsolzlgoller;g?fem) gssr;éﬁs:oba:ﬁgr?n
source separation algorithms for the linear case. Motivaye oo ' P P

e §ource extraction in such a case.
that, we propose in this work a novel two-stage PNL metho _ _
relying on the assumption that the sources are bandlimited In order to overcome practical problems like these, alter-
signals. In the development of our method, special care igative methods, like the gaussianization [3] and the gedmet

taken in order to make it as robust as possible to noise. Simgal [4] approaches, rely on additional assumptions abait th
lation results attest the effectiveness of the proposal. sources in order to obtain a two-stage solution, in which the

nonlinear and linear stages of the PNL model are treated sep-
arately. Indeed, if the nonlinear effects introduced in &PN
model are counterbalanced in a first stage, then the remain-

The objective of blind source separation (BSS) methods is 'Y task becomes essentially of linear nature and, thusjean

estimate an unknown set of source signals by using only Sanq_ccomphshed in a very efficient way by linear source separa-

ples that are mixtures of these original signals. This bl fuon or source extraction methods. Yet, despite the engaura

O%g results provided by the two-stage PNL methods presently

1. INTRODUCTION

has been extensively studied for the case in which the mixing © . . N :
y /ailable, there are still some limitations that make tlagir

process is modeled as a linear system. In such case, the inde-"" - . . . i
pendent component analysis (ICA) is the standard tool te se;? |cat|_on difficultin a p_raCt'CEi.I scenario. For_msta_ndm ge-
arate the sources. However, when the mixing process is no metrical method [4] is restrlgteq to scenarios with only tw .
linear, BSS becomes a more complex task. For instance, nof. 1 ces: whereas the gaussianization approach [3] may fail
linear models are, as a rule, not separable. Put differghtly when there is a small number of sources.
recovery of the condition of statistical independence chig We propose in this work a novel two-stage PNL method
the very essence of ICA, does not always ensure proper sourtiéat employs a certain degree of prior knowledge about the
separation in nonlinear models [1]. In view of this problem,spectral content of the sources. More specifically, we assum
a more reasonable approach in nonlinear BSS is to focus dhat the signals of interest are bandlimited, which allows u
constrained systems, for which the sound separabilitygprop to formulate a simple yet solid criterion for the estimation
ties still hold. of the PNL nonlinear stage. The core of our idea is based
The most studied examples of separable nonlinear mod@n a well-known result from the nonlinear signal processing
els belong to the class of Post-Nonlinear (PNL) models [2]theory [5, 6], namely: when a signal is submitted to a non-
In PNL models, the sources firstly undergo a linear mixinglinear function, the spectrum of the resulting signal beesm
process. Then, the resulting outputs are submitted to a sewider. Therefore, a natural approach to counterbalance non
ond stage composed of component-wise nonlinear functionénear distortions is to search for a function that givesiaga
The usual approach to recover the sources in a PNL modégndlimited signal. We shall show that the application & th
result gives a simple PNL source separation method.

*L.T. Duarte is grateful to the CNPq (Brazil) for funding his[Presearch. . .
C. Jutten is with the Institut Universitaire de France. In order to present the details of our method, the paper is

fThanks to FAPESP for the financial support. divided as follows. Firstly, in Section 2, we review the PNL



mixing model. Then, in Section 3 we describe the main assources. In fact, these two additional assumptions are nec-
pects of our approach. In Section 4, we perform a set of simessary if one wishes to use the standard BSS methods in the
ulations with the aim of assessing the validity of our methodlinear mixing stage.
Finally, the concluding remarks are present in Section 5.

3.1. Compensating the nonlinear functions

2. POST-NONLINEAR MIXING MODEL Let us assume that each sourgét) is a bandlimited sig-

The PNL model, depicted in Fig. 1, consists of a linear mixing?haltvmh n|:1aX|murtr1 fre?uenc_y 9"’|?” DB, (1) Ihent,hglvgn |
stage followed by a set of invertible nonlinearities, eank o at the ourier transform 1S a finear operator, the signals

applied to a single linearly mixed signal. In mathematical”(*) Which c_orrespond to I.inear m.ixtures of the sources, are
terms, the vector containing the mixed signals in a PNL mode Iso bandlimited signals with maximum frequency given by

can be expressed as =) = max(Bg, 4, -+, B, (1)) Based on a well-known
result from the nonlinear signal processing theory (seé][5,
x(t) = f(As(t)) for instance), we know that if the bandlimited signa(t) is

(1) submitted to a nonlinear functiofy-), then the spectrum of
the resulting signat;(t) = f(z;(t)) will be wider than the
spectrum of the original signal.

In order to show why spectral spreading takes place in
nonlinear systems, let us assume tligt) admits a power
series expansion, i.e.,

wheres(t) = [s1(t), s2(t), ..., s,(t)]T is the vector contain-
ing the source signals arfd-) = [f1(-), fa(*),---, fa()]¥
denotes the nonlinearities applied to each output of tiealin
mixing stage, described by the matx

o0
- S _ _ (k) k

0 0, T 5 0 zi(t) = fi (z:(t) = Y _ ;" zi(t)*. (3)

A : : W k=1
i A - n - n (t) . . .
w0, O o o) e Denoting byZ;(w) the Fourier transform of; (¢), the Fourier

N ~ )L o J transform of (3) is given by
Mixing System Separating System

Xi(w) = I Zi(w) + 1P Z,(w) * Zo(w)+

4
fi(g)Zl-(w)*Zi(w)*Zi(w)+~~~ , &

Fig. 1. The PNL problem structure.

~ Stillin Fig. 1, we show the PNL separating system, whichwhere the symbol+* stands for the convolution operator. A
is basically a mirrored version of the mixing system. Thebasic property of the convolution states that/f (w) and

estimated sources are thus given by Ry (w) denote the Fourier transform of two signals bandlim-

ited to B; and Bs, respectively, therR; (w) * Rq(w) is ban-
y(t) = We(x(t)) (2 dlimited to B, + B, [6]. Therefore, in Eq. (4), sinc; («) is
= Wq(t) bandlimited toB., ;), thenZ; (w) = Z;(w) will be bandlimited

t02B., (1), Zi(w) * Z;(w) * Z;(w) 10 3B, (;), and so forth. As

whereg(-) = [91(-),92(-), .-, 9n()]" is @ set of nonlinear 4 consequence, it is expected that the maximum frequency of

functions that must be carefully adjusted to invert theaacti X (w) be larger thar., -

of £(), andW corresponds to the linear separating matrix. In view of the spectral spreading phenomenon described

above, the nonlinear effects introduced fy-) can be coun-
3. SEPARATION OF BANDLIMITED SIGNALSINA terbalanced by a functiog;(-) that gives a signaj;(t) ban-
PNL M ODEL dlimited to the original bandwidth of the input signal(t).
Indeed, in view of Eq. (4), this condition is satisfied when
The peculiar structure of the PNL mixture, with a clear di-¢;(t) = g:(fi(zi(t))) = az(t) + 3, wherea, § € R, that is,
vision between the linear and the nonlinear sections, sugvhen the composition of the two functions becomes a linear
gests that one could treat each stage separately. If thHa is tfunction. In the sequel, we shall discuss how this idea can be
case, after canceling the nonlinear distortion introduibgd put into practice.
the functionsf;(+), the problem is reduced to the one of lin-
ear BSS, for which efficient tools are available. Our apphoac3.2. |mplementation issues
follows this idea and, in the sequel, we will discuss how it . o .
becomes possible to deal with the nonlinear stage when thince we are interested in finding a functign(-,w:),
sources are bandlimited signals. In our development, vee ald?arametrized byw;, that gives a signaj; () whose energy
assume that the sources are mutually independent and thatiye refer the reader to [6] for a more complete explication o fitie-
the number of mixtures is, at least, equal to the number ofomenon.




beyond the frequencys., ) is as low as possible, we can It is interesting to note that the cost function (6) attains a
formulate this task as the following minimization problem  small value whenever there is a great variation between the
energies ofy;(t) in the bandgB., 4, 1] and B, ;) — b, 1].

Ef_?t’)gzw This situation is expected for the desired solution to oobpr
min J; (w;) = ﬁ, (5) lem, ie., whenw = wy, B.,) = B..(1)), Wherew, rep-
‘ q:(t

resents the parameters that provide the inversiof)(@f. In-
deed, whery fi is almost linear, one expects a very low
whereE,, ;) denotes the total energy off(t) andEf>B i o

P g hat the high-f
the energy associated with the frequency components greate erayE,, <t) - given that the |g requency components
thanB., ). The purpose of the terii,, ;) is to avoid a trivial introduced byf;(") into ¢;(t) are quite reduced. Concerning

solution where the signat (t) has null energy. the termEth])g “07" it includes the enefgﬁfifzim but
The cost function defined in (5), which is the basis of they|gg the energy, B, N b<I<Bii) This last term lies within

approach developed in [6], works with the strong assumptlophe bandwidth szt( ),

thatB., ;) is known in advance. As a consequence, its appli- F>B.. ) . .

cation |s not possible in a blind source separation conéext, ai(t) » Which thus explains why

such an information is usually not available. Yet, it woutd b /2(Wa; B, (1)) i expected to be quite small.

possible to extend; (w;) to a complete blind scenario with It is worth noting that significant variations between

unknownB., ;). In fact, we could replace, in Eq. (5K., ) E;;t)z i andEfo 1o may also happen if the spectrum

by a valueB, .(+) that satisfies3, i > B, (for instance, of ¢;(t) presents energy variations as, for instance, an atten-

this can be achieved by selectm]g closer to ond). In  uated band. As a consequence, the cost function (6) tends

this new situation, we are thus try|ng to minimize the spctr to present local modes around the poifts ;) where these

spreading in the banEBz ) > B.,),1]. Evidently, since variations occur. A practical consequence of this observa-

this is only a necessary cond|t|on there is no theoretigatg  tion regards the definition of the optimization algorithns a

antee that such a procedure will lead to a proper compensatio=(w, B., () may be multimodal, the application of methods

of fi(-). On the other hand, this procedure usually perform@ased only on local search mechanisms, such as the pure

well in practice, at least in noiseless situations. gradient-based techniques, is not recommended since they
When the mixtures are corrupted by noise, it turns outhay converge to local minima.

that the complete blind strategy described in the last para- Another important practical point regards the rolebaf

graph may become rather suboptimal. For example, suppoge(W. B.,)- This parameter acts as a sort of frequency res-

that B =ty >> B, ), i.e. our guess is much more higher olution. For example, if the input signal is periodic (puee-h

that the actual bandwidth ef(¢). Then, the criterion (5) will monics), therb should be small as the energy variations are

consider only a few high-frequency components, whereas afligh concentrated in the spectrum. Conversely, for aperiod

the information available in the badﬂ;zi(t)vézi(t)} will be  Signals, the energy is less concentrated in the spectrur,n and

discarded. Therefore, the resulting estimator in this gdie thus, a greater value fér must be defined. In practice, we

be much less robust to noise than the estimator considerif@PServed that a good rule of thumb is to seleet 0.01 for

the actual valueB., ). This is particularly undesirable in our Periodic signals and = 0.1 for aperiodic signals.

problem given that even a low-power noise can become sig-

nificant after the nonlinear functions. 3.2.1. Summary of the final algorithm for PNL source sepa-
In view of the limitations associated with the blind exten-ration

sion of the paradigm introduced by Eq. (5), a more reasonab

approach is to define a cost function in whigh, ;) is also

considered as an unknown parameter. For mstance this ca

be done through the following minimization problem

and, as a consequence, is expected
to be much larger tha®

Iﬁaving discussed how the nonlinear inversioryfdf) can be
carrled out, the complete algorithm for PNL source sepamati
can be summarized as follows:

1. First stage. For each mixturer;(t), find g;(;(t), w;)

I ?fzm by minimizing the cost functiors (w;, B.. 1)) (Eq. (6));
in Jo(w,B,, ) = —d 6 _ _
W,H,Sf(t) 2(w, Be0) gl>Buw=b © 2. Second stage. The estimated sourcgg(t) are obtained
% (t) by applying a linear source separation or extraction

where the parametéties inside]0, 1] and should be assigned method to the signalg (t) = gi(z:()).

in advance. Later, we will discuss how this can be done. As it was discussed before, due to the existence of local
e . _ . _ optima inJs(w;, B, 1)), care must be taken in the definition
In this work, we consider that the signals are already in rélis-time ¢ 5y ntimization method adopted in the first stage. In this
representation. Given that, we always refer to the normdlfeequency, . . .
where B = 1 corresponds, in the analog domain, Ko/2, where F, is ~ WOTK, we adopted the opt-aiNet algorithm [7]1_ an e\(OlUt'Or"
the sampling frequency. ary method that has been proved to be very efficient in solving




multimodal optimization problems. As explained in [7], the wheree;, d; anda;; denote unknown mixing coefficients.
opt-aiNet requires exclusively the evaluation of the caatf From Eq. (7), it becomes clear that the NE model is an ex-
tion to be optimized. Therefore, in view of Eq. (6), it became ample of PNL model. The inversion of the nonlinear stage in
necessary to evaluate the energygf) in a given frequency this case can be achieved by means of the following functions
band. This can be done by calculating the frequency con-

tent of ¢;(¢) via, for instance, the discrete cosine transform (1) = gi(x5(2), dy) = (x"(t)> = .(t)%fj (8)

q’L gl xl e exp > ZZ .
(DCT)3. Then, the energy is given by the Euclidean norm of
the DCT coefficients associated with the desired band.

3

If, and only if, d; = d;, the compositiony; o f; is linear and,
thus, this situation corresponds to the desired solution.
4. RESULTS Since the functiory;(z;(t),d;) is parametrized by just

one parameter, it becomes possible to visualize the shape of

We present in this section a set of simulations performed iy, cost function (6) in this case. For example, in a noiseles
order to check the effectiveness of the procedure propesed it ation in whichd; = 0.059 andds, = 0.040, the cost func-

Section 3.2.1. Firstly, we focus on the initial stage, whichq« for bothg; () andg(-) are shown in Fig. 2. Note that
concerns the nonlinear compensation of a PNL model. Afte{he valuesd; that minimizeJs(d;, B.. ;) coincide with the

0 1y Pz (t
that, we present an example that shows the usefulness of %4&tual values ofl;. Moreover, the pro(p)osed criterion is min-
proposal in a complete PNL source separation framework. imized for both éases Wheﬁ;.@) — 0.54, which is close to

the bandwidth of the linear mixture®(, ;) = 0.5).
4.1. Inversion of the nonlinear stage

In order to illustrate the applicability of the cost functi(b),

let us consider an example of PNL mixing model with
sources an@ mixtures. The two sources, whose bandwidths
are given byB;, ;) = 0.2 and B,, ;) = 0.5, were obtained
from low-pass FIR filters1(00 taps) driven by white Gaussian
noise. The linear part of the PNL mixing system is given
by the matrixA = [10.5;0.6 1]. Concerning the nonlinear
component-wise functiong;(-), our analysis encompassed
two representative cases: the Nicolsky-Eisenman (NE) mode
and the situation where the inverting functigné ) are poly-
nomials. We will discuss these models in the sequel.

log (Jz (EZ] () rjl))

4.1.1. Nicolsky-Eisenman model

One of the applications of PNL models is related to the use
of ion-selective electrodes (ISEs) array in the problemsef e
timating the concentrations of several ions in aqueous-solu
tion [8]. Typically, an ISE lacks total selectivity, that, i&
may respond to a given target but also to other interfering io
within the solution. As a result of this phenomenon, the out-
puts of an ISE array become mixed versions of a set of source
signals, i.e., the concentrations of each ion within thei-sol
tion. This mixing process can be modeled according to the
classical formalism of the Nicolsky-Eisenman (NE) equatio
which states that, if the ions under analysis have the same

log (-72 (Bzz(L)vJ2)>

valences, which is indeed very common in practice, then the & Buao
response of each ISE within the array is given by (b) Ja(dz, B.,)-
z;(t) = e; + d; log (Z aijsj(t)), 7) Fig. 2. Cost functions/s(d;, B., ;) for the NE model.

Jj=1

3 " oot the i . form (DFTow As discussed in Sec. 3.2, there may exist locally optimal
We could equally adopt the discrete Fourier transform (D ever, : - .
the DCT has the advantage of being a real-valued transformthétmore, models if there are energy vanafions in the SpeCtrum’(dD'

we checked through preliminary simulations that the DCT ghetter results 1 NS phenomenon is clear in Fig. 2(a) where one can O_bserve
for aperiodic signals. a local mode around the frequendy.,,y = 0.2. In this



(Bz,;(t) = 0.52 in this case). By looking at the resulting

Table 1. Effects of noise on the estimation &f. shapes, one can note that the proposed cost function isindee

ds (SNR = 18dB) do (SNR = 20dB) ds (noise free)

FACH) minimized by the expected solutions of our problem.
(semi- bllnd) 0.0515 0.0455 0.0395
Ji(dz2, By (1))
(blind) 0.3336 0.1085 0.0398
Ja(ds, Bzz(t)) 0.0490 0.0457 0.0396

case, the energy variation around this frequency take® plac
because;(t) is a linear combination of two bandlimited sig-
nals, one of them having a bandwidth equaBiq ;) = 0.2.

A relevant point in nonlinear systems like the NE model
regards the effect of the noise. Indeed, even a low-energy
noise can be problematic in this case. For example, let us as-
sume that the observations are given{t) + n; (), where
n;(t) denotes a zero-mean additive white Gaussian (AWG)
noise. Due to the exponential functigf(-), one has;; ()
z;(t)%/ % exp(n,(t)), i.e. z(t) is corrupted by a multiplica-
tive noise that follows a log-normal distribution. This may
result in a noise amplification, specially when the input val
ues ofg, (-) are high.

We conducted a set of simulations to investigate the
effects of the noise on the estimations &f obtained by
the following approaches: 1) the estimator associated with
Jg(dz, B.,), 2) the estimator associated wiﬂi(dz) as-
suming the knowledge of the bandwidth., ) (semi-blind
case), 3) the same cost functidi(d,) but now in a com-
plete blind situation, in whichB._, ;) is defined beforehand
(we setB,,) = 0.8). In Tab. 1, which represents the av-
erage of100 experiments, one can note that, in a noiseless
scenario, the three estimators give values closer to thmlact
one (@, = 0.040). When there is noise, the blind version
of Jl(czg) gives poor estimations fat,, whereas/; (d,) and A
Jo(ds, B., (1)) still work properly. However, it worth re- Fig. 3. Cost functions/z(w;, B.,()) for the polynomial
membering that, while/; (d») assumes the knowledge of the model.

actual bandwidth of the input S|gna12(d2, ZZ(f)) operates
in a completely blind fashion.

log (J2)

log (.J2)

(b) J2 (WQ’ z2(t) )

4.2. Example of PNL source separation

4.1.2. Polynomial model We now present an example where the complete procedure,

In a second situation, we considered that the nonlineangixi described in Section 3.2.1, is applied to a PNL mixture with
functions are given byf;(z(t)) = {/z(t). To compensate 3 sources and sensors. The first source is a sine wave of

them, we make use of polynomial functions given by: frequencyB;, 1) = 0.01, while the two others are aperi-

odic signals with bandwidti#,, ) = 0.5 and B, ;) = 0.8.
qi(t) = gi(wi(t), w;) = a;ad(t) + byx? (t) + c;zi(t). (9)  The linear part of the mixing system is given by the matrix

A =1[10.50.5;0.410.6; 0.3 0.6 1], and the nonlinear func-

The expected solution (in a noiseless case) is thus given kjons followed the NE model, i.ef;(z;) = d;log(x;) where

a; = ¢; = 0 andb; = ¢, whered € R. Note that in this case (¢, = 0.050, d» = 0.060 andd; = 0.045. The number of

one can fix, without loss of generality;, = 1. available samples in this situation wag00, and an AWG

In order to check if/5 (w, B, (t)) succeeds in discriminat- noise of SN R = 20 dB was defined in each sensor.

ing the desired solution, we plot in Fig. 3 the shapes of this  The application of the proposed method for dealing with

cost function for the two mixtures of our example Since thlS{he n0n||near stage prov|ded the fo||ow|ng est|mat|ofhs—

function depends on three parameters ¢; andel(t)) we  0.048, d» = 0.070 andds; = 0.044. As can be seen in Fig. 4,

had to fix Bzi(t) to the value that minimizeds(w, Bzi(t)) the resulting mappings between(t) and¢;(t) are close to



linear functions, which indicates that the task of invagtihe
nonlinearities was satisfactorily accomplished. Yetsitliear

in this figure the noise amplification phenomenon discussed
in Section 4.1.1, and also that the noise effect grows as the

input value grows.
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Fig. 4. Mappings between;(t) andg;(t) for each channel.

Having dealt with the nonlinear functions, we applied

the SOBI algorithm [9] on the signalg(¢). This method

provided good estimations of the actual sources. Indeed,

the obtained performance indiesere STR, = 14.94dB,
SIR; = 10.62dB and SIR; = 12.02dB. In Fig. 5, we

show the source; (¢) (the sine wave) together with its corre-
sponding estimatiom (¢). Note that, due to effect of noise
amplification mentioned before, the estimation error isenor

evident when the signal attains high values.

5. CONCLUSIONS

In this work, we proposed a novel source separation metho[g]
for post-nonlinear mixtures. By relying on the assumption
that the sources are bandlimited signals, we could obtain a

0 200 400 600 800
t

Fig. 5. Actual sources; (¢) (black) and estimated sourge(t)
(gray).
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