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Abstract
L–systems have been used to describe non-uniform, univariate, subdivision schemes, which
offer more flexible refinement processes than the uniform schemes, while at the same time are
easier to analyse than the geometry driven non-uniform schemes. In this paper, we extend L–
system based non-uniform subdivision to the bivariate setting. We study the properties that
an L–system should have to be the suitable descriptor of a subdivision refinement process.
We derive subdivision masks to construct the regular parts of the subdivision surface as cubic
B-spline patches. Finally we describe stencils for the extraordinary vertices, which after a
few steps become stationary, so that the scheme can be studied through simple eigenanalysis.
The proposed method is illustrated through two new subdivision schemes, a Binary-Ternary,
and a Fibonacci scheme with average refinement rate below two.

Keywords: bivariate non-uniform subdivision, L–systems, non-uniform B-spline refinement,
eigenanalysis around EVs

1 Introduction

In this paper, we generalise the univariate L–system based non-uniform subdivision schemes
introduced in [1] to the bivariate setting. While the generalisation of a univariate scheme to
a regular quadrilateral mesh by taking tensor product is usually straightforward, its adap-
tation to extraordinary vertices (EVs), that is, vertices with n ̸= 4 incident edges, is more
challenging. Specifically, the L–system based subdivision system should be able to handle con-
nectivities without a natural tensor product structure, and still provide a consistent labelling
and processing of the mesh edges, while it should also compute and update the positions of
the regular vertices and the EVs with masks and stencils that will ensure nice convergence
properties.

A Lindenmayer system, or L–system, is a collection of symbols and a set of rewriting
rules, which are applied iteratively on an initial sequence of symbols, a word, thus generating a

*Corresponding author
Pre–print version of the article published in Applied Mathematics and Computation, Vol. 457, 2023.
https://doi.org/10.1016/j.amc.2023.128156

1

https://doi.org/10.1016/j.amc.2023.128156


sequence of words. Context-sensitive L–systems have been used to specify uniform subdivision
for curves [2] or surfaces [3]. There, the symbols label mesh primitives, vertices, edges, or faces,
and each rule describes a substitution through a simple topological or geometric operation,
such as face split, edge flip, vertex position update. Their aim was to develop a unified system
of subdivision implementation. In contrast, here, in the context of extending [1], L–systems
are not used to implement a known scheme, but to describe new hierarchies of parametric
spaces for meshes. Each word in the sequence corresponds to a subdivision step, its symbols
identifying the ratios in which the edges of the mesh split in the parametric space. Then,
outside the EV neighbourhoods, the scheme is defined as the usual non–uniform B–spline
subdivision with knots positioned on this grid hierarchy, while for the EV neighbourhoods
special rules are derived.

With the use of context–free L–systems to describe non-uniform subdivision, one is able
to study in a unified and systematic way a large family of bivariate non-uniform subdivision
schemes. Compared to standard uniform stationary schemes, such as the Catmull-Clark [4], or
the Doo-Sabin [5] schemes, the non-uniformity of the L–system based subdivision offers more
control over the subdivision of the parametric space, which does not have to be uniform and
can vary between subdivision steps. Moreover, when they are used as a prediction operator in a
multiresolution analysis framework, or directly as a process to create various levels of detail of
an object, usual subdivision schemes define a set of scales with an integer ratio between them,
usually equal to 2 in each dimension. The design of subdivision schemes based on L–systems
widens the set of possible transition speeds between scales to non integer ratios, allowing,
in particular, more progressive transitions when the ratio is lower than 2. Furthermore, this
control is offered within a rigid framework, which guarantees a small number of different ratios
of interval lengths in all subdivision steps, meaning that the implementation requires a finite,
and usually small, number of different masks.

Previous works have generalised non-uniform B-splines subdivision to meshes with EVs
[6, 7, 8], but they are based on binary subdivision which splits each parameter interval into two
sub-intervals of equal length. Cashman et al. [8] introduce some exceptions serving two aims.
First, to reduce high disparities in interval lengths, which may yield undesirable shapes. To
do so, only the longest knot intervals are split in the first steps, until no interval has more than
double the length of any other. Second, to get a uniform vicinity around any EV, allowing
the use of to spectral analysis tools on constant subdivision matrices. To do so, intervals
incident to the EV may be split into two sub-intervals of unequal lengths. In both cases,
the non-uniformity is not introduced in order to widen the set of possible average refinement
rates (arities), as we do, but to deal with different knot interval lengths at the initial stage:
their aim was to generalise NURBS to meshes with EV. We note that, in their work, a new
computation of subdivision coefficients is required at each step, whereas in our case, masks
and stencils are pre-computed once and for all. However, we also note that, for simplicity,
here we start with the same parametric interval length for all edges of the initial mesh, leaving
the generalisation to non-uniform initialisation for future work.

In contrast to other non-uniform or non-stationary schemes, our approach eases the proof
of convergence and smoothness properties. In the univariate case, our work shares the same
analysis arguments as other schemes based on controlled B–spline knot insertion [9, 10, 11],
and the only remaining complication towards the generalisation to meshes is the analysis at the
EVs. As in [8], we create a locally stationary subdivision around the EV, adding if necessary
some extra requirements on the L–systems to achieve that, and we use known techniques of
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subdivision matrix eigenanalysis. In contrast, the analysis of univariate geometry-driven, or
interpolatory subdivision schemes is challenging, even in the binary case [12, 13, 14, 15, 16,
17, 18]. Moreover, while the complicated analysis of such schemes can be extended to the
regular bivariate case [19, 20], the generalisation to meshes with EVs is even more involved
[21], and the same holds for non-stationary subdivision [22, 23].

The main contributions of the paper are:

1. We generalise the work in [1] on L–system based univariate non-uniform subdivision to
the bivariate setting.

2. We study the relationship between the properties of the L–systems and the properties
of the corresponding subdivision schemes.

3. We introduce two new L–system based subdivision schemes, a Fibonacci scheme with
sub-binary average refinement rate, and a Binary-Ternary scheme which requires only
a small number of masks.

The rest of the paper is organised as follows. In Section 2 we show how we can describe
a subdivision scheme corresponding to an L–system. In Section 3 we introduce the Fibonacci
and the Binary-Ternary schemes and in Section 4 we prove some of their properties. In
Section 5 we briefly discuss some other potentially interesting subdivision schemes, and we
then briefly conclude in Section 6.

2 L–systems and subdivision schemes

In Section 2.1, we recall some necessary machinery that has been developed in [1] for the
study of univariate L–system based subdivision. Next, in Section 2.2 we extent their notions
to the bivariate case.

2.1 L–systems and univariate subdivision

A Lindenmayer system, or L–system, is defined by a collection of symbols, or the alphabet,
Σ = {Ai, i ∈ I} where I = {1, . . . , |Σ|}, a set of rewriting rules, one for each symbol

Ai → Ai1 . . . Air , i ∈ I (1)

where (i1, . . . , ir) ∈ Ir, and an axiom defined as an initial word of symbols.
Starting from the axiom, the L-system produces a sequence of words by rewriting at each

step every symbol according to (1), defining this way an interval subdivision descriptor. In

particular, at subdivision step j ∈ N, the label Ai corresponds to intervals of length ℓ
(j)
Ai

=

ℓAi/ρ
j for some ρ > 0, and according to (1), at step j + 1, an interval labelled Ai splits into

intervals labelled Ai1 , . . . , Air of length ℓ
(j+1)
Ai1

, . . . , ℓ
(j+1)
Air

. The ρ is a constant associated to the

subdivision scheme, corresponding to its average refinement rate. For example, the L–system
with a single symbol alphabet {A1}, ρ = 2, and rule

A1 → A1A1

describes uniform binary subdivision, as the interval lengths in the parametric space at step

j will be ℓ
(j)
A1

= ℓA1/2
j .
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2.1.1 From interval subdivision to subdivision masks

Since the L–system describes subdivision in the parametric space, we next need to define
explicit masks for the actual subdivision scheme. In the univariate case, a convenient approach
is to see the interval ends in the parametric space as the knots of a B–spline of degree d.

Each sequence of d+ 1 consecutive knot intervals is the domain of a B–spline basis func-
tion, corresponding to one vertex of the control polygon. The subdivided control polygon
corresponds to the same B–spline curve, but with refined knots corresponding to the intervals
subdivided according to the L–system rules. When d is odd, each control point is associated
with the middle knot of its basis function domain, and each interval label is also an edge label
which can be used to lead the topological subdivision of the polygonal line: an edge is split
in as many sub-edges as the number of symbols of the word at the right side of the rewriting
rule of its label. The case of even d yields dual subdivisions, which are not addressed in this
paper.

Regarding the actual positions of thenew vertices, they can be defined efficiently by mask
diffusion with pre–recorded weights. Indeed, each new vertex can be written as a convex
combination of vertices of the previous control polygon and the set of weights giving the
contribution of the position of an old vertex to the new ones is called a mask. An old vertex
is involved in the definition of a new one if their B–spline basis domains are nested. Let w
be the (d + 1)–word of the labels of the intervals that make up the domain associated with
an old vertex. From knot-insertion and the blossom formulation, each weight is defined as a
sum of products of fractions f = ℓ(j)/ℓ(j−1) where ℓ(j) is the distance between two particular
knots at the j-th subdivision step [24]. Each distance ℓ(j) writes as a sum of interval lengths

ℓ
(j)
Ai

= ℓAi/ρ
j with ℓAi deduced from w only. As a consequence, each fraction f does not

depend on the subdivision step j since it can be written as ρ multiplied by the ratio between
two sums of ℓAi . Thus, in contrast to general non–uniform B–spline based subdivision, it is
sufficient to define a finite number of masks whatever the number of subdivision steps applied:
one mask for each word w of d + 1 consecutive symbols that can be produced by the rules
of the L-system from the axiom. In our implementation of subdivision by mask diffusion,
these words w are used as vertex labels, indicating which mask to apply. In contrast, the
label w of a given new vertex does not encode enough information to know which stencil to
use. Recall here that a stencil collects the contributions from all old vertices to compute the
position of a new one. As a consequence, here, implementation by mask diffusion is preferred
to implementation by stencils.

2.1.2 Valid L-systems

Not every combination of L–system, ρ, and length ratios ℓAi , allow such a subdivision scheme
construction. From (1), ℓAi should be non-negative real numbers such that

ℓAi =
r∑

l=1

(ℓAil
/ρ)

and ρ > 1, in order to get a dense set of knots when the subdivision is applied repeatedly.
In order to know if such interval lengths and ratio compatible with the rules (1) exist,

and to compute them, [1] defines the square matrix M = [mij ] where mij is the number of
Aj on the right side of the rewriting rule of Ai. It follows that any possible ρ and interval
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length ratios are eigenvalues and entries of the associated eigenvectors of M, respectively. In
particular, if M has a real eigenvalue ρ > 1 and an associated real and positive eigenvector,
then the L-system can define an interval subdivision descriptor, whatever the axiom, and is
called valid [1]. In the same paper, they also prove that the sequence of control polygons of
a subdivision scheme, constructed as above by a valid L-system, converges uniformly to the
B–spline curve.

2.2 From univariate to bivariate subdivision

2.2.1 Topological subdivision

We choose the natural generalisation of the univariate subdivision to the bivariate setting by
tensor product. The bivariate scheme is applied on quad meshes with all their faces having
their opposite edges labelled with the same symbol. As both pairs of opposite edges in a
quad face split identically, the face can be partitioned into quadrilateral faces. While other
hierarchies of lattices are possible, like the hierarchy of Penrose lattices used in [25], they do
not allow us to define B–spline based subdivision schemes. The construction of other known
types of subdivision schemes, for example the ones based on polynomial interpolation are
outside the scope of this paper.

This topological subdivision adapts directly to meshes with extraordinary vertices (EVs),
which appear on any closed quad mesh of genus other than one. On the downside, it may
make the labelling of the input mesh a difficult task if the axiom is made up of several
symbols. Indeed, as the labels of the edges are symbols of words derived from the axiom ω,
the initial mesh should be a union of sub-meshes with tensor product connectivity, whose
topologically parallel edges are labelled with the symbols of the axiom in a globally consistent
way. We bypass the issue of a consistent initial labelling by choosing the axiom to be a single
symbol assigned to all the edges of the initial mesh. In subsequent subdivision steps, since all
new vertices are ordinary, the subdivided faces are sub-meshes with a regular tensor product
connectivity with ordinary vertices, except perhaps their corners which can be extraordinary.
That is, in this paper, the non-uniformity of the subdivision concerns paths of ordinary
vertices, apart perhaps from their ends.

Alternatively, one could allow the assignment of different labels to the edges of the initial
mesh, either manually, as a designer choice, or computed from the geometry or topology of
the initial mesh, depending, for example, on some measures of mesh curvature. However, this
freedom would still be restrained by the fact that in each face opposite edges must have the
same label. Thus, a label given to an edge would also automatically be given to a complete
strip of topologically parallel edges, as in [7, 8].

The use of L–systems to define the subdivision rules yields another particular constraint.
The produced word at the right side of each rewriting rule is read from the left to the right
and, in general, it is not palindromic. As a consequence, each symbol actually corresponds
to a directed edge. However, assigning a direction to each edge of the input mesh may be
impractical, or even impossible if the mesh is non-orientable.

Dealing with this constraint, in Section 4.1 we introduce the notion of symmetric L-
systems. In particular, we define for each symbol Ai, the symbol σ(Ai) which labels the
head-to-tail edge such that their rewriting rules define a consistent topological subdivision.
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Figure 1: Edge labelling for the first three steps of the Fibonacci scheme. For readability, in
the last step, edge directions and labels are shown for the last line and the first column only.
The vertices v and u are labelled (e, CRLD,CRLD) and (f, LCRL,RLDR), respectively. If x
is an EV of valency n, it would be labelled (LC)n and y would be labelled (h,RLCR,DRLC).

Besides, the single letter axiom ω = Ai chosen to label all initial edges satisfies σ(Ai) = Ai,
i.e., input edges can be considered as non-directed.

Figure 1 illustrates these labellings in the first three steps of the Fibonacci scheme of
Section 3.2. The L–system is 

S → LR
L → LC
C → R
D → L
R → DR

(2)

with ω = S = σ(S), σ(L) = R, σ(R) = L, σ(C) = D and σ(D) = C.

2.2.2 Computing vertex positions by mask diffusion

After splitting the edges and faces according to the L–system rules, the positions of the new
vertices are computed from the old vertices by mask diffusion as follows:

1. Store two meshes: the coarse old one, and the fine new one with its vertex positions
initialised to zero. A link is stored from each old vertex to its new version (its child) in
the fine mesh. The coarse mesh is read, whereas the new one is written.

2. Loop over the old ordinary vertices, applying on the new mesh a tensor product regular
mask associated with the labels of the edges in its old neighbourhood: each new vertex
u in the neighbourhood of the child of an old vertex v is updated by

u← u+ βv, (3)

where the scalar weight β is the mask entry which corresponds to the topological position
of u relative to the child of v.

3. Loop over the old extraordinary vertices and apply the single extraordinary mask, with
weights depending on the valency of the EV. Then, divide each new vertex in the
neighbourhood of the EV by the sum of the contribution weights it has received from
old vertices, making the linear combinations convex, and maintaining affine invariance.
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Step 2 deserves two remarks. In order to know which tensor product mask to apply from
a given old vertex to its new neighbourhood, we label each vertex v with a triple (e, w, s),
where e is an outgoing edge defining a local orientation, and w and s are two (d + 1)-words
made up of the symbols of the edges around v, see Figure 1 for d = 3. The outgoing edge from
the child of v which comes from the splitting of e, sets the orientation of the mask applied to
the new mesh. Several labels are possible for a given vertex, depending on the choice of e: w
and s adapt according to the symmetry of the L–system, as already mentioned and further
elaborated in Section 4.1. For example, (−e, σ̄(w), σ̄(s)) is another possible label for v, where
σ̄(w) is obtained by reading the word w from the right to the left, while changing each symbol
Ai by its symmetric symbol σ(Ai). In particular, it will be shown that the different possible
tensor product masks for a given vertex are consistent.

Furthermore, in order to update the new neighbourhood its topology must be regular:
if any EV is involved, then it should belong to the boundary of the neighbourhood. If this
condition is satisfied, the ordinary mask is said to be contained within the ordinary part of
the new mesh. In Section 4.2.2 we propose sufficient conditions on the L–system to get such
contained ordinary masks.

Step 3 also deserves some extra remarks. In order to use convergence arguments at an
EV based on the eigenanalysis of a constant subdivision matrix [26], we ask the scheme to be
stationary around an EV: the same subdivision rules apply whatever the step. In Section 4.2.1,
we discuss properties of the L-system that make the subdivision scheme stationary around
the EV, possibly after a few initial steps. In particular, between subdivision steps edge labels
remain the same within a given neighbourhood, and an EV of valency n is labeled (ξ)n, where
ξ is the (d + 1)/2-word made up of the edge symbols along any direction radiating from the
EV. Since all the edges of the initial mesh are labelled with the same symbol, the ξ is always
the same, whatever the EV, while (ξ)n, which encodes the configuration around an EV, only
depends on n. This stationary configuration also allows us to define the label (e, w, s) of a
vertex v when the EV is inside the edge paths w or s (which is possible in the old mesh, even
if the mask remains contained within the ordinary part of the new mesh): the labels of edges
beyond the EV are chosen to be the symmetric symbols of the edges radiating from the EV,
as described in Figure 1 (caption) for vertex y.

Finally, since for a given valency n, the configuration around an EV is the same, whatever
the EV and whatever the step, the sum of the normalising weights for the new vertices around
an EV can be pre-computed together with the extraordinary mask entries.

3 Two new subdivision schemes

Before studying which properties of L-systems are required for getting bivariate subdivision
schemes that can be applied to any 2-manifold quad mesh, we first present two examples of
particular interest: a Binary-Ternary scheme which needs only a small number of different
masks, and a Fibonacci scheme which, with an average refinement ratio lower than 2, produces
a more progressive multiresolution mesh refinement than the usual binary schemes.
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RCLRCL

v

Figure 2: The 1D-mask associated with CCCC applies from v to new vertices (red squares)
beyond updated old neighbours (grey disks). Labels of new edges are given from C → LCR.

3.1 A Binary-Ternary subdivision scheme

This first proposed scheme corresponds to the L-system on the three symbol alphabet {L,C,R}
with the axiom ω = C used as label of all initial edges, and the rules

L → LC
C → LCR
R → CR

(4)

It defines a ratio ρ = 1+
√
2 ≈ 2.414 and interval lengths ℓL = ℓR = 1 and ℓC = ρ−1 ≈ 1.414.

It is a mix between a binary and a ternary scheme: it splits the intervals into either two or
three sub-intervals.

3.1.1 Masks for the ordinary rules

In the second step of the algorithm presented in Section 2.2.2, each old ordinary vertex v
updates every vertex u in the neighbourhood of its child according to Eq.(3). If the old vertex
is labelled (e, w, s), then the 2D mask is computed as the tensor product of the 1D masks
associated with w and s. For example, if v is labelled (e, LCRL,CRLC) and e, labelled R,
splits into e′ labelled C and e′′ labelled R, then the child of v is labelled (e′, CRCR,CRLC)
and is updated with β = (12− 8

√
2)× (5− 3

√
2), according to the 1D-masks given in Table 5

where the weight which applies to the child vertex is shown in bold. Similarly, the first
neighbour of the child of v in the direction of e′ is labelled (e′′, RCRL,CRLC) and it is
updated with β = (

√
2− 1)× (5− 3

√
2).

As a consequence, it is sufficient to store the entries of the 1D-masks as shown in Table 5
which records all the ten 1D-masks that could be used. Figure 8 shows all the transitions
between 1D-labels that can be reached from the CCCC of the input mesh.

We further remark that, through symmetry, there are only five essentially different 1D-
masks after the first step, following the association:

CLCR = σ̄(LCRC) CRCR = σ̄(LCLC) CRLC = σ̄(CRLC)
LCRL = σ̄(RLCR) RCRL = σ̄(RLCL)

3.1.2 Stencil implementation of the first subdivision step

We notice that the 9×9 ordinary mask associated with (e, CCCC,CCCC) cannot be applied
if a neighbouring vertex of an old vertex v is EV, as shown in Figure 2 along a 1D path of
edges. To address this complication, for the first subdivision step only, we switch from an
mask implementation to an implementation with the stencils illustrated in Figure 3 and the
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Figure 3: Stencils for the first step of the Binary-Ternary scheme. The red circles locate the
new vertices. The weights γi apply on old vertices of valency n.

weights given below, coming from the 9× 9 ordinary mask for valency n = 4. We have chosen
an ad hoc generalisation to extraordinary valencies.

γ1 = 7−2
√
2

6 × 7−2
√
2

6 = 57−28
√
2

36

δ1 = 2
√
2−1
12 × 7−2

√
2

6 = 16
√
2−15
72

ϵ1 = 2
√
2−1
12 × 2

√
2−1
12 = 9−4

√
2

144

(5)



γ2 = 5−
√
2

6 × 7−2
√
2

6 = 39−17
√
2

36

δ2 = 3+
√
2

12 × 7−2
√
2

6 = 17+
√
2

72

ϵ2 = 5−
√
2

6 × 2
√
2−1
12 = 11

√
2−9

72

ζ2 = 3+
√
2

12 × 2
√
2−1
12 = 1+5

√
2

144

η2 =
√
2−1
12 × 7−2

√
2

6 = 9
√
2−11
72

θ2 =
√
2−1
12 × 2

√
2−1
12 = 5−3

√
2

144

(6)
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γ3 = 5−
√
2

6 × 5−
√
2

6 = 27−10
√
2

36

δ3 = 3+
√
2

12 × 5−
√
2

6 = 13+2
√
2

72

ϵ3 = 3+
√
2

12 × 3+
√
2

12 = 11+6
√
2

144

ζ3 = 5−
√
2

6 ×
√
2−1
12 = 6

√
2−7
72

η3 = 3+
√
2

12 ×
√
2−1
12 = 2

√
2−1

144

θ3 =
√
2−1
12 ×

√
2−1
12 = 3−2

√
2

144

(7)

3.1.3 The extraordinary mask

From the second subdivision step on, each EV of valency n is labelled (LC)n. The extraor-
dinary mask used in the third step of the algorithm in Section 2.2.2, is built sector by sector
from tensor products of the second half of the 1D ordinary mask associated with CRLC with
itself, except for the central entry α corresponding to the update of the child of the EV by
the EV itself. A proposed set of α values for various valencies n are shown in Table 1. They
were computed through eigenanalysis, see Section 4.2.3.

n 3 4 5 6 7 8 9

α 0.2801 0.5735 0.8964 1.2427 1.5996 1.9598 2.3193

n 10 11 12 13 14 20 25

α 2.6766 3.0309 3.3822 3.7305 4.0762 6.1082 7.7668

Table 1: The values of the central entry α of the extraordinary masks of the Binary-Ternary
scheme for various EV valencies n.

Since the other mask entries have ordinary values, no normalisation is required for the
ordinary new vertices around the child of the EV. However, the child of the EV must be
normalised by division with the sum of the received contributions, which is equal to

α+
15
√
2− 21

2
n. (8)

3.2 A Fibonacci subdivision scheme

The second scheme is built on an L-system with the five-symbol alphabet {S,L,C,D,R}, the
axiom ω = S used to label all initial edges, and the rules

S → LR
L → LC
C → R
D → L
R → DR

(9)

It defines a ratio equal to the golden ratio ρ = 1+
√
5

2 ≈ 1.618, and interval lengths ℓL = ℓR = 1,
ℓC = ℓD = ρ− 1 ≈ 0.618, and ℓS = 2

ρ ≈ 0.828. The scheme can be viewed as a generalisation
to the bivariate setting of the univariate Fibonacci L-system in [1], defined with the rules
{L→ CL; C → L}, with the two–letter word produced from L now being LC in order get a
stationary scheme near the EV. Ratio and interval lengths are the same.
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Remark 3.1. A perhaps more straightforward generalisation of the univariate Fibonacci
scheme corresponds to a scheme that splits the initial interval into two sub-intervals, which
are then subdivided independently following the rules of two independent univariate Fibonacci
L-systems, but starting from each end of the initial interval, in a mirror way. The rewriting
rules of this other L-system are 

S → LR
L → LC
C → L
D → R
R → DR

(10)

and its implementation requires 17 ordinary 1D-masks, that is 2 more than the chosen scheme
with the rewriting rules of (9).

3.2.1 Masks for the ordinary rules

As per the Binary-Ternary scheme, since the scheme is based on degree 3 B-splines, we use
one ordinary 1D mask for each 4-word that can be produced from SSSS. Figure 9 shows
these possible words, some of them being only transitional:

� SSSS appears at the initial step only;

� RLRL and LRLR appear at the 2nd step only;

� CDRL = σ̄(RLCD) and LCDR appear at the 3rd step only;

� CRLD appears at the 4th step only.

Table 6 gives the entries of these masks.
Similarly to the Binary-Ternary scheme, some masks are the same up to a symmetry:

CDRL = σ̄(RLCD) CLDR = σ̄(LCRD) CRDR = σ̄(LCLD) CRLC = σ̄(DRLD)
LCRL = σ̄(RLDR) LDRL = σ̄(RLCR) RDRL = σ̄(RLCL)

and thus, only 13 different 1D-masks have to be stored.

3.2.2 The extraordinary mask

In contrast to the Binary-Ternary scheme, ordinary masks can be applied on all regular vertices
from the very first step. However, an extraordinary mask still has to be defined, again as one
tensor product of half ordinary 1D-masks for each sector. Besides, the label of the EV could
change after the first step, but not for many subsequent subdivision steps. Specifically, the
labels (ξ)n of the EV and (e, w, s) of any of its first neighbours satisfy

� at the first step, ξ = SS and w = SSSS;

� at the second step, ξ = LR and w = RLRL;

� at the third step, ξ = LC and w = RLCD;

� at the fourth step and beyond, ξ = LC and w = RLCR.
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As a consequence, each sector-mask is defined by the tensor product of the second half
of the SSSS mask with itself for the first step; the LRLR mask for the second step; and
the DRLC mask for the third step and beyond. As with the Binary-Ternary scheme, no
normalisation is needed for any new vertex in the neighbourhood of the child of the EV,
except for the child of the EV itself. Regarding the central entry of the mask to be applied
to the child of the EV, we chose to keep the same value α for every step (see Table 2), even
if it is computed from the eigenanalysis of the local subdivision matrix corresponding to the
rules from the fourth step and beyond only. As a consequence, the child of the EV should be
divided by different normalisation values, depending on the subdivision step:

α+ 7
64 n at the first step,

α+ 7
√
5−9
72 n at the second step,

α+ 6
√
5−13
4 n at the third step and beyond.

(11)

n 3 4 5 6 7 8 9

α 0.2084 0.5835 0.9959 1.4440 1.9105 2.3843 2.8589

n 10 11 12 13 14 20 25

α 3.3314 3.8003 4.2651 4.7258 5.1826 7.8604 10.0380

Table 2: The values of the central entry α of the extraordinary masks of the Fibonacci scheme.

3.3 Examples

In this section, we show visualisations from the two proposed schemes, and the Catmull-Clark
scheme [4] for comparison. Our aim is not the demonstration of any superior behaviour of
the proposed schemes over the original Catmull-Clark, bur rather to highlight their similari-
ties. Indeed, they can be seen as belonging to the same family of schemes, differing in their
refinement ratios: ∼ 1.618, 2, and ∼ 2.414.

Fibonacci Catmull-Clark Binary-Ternary

Figure 4: Characteristic map approximations.

We also note that the proposed schemes have been implemented in order to demonstrate
what is possible within L–system based subdivision. They have not been optimised, regarding
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the transitional first steps, which could have a significant “low frequency” effect on the final
surface [27], or the tuning of the extraordinary mask, which would require to consider more
degrees of freedom than just the central entry α in order to get bounded curvature [28]. Such
a study, including a formal proof of C1-continuity of the limit surface at an EV [26, 29], is
outside the scope of this paper.

Figure 4 shows control polygons of characteristic maps [30], corresponding to the eigen-
vector of the local subdivision matrix associated with its sub-dominant eigenvalue [26]. We
notice that while they are not identical, they are very similar, indicating (but not proving)
that at the limit surface the two proposed schemes share with Catmull-Clark the property of
C1-continuity around an EV.

Figures 5 and 6 show an initial quad mesh subdivided with: 3 steps of Binary-Ternary
scheme; 4 steps of Catmull-Clark scheme; 5 steps of the Fibonacci. The number of steps was
chosen in order to create meshes of similar size. Indeed, one initial edge is subdivided into:

� 17 sub-intervals after 3 steps of Binary-Ternary;

� 16 sub-intervals after 4 steps of original Catmull-Clark scheme;

� 16 sub-intervals after 5 steps of bivariate Fibonacci scheme.

initial mesh
5 steps of
Fibonacci

4 steps of
Catmull-Clark

3 steps of
Binary-Ternary

Figure 5: Top row: A mesh with only ordinary vertices shows that L–system based sub-
division achieves non-rational refinement rates without deviating too much from uniformity.
Bottom row: The initial mesh is a cube with only 3-valent extraordinary vertices.

In addition, the two bottom rows in Figure 6 show meshes after more subdivision steps,
consisting of between two and three millions vertices. Their behaviour is illustrated with
reflection lines renderings, and mean curvature colourmaps. All meshes were rendered with
Geomview except these two renderings which were produced with Meshlab [31]. The mean
curvature was computed with Algebraic Point Set Surfaces [32], with the colours going from
blue for negative curvature, to red for positive, and the green corresponding to zero curvature.
We notice that as with similar tunings of the Catmull-Clark scheme based on the eigenanalysis
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of its subdivision matrix, the reflection lines show an improvement of the surface near the
EV, while the curvature indicates that is has been flattened [28].

initial mesh
5 steps of
Fibonacci

4 steps of
Catmull-Clark

3 steps of
Binary-Ternary

11 steps of
Fibonacci

8 steps of
Catmull-Clark

6 steps of
Binary-Ternary

Figure 6: A mesh with 9-valent and 3-valent extraordinary vertices surrounded by ordinary
ones. The top two rows show different views of the same meshes. The meshes in the two
bottom rows have been further subdivided. The third row shows reflection lines from a top
view. The fourth row shows mean curvature colourmaps: blue negative, red positive, and
green zero.
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4 Theoretical analysis of the proposed schemes

In this section we derive the properties an L-system should satisfy to give subdivision schemes
that are suitable for general 2-manifold meshes, and verify that both proposed schemes are
defined from such L-systems.

4.1 Symmetric L-systems

Since we aim at constructing subdivision rules which apply uniformly on any 2-manifold mesh,
a consistent subdivision should be defined whatever the direction of reading consecutive edge
labels. To do so, we introduce the notion of symmetric L-systems.

4.1.1 Definitions

To motivate our definitions, assume that the symbols of the L-system are labels of either
directed or non–directed edges. A directed edge can be either onward or counter to the
direction of reading the word, however, the initial edge and its subdivided sequences may
be read in any direction. As an example, consider the following sequence of directed and
non–directed edges:

→→ −←

labelled with the symbols of the Binary-Ternary scheme: C for a non–directed edge, L if it
is directed onward with the direction of reading, R otherwise. Reading from left to right, the
word of labels is w = LLCR; reading from right to left, it is σ̄(w) := LCRR.

An involution (a bijection that is its own inverse) σ over the alphabet of the L-system
partitions it into two subsets:

� S, on which σ is the identity, is the set of symmetric symbols labelling non–directed
edges: {C} in the above example;

� U , on which σ is of order 2, is the set of unsymmetric symbols labelling directed edges.
The two unsymmetric symbols of a 2–cycle are called twins: {L,R} in the above example.

An involution σ over the alphabet Σ is recursively extended into a mirror function σ̄
defined over the set W of all words, by{

σ̄(A) = σ(A) for any letter A ∈ Σ,
σ̄(ww′) = σ̄(w′)σ̄(w) for any words w,w′ ∈W.

(12)

The mirror function σ̄ is an involution over W , transforming each word w into σ̄(w) by
rewriting it from right to the left, and changing each unsymmetric symbol by its twin. A
word w is said to be symmetric if w = σ̄(w).

Definition 4.1. Let π(w) denote the word w rewritten with the rules of the L–system. An
L-system is symmetric if its axiom ω is symmetric, and if there is an involution σ over its
alphabet which, extended to σ̄, satisfies:

π(σ̄(w)) = σ̄(π(w)), ∀w ∈W. (13)
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4.1.2 Properties

The following proposition states that it suffices establishing symmetry on the axiom and the
rewriting rules over the alphabet.

Proposition 4.2. A necessary and sufficient condition for an L-system to be symmetric is
that its axiom ω is symmetric, and there is an involution σ over its alphabet Σ such that,

π(σ(A)) = σ̄(π(A)), ∀A ∈ Σ. (14)

Proof. (⇒) Let us consider a symmetric L-system with an involution σ which, extended to σ̄,
satisfies (13). In particular, if w is any single letter of the alphabet Σ, then we get Eq (14).
(⇐) Let us consider an L-system with an involution σ over its alphabet which satisfies (14).
For any word w = A1A2 . . . An ∈W ,

σ̄(w) = σ(An) . . . σ(A2) σ(A1) (15)

π(σ̄(w)) = π(σ(An)) . . . π(σ(A2)) π(σ(A1)) (16)

= σ̄(π(An)) . . . σ̄(π(A2)) σ̄(π(A1)) (17)

= σ̄(π(A1) π(A2) . . . π(An)) (18)

= σ̄(π(w)). (19)

The Binary-Ternary and the Fibonacci L-systems are symmetric. For example, for the
Binary-Ternary scheme the axiom C is symmetric, and

π(σ(L)) = π(R) = CR = σ̄(LC) = σ̄(π(L))
π(σ(C)) = π(C) = LCR = σ̄(LCR) = σ̄(π(C))
π(σ(R)) = π(L) = LC = σ̄(CR) = σ̄(π(R))

(20)

Corollary 4.3. The rewriting rules of a symmetric L-system can be split into two subsets:

� rewriting rules of symmetric symbols C, which have the form

C → w (21)

with σ̄(w) = w;

� rewriting rules of pairs of twin symbols (L,R), which have the form{
L → w
R → σ̄(w)

(22)

Corollary 4.4. If the L–system is symmetric, then the axiom and any subsequent word pro-
duced by the rewriting rules are symmetric.
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Proof. By definition the axiom ω = π0(ω) is symmetric. To complete the inductive proof, let
us assume that πn(ω) = A1A2 . . . Ap is symmetric:

πn(ω) = σ̄(πn(ω)) (23)

πn(ω) = σ(Ap) . . . σ(A2) σ(A1) (24)

πn+1(ω) = π(σ(Ap)) . . . π(σ(A2)) π(σ(A1)). (25)

Since the L-system is symmetric,

πn+1(ω) = σ̄(π(Ap)) . . . σ̄(π(A2)) σ̄(π(A1)) (26)

σ̄(πn+1(ω)) = σ̄(σ̄(π(A1))) σ̄(σ̄(π(A2))) . . . σ̄(σ̄(π(Ap))) (27)

σ̄(πn+1(ω)) = π(A1) π(A2) . . . π(An) = πn+1(ω). (28)

Remark 4.5. The involution σ associated with a symmetric L-system is not necessarily
unique.

For example, the L-system 
L → ACB
R → BCA
A → LR
B → RL
C → C

(29)

is symmetric either with S = {A,B,C} and U = {L,R} (with R = σ(L)), or with S =
{L,R,C} and U = {A,B} (with B = σ(A)). However, the L-system

C → C
L → LR
R → LR

(30)

is symmetric if and only if S = {C} and U = {L,R}.

4.2 L-system adapted to extraordinary vertices

When a mesh contains extraordinary vertices, one would wish to handle them with as few
extraordinary subdivision rules as possible, which translates into two properties that are
studied here:

� a constant local subdivision matrix at the EV, Section 4.2.1;

� ordinary masks that are contained within the ordinary part of the new mesh, such
that if we consider the set of new vertices updated by an old ordinary vertex, they are
all ordinary except possibly for the mask’s boundary which could contain some EVs,
Section 4.2.2.
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4.2.1 A stationary scheme around any EV

As already mentioned in Section 2, the set of old control points involved in the definition of
a new one corresponds to the set of (d+ 1) consecutive old intervals that include the (d+ 1)
intervals of the B-spline domain associated with the given new control point.

We have already introduced the mask, as the collection of all the non-zero contributions
of one old vertex to the positions of the new vertices, and the stencil which collects the
contributions from all old vertices to the computation of the position of a new one. The
subdivision matrix encodes the convex combinations defining the new vertices around an EV
from the old ones: each column contains the entries of the mask associated with an old vertex,
and each row contains the entries of one stencil.

Let us organise the vertices into topological rings. The 0-ring contains the EV only, and
the r-ring r > 0 is the set of vertices that are neighbours of a vertex of the (r−1)-ring without
belonging to any s-ring, s < r. In the univariate case, each r-ring, r > 0 is a pair of vertices,
one on each side of the EV.

If we sort vertices by topological rings, then, because the combinations are local and at
least one interval splits, there is a minimal column index N such that all columns which
contains at least one non-zero entry on or up the diagonal entry have an index less or equal
to N . The upper-left N × N block is the local subdivision matrix and shares the non-zero
eigenvalues with the infinite subdivision matrix. For simplicity, this upper-left block will be
called subdivision matrix from now on. If this matrix remains unchanged through subdivisions,
then the scheme is stationary. We are looking for that property, at least after a few steps.

Lemma 4.6. If L→ Lw, with (L,w) ∈ Σ×W , is one of the rewriting rules of the L-system
then, for all n > 0, πn(L) = Lπ0(w)π(w) . . . πn−1(w), where π0(w) := w,∀w ∈W .

Proposition 4.7. If the label L of the edges incident to the EV has rewriting rule L→ Lw,
with w an m-word, m ≥ 1, then, after a few steps, the local subdivision matrix remains
unchanged through subdivision steps.

Proof. The local subdivision matrix entries depend on the relative location of old and new
knots around the central knot associated with the EV, which are defined, on each side, by the
P first symbols of πn(L) where P is a finite number independent from n. The result is then
a direct consequence of Lemma 4.6.

As a consequence, a sufficient condition to get a stationary subdivision scheme near the EV
is that, possibly after a few steps, the word produced by the rewriting rules of the L-system
from the axiom starts with a symbol L satisfying Lemma 4.6. For both Binary-Ternary and
Fibonacci schemes, this is true after one step since, in the first case π(C) = LCR and L→ LC
while in the second case, π(S) = LR and L→ LC.

4.2.2 Contained ordinary masks

In the implementation described in Section 2, each ordinary mask should not contain EVs,
apart perhaps from its boundary: it should remain contained within the ordinary part of the
mesh. From a stencil perspective, that property translates into the similar requirement that
each EV stays on the border of any stencil which might include it, except of course of its own
stencil.
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r

VG B

Figure 7: Vicinity of the central vertex V after one subdivision step, in the 1D setting. The
domains of the degree 3 B-spline basis functions associated with the new vertex r (red) and
the old vertices G (green) and B (blue), show that r is defined as a combination of three
old vertices, of which, G and B which are in different sides of V . This happens because the
intervals [V B] split into 3 rather than at most 2 sub-intervals.

We study containment in the 1D setting, obtaining a necessary and sufficient condition in
the form of Proposition 4.8, which translates to a sufficient condition in the 2D setting.

Thus, we consider a 1D bi-infinite sequence of intervals, starting from a vertex and spread-
ing on both sides, all labelled with the 1-word symmetric axiom of the L-system. Each d+ 1
consecutive intervals are the domain of a degree d B–spline basis function associated with
one vertex of the control polygon. The control vertex associated with the domain centred on
the central knot of this 1D bi-infinite sequence corresponds to the EV of interest in the 2D
setting. Figure 7 shows an 1D example where the containment property does not hold.

Proposition 4.8. If the L-system is valid, then the stencil for the central vertex is the only
one that involves old vertices from both sides of the central vertex, if and only if, among the
d+1
2 − 1 first intervals (at each side of the central vertex), none splits except one which splits

into at most two sub-intervals. In particular, if d = 3, then the label L of the edges incident
to the central vertex should follow the rewriting rule L → X or L → Y Z with X, Y and Z
being symbols, but only Y and Z can possibly be equal to L.

Proof. If the system is valid, no entry of the valid eigenvector a which defines the lengths of
the knot intervals (up to a multiplication by 1/ρ(M)n) is equal to zero, and thus there are
no multiple knots. Then, since an old vertex is involved in the stencil of a new one if the
domain of the degree d basis function associated with it contains the domain associated with
the new vertex, the d+1

2 − 1 first old intervals at each side of the central vertex must not

contain d+1
2 + 1 new intervals, as illustrated in Figure 7 for d = 3. Finally, if L → L then

the interval never splits, which is not compatible with a valid L-system since then either 1
would be an eigenvalue of M or the entry of the valid eigenvector associated with L would be
zero.

By having the rule L → LC in both schemes, we satisfy both Proposition 4.7 and 4.8,
getting a constant local subdivision matrix at the EV, and contained ordinary masks, but
only after one subdivision step as L is not the axiom, but the first symbol of the word
produced from it. More precisely, since the axiom of the Binary-Ternary L–system rewrites
as C → LCR, the ordinary masks are not contained at the first step and special stencils have
to be defined. From the second step and onward however, the chosen rules result to a constant
subdivision matrix. In contrast, the axiom of the Fibonacci L-system rewrites as S → LR,
yielding contained ordinary masks from the very first step. But, on the downside, we have to
wait for the fourth subdivision step to get a constant subdivision matrix.
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These extraordinary first steps would deserve a proper study as they could have, as we
mentioned, a significant “low frequency” effect on the final surface [27]. But such a study is
outside the scope of this paper.

4.2.3 Eigenanalysis of the Binary-Ternary and the Fibonacci scheme

In both schemes, after perhaps a small number of steps, ordinary masks can be applied from
every old ordinary vertex, while the extraordinary mask is built sector by sector from tensor
products of half 1D ordinary masks, leaving just the central entry α to be computed. Note
that the new EV is then divided by a normalising value to become a convex combination of
old vertices.

As a consequence, after perhaps a few steps the local subdivision matrix becomes sta-
tionary, with all rows corresponding to ordinary stencils, except the first one whose entries
depend on α. The value of this parameter can be optimised by analysing the main eigenvalues
and eigenvectors of the local subdivision matrix [26], aiming at achieving the best possible
convergence behaviour, ideally towards a C2-surface. However with a single free variable, this
might not be possible.

Let λi and µi be the main and the second main eigenvalues from Fourier index i, respec-
tively. As all stencils represent convex combinations, we have that always λ0 = 1. As α can
only affect eigenvalues related to Fourier index 0, it can be chosen to satisfy µ0 < λ1, or other
relations involving µ0.

In order to get a convergent subdivision scheme at the EV, λ1 should be the global
subdominant eigenvalue of the local subdivision matrix, and as a consequence, α must be
chosen such that µ0 < λ1. Then, two further properties could be targeted:

� µ0 = λ2
1, and then, if λ2 ≤ λ2

1 we get bounded curvature at the EV;

� µ0 = λ2, and then we get the so called flexibility property [33].

Ideally, bounded curvature and flexibility could be satisfied simultaneously, but not with the
proposed schemes since λ2 > λ2

1 (except for n = 4) and thus, even bounded curvature alone
is not possible. Of course, more variables could be added to the EV-mask to try and get that
property, but this is outside the scope of this paper.

The values of α given in Section 3 for the proposed new schemes have been computed to
satisfy the first condition µ0 = λ2

1, hoping for good surface behaviour at least when the shape
is cup-like. Tables 3 and 4 give the computed subdominant eigenvalues for various valencies.

5 Other L–system based schemes

Here, we study other L–system based 1D schemes, which may be good candidates for extension
to quad subdivision on arbitrary meshes. In Section 5.1, we derive properties that a 1D
scheme should have, should one wishes to extend it to a nice bivariate scheme for arbitrary
quad meshes with the methods of the previous sections. Next, having restricted our search
space, in Section 5.2 we give a list of such 1D subdivision schemes on small alphabets, aiming
at demonstrating the versatility of the method and illustrating some salient points.

We note that the implementation of the corresponding bivariate schemes is out of the
scope of the paper. To the best of our knowledge some of these 1D schemes have not been
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n λ1 µ0 = λ2
1 λ2

3 0.3231 0.1043 0.0911

4 0.4142 0.1715 0.1715

5 0.4660 0.2171 0.2547

6 0.4971 0.2471 0.3231

7 0.5169 0.2672 0.3751

8 0.5302 0.2811 0.4142

9 0.5396 0.2911 0.4436

n λ1 µ0 = λ2
1 λ2

10 0.5463 0.2985 0.4660

11 0.5514 0.3041 0.4834

12 0.5553 0.3084 0.4971

13 0.5584 0.3118 0.5080

14 0.5608 0.3145 0.5169

20 0.5686 0.3234 0.5463

25 0.5714 0.3265 0.5569

Table 3: Subdominant eigenvalues of the Binary-Ternary scheme for various valencies.

n λ1 µ0 = λ2
1 λ2

3 0.5376 0.2890 0.2713

4 0.6180 0.3819 0.3819

5 0.6613 0.4374 0.4721

6 0.6867 0.4716 0.5376

7 0.7026 0.4937 0.5843

8 0.7133 0.5088 0.6180

9 0.7207 0.5194 0.6427

n λ1 µ0 = λ2
1 λ2

10 0.7261 0.5272 0.6613

11 0.7301 0.5330 0.6756

12 0.7332 0.5375 0.6867

13 0.7356 0.5411 0.6955

14 0.7375 0.5439 0.7026

20 0.7436 0.5530 0.7261

25 0.7458 0.5562 0.7344

Table 4: Subdominant eigenvalues of the Fibonacci scheme for various valencies.

proposed before, and their topological refinement rules, i.e. the way in which each edge splits
at each subdivision step, could be interesting. However, the focus in this paper, and its
main contribution, is the extension of 1D L–system subdivision to quad meshes of arbitrary
topology, rather than novel 1D schemes.

5.1 Possible valid L–systems for bivariate subdivision with nice properties

First, we show that some desirable properties for the bivariate L–system–based subdivision
scheme require the symbol L assigned to the edges emanating from the EVs to be unsymmetric,
while the axiom should be symmetric.

5.1.1 Twin unsymmetric symbols

From Proposition 4.7 and 4.8 in Section 4 we know that for a scheme based on cubic B-splines
and a valid L–system, a sufficient condition to get contained ordinary masks and an eventually
stationary local subdivision matrix, is that the label L of the edges incident to the EV has
rewriting rule L → LC (where possibly C = L). Moreover, if the rewriting rule is L → LL,
then, up to a permutation of rows and columns, we get

M =

[
2 0
∗ N

]
. (31)

If ρ is an eigenvalue of M and lA the first entry of the associated eigenvector, then 2lA = ρlA,
that is, either ρ = 2 or lA = 0. In the first case we do not get a non–integer ratio, while in
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the second case we do not get a positive eigenvector.
Furthermore, if L ∈ S, then

π(L) = σ̄(π(L)) (32)

LC = σ(C)σ(L) (33)

C = σ(L) (34)

C = L (35)

Thus, all L–systems considered here include twin unsymmetric symbols L and R whose
rules are: {

L → LC
R → σ(C)R

(36)

with C ̸= L, L the label of edges going out from any EV, and R the label of edges with
opposite orientation.

Proposition 5.1. If an L-system is symmetric then equal lengths can be associated with any
pair of twin unsymmetric symbols.

Proof. Let P be the permutation matrix of the involution σ in Proposition 4.2, that is, if
Σ = {A1, A2, . . . , An} is the alphabet, and ei is the n× 1 vector with 1 in the i-th entry and
0 otherwise, then Pei = ej if σ(Ai) = Aj . From (14) we get

M = P⊤MP (37)

PM = MP. (38)

Indeed, multiplying M by P from the right swaps columns of twin unsymmetric symbols,
while multiplying from the left by P⊤ swaps associated rows. If a is an eigenvector of M
associated with the eigenvalue ρ, then

MPa = PMa (39)

MPa = ρPa (40)

M (a+Pa) = ρ (a+Pa) . (41)

Thus, b := a+Pa is also an eigenvector of M associated with ρ, and its entries corresponding
to twin unsymmetric symbols are equal. Indeed,if σ(Ai) = Aj , then bi = ai + aj = bj .

5.1.2 Symmetric axiom

From Section 4.1, in the rules (36), if we have C = σ(C), and if C, possibly after a few steps,
produces a word beginning with L and ending with R, then it can be used as the label of the
initial edges. Otherwise, C is an unsymmetric symbol, with let say D being its twin, and a
symmetric symbol has to be introduced for the initialisation. A simple choice reducing the
transitional steps to the minimum, is:

S → LR (42)

Proposition 5.2. If an L-system with ratio ρ includes (42) in its rewriting rules, and R =
σ(L), then the lengths associated with S and L satisfy ℓS = 2

ρℓL.
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Proof. Rule (42) yields ℓL + ℓR = ρ ℓS and the result comes from Proposition 5.1.

Remark 5.3. As an alternative to the starting rule (42), the following L-system gives a nice
example: 

S → CD
L → LS
C → L
D → R
R → SR

(43)

with

� ratio ρ = 1
3

(
1 +

3
√
28 +

√
783 +

3
√
28−

√
783

)
≈ 1.695.

� interval lengths ℓS = ρ2 − ρ, ℓC = ℓD = 1, ℓL = ℓR = ρ.

and 23 masks in total.

5.2 A list of L–systems with a small number of symbols

In our list of subdivision schemes based on L–systems on small alphabets we consider the
following four cases:

� three symbols {L,C,R}, C as the axiom, lengths ℓL = ℓR = 1 and ℓC = ρ−1, and rules
L → LC
C → w
R → CR

(44)

where w is a symmetric word which contains at most three letters, beginning with L
and ending with R.

� four symbols {S,L,C,R}, S as the axiom, lengths ℓL = ℓR = 1, ℓC = ρ− 1, and ℓS = 2
ρ ,

and rules 
S → LR
L → LC
C → w
R → CR

(45)

where w is a symmetric word which contains at most three letters.

� four symbols {L,C,D,R}, C as the axiom, lengths ℓL = ℓR = 1 and ℓC = ℓD = ρ − 1,
and rules 

L → LC
C → w
D → σ̄(w)
R → DR

(46)

where w is a word which contains at most three letters, beginning with L and ending
with R.
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� five symbols {S,L,C,D,R}, S as the axiom, lengths ℓL = ℓR = 1, ℓC = ℓD = ρ− 1, and
ℓS = 2

ρ , and rules 
S → LR
L → LC
C → w
D → σ̄(w)
R → DR

(47)

where w is a word which contains at most three letters.

For each possible w = π(C) we compute two quantities:

� the number of 1D masks needed. Each mask corresponds to a word of d+1 = 4 symbols
which can be produced from the initial word made up of the axiom repeated 4 times.
We count as one each pair of symmetric words, as their weights are the same, in reverse
order.

� the ratio ρ.

The lists are shown in Appendix B.

Remark 5.4. Different π(C) would give rise to the same matrix M, and so to the same ratio
ρ, if they comprise the same symbols in different order. Moreover, two different matrices may
correspond to the same ratio. Here, we present the results first by increasing ratio, and then
by increasing number of masks. We note that for nice slow refinement subdivision schemes,
both quantities should be as small as possible, thus, the nicest schemes are at the top of the
tables. Finally, as an extra information, we also give M[C; Σ], the line of M corresponding
to C, where Σ is the alphabet with its symbols written in the same order as the corresponding
columns of M.

Remark 5.5. Also note that in the lists we do not include the L–systems with integer ratios,
that is, all the L-systems corresponding to a 2-word π(C), and almost all of those corresponding
to a single letter π(C). As a consequence, apart from the first two L–systems with five symbols,
which are related to the Fibonacci L–system, all the other are associated with a 3-word π(C).

5.3 Discussion

Here, we collect some final remarks about L–systems based subdivision, the deduced ratio
and the number of masks, some of which could be somewhat counter-intuitive.

The ratio of an L–system with π(C) comprising more than three symbols may be smaller
than that of an L–system with 3-letter π(C). The two L–systems below, on five symbol
alphabets, are such an example.

ρ # masks π(C) M[C; (S,L,C,D,R)]

3+
√
5

2 ≈ 2.618 20 CLD 0 1 1 1 0

1+
√
17

2 ≈ 2.561 17 LLLL 0 4 0 0 0
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Having π(C) with more symbols does not necessarily yield more masks, as not every
possible word from a given alphabet is produced by a given set of rewriting rules, and even
more so from a given axiom. The two L–systems below, on five symbol alphabets, are such
an example.

ρ # masks π(C) M[C; (S,L,C,D,R)]

1 +
√
2 ≈ 2.414 7 DRL 0 1 0 1 1

1+
√
5

2 ≈ 1.618 15 L 0 1 0 0 0

Choosing D = σ(C) rather than C = σ(C) does not necessarily yield more masks. The
two L–systems below, with S as axiom and five and four symbols, respectively, is such an
example.

ρ # masks π(C) M[C; (S,L,C,D,R)]

1 +
√
2 ≈ 2.414

7 DRL 0 1 0 1 1

M[C; (S,L,C,R)]

17 RCL 0 1 1 1

A larger number of distinct symbols in π(C) does not necessarily yield more masks. The
two L–systems below, on five symbol alphabets, give an example.

ρ # masks π(C) M[C; (S,L,C,D,R)]

1 +
√
2 ≈ 2.414

7 DRL 0 1 0 1 1

30 RRD 0 0 0 1 2

By just permuting the symbols in π(C), we do not necessarily get the same number of
masks. Below is such an example with two such L–systems on five symbol alphabets.

ρ # masks π(C) M[C; (S,L,C,D,R)]

1 +
√
2 ≈ 2.414

7 DRL 0 1 0 1 1

21 RDL 0 1 0 1 1

Different L–systems, yielding different numbers of masks, may still have identical interval
subdivision patterns. Below is an example of three such L–systems, with axiom S, and four,
five and five symbols, respectively.

ρ # masks π(C) M[C; (S,L,C,R)]

1 +
√
2 ≈ 2.414

10 LCR 0 1 1 1

M[C; (S,L,C,D,R)]

12 LDR 0 1 0 1 1

14 LCR 0 1 1 0 1
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The two L–systems below with axiom C and alphabets of three and four symbols, respectively,
is another example.

ρ # masks π(C) M[C; (L,C,R)]

1 +
√
2 ≈ 2.414

6 LCR 1 1 1

M[C; (L,C,D,R)]

9 LCR 1 1 0 1

In these cases, it is most likely that C and D are equivalent and can be switched at anytime.
As we have counted one mask per each pair of twin unsymmetric words, we could also count
one only mask for each set of words that become identical if we do not differentiate between C
and D, and then find the minimum number of masks, which would correspond to C = σ(C).

Finally, we note that there are L–systems with ratio lower than the golden ratio. For
example, we could combine the bivariate Fibonacci L–system and the delay queue example
introduced in [1], to get the L–system :

S → LR

L → LC

C → A

A → R


D → B

B → L

R → DR

(48)

with

� ratio ρ = 1
3

(
1 +

3

√
29+

√
837

2 +
3

√
29−

√
837

2

)
≈ 1.465 < 1.618

� interval lengths ℓS = 2ρ, ℓC = ℓD = 1, ℓA = ℓB = ρ, ℓL = ℓR = ρ2

which, however, has a large number of masks, namely 31.

6 Conclusions

We extended the L–system based, non-uniform, univariate subdivision proposed in [1], to the
bivariate setting. The focus was on subdivision schemes that generalise the cubic B-spline to
arbitrary meshes, meaning that the masks and stencils we dealt with had manageable size.
We studied how properties of an L–system relate to the properties of the subdivision scheme,
and we proposed a method for computing eventually stationary EV stencils for subdivision
schemes corresponding to L–systems with nice properties. We illustrated the proposed method
by implementing and studying two new subdivision schemes with interesting properties, the
Binary-Ternary and the Fibonacci.

We believe that L–system based subdivision is an interesting compromise between the
classic uniform subdivision, with its very basic and inflexible control mesh refinement pro-
cesses, and geometry driven non-uniform subdivision, where the convergence results are very
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difficult to obtain. As a future research direction, we propose to formulate the computation
of EV stencils as a multi-variable optimisation problem, instead of the single free variable we
currently use, and devise non-uniform subdivision schemes with better smoothness properties.
The study of dual subdivision schemes, corresponding to B-splines of even degree, is another
promising research direction.
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A Transition between labels and associated masks

CCCC

CLCR

CRCR

CRLC

LCLC

LCRC

LCRL

RCRL

RLCL

RLCR

Figure 8: Transition graph between the vertex 1D-labels of the Binary-Ternary scheme.
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CLCR LCRC

LCRL 0.04481 = (8
√
2− 11)/7 LCLC 0.07106 = 5

√
2− 7

CRLC 0.19782 = (13
√
2− 17)/7 CLCR 0.34314 = 6− 4

√
2

RLCL 0.47759 = (9− 4
√
2)/7 LCRC 0.61203 = (20

√
2− 24)/7

LCLC 0.71254 = (46− 29
√
2)/7 CRCR 0.71254 = (46− 29

√
2)/7

CLCR 0.61203 = (20
√
2− 24)/7 RCRL 0.47759 = (9− 4

√
2)/7

LCRC 0.34314 = 6− 4
√
2 CRLC 0.19782 = (13

√
2− 17)/7

CRCR 0.07106 = 5
√
2− 7 RLCR 0.04481 = (8

√
2− 11)/7

CRCR LCLC

LCRC 0.04481 = (8
√
2− 11)/7 LCLC 0.07106 = 5

√
2− 7

CRCR 0.21638 = (10− 6
√
2)/7 CLCR 0.34314 = 6− 4

√
2

RCRL 0.52240 = (4
√
2− 2)/7 LCRL 0.61203 = (20

√
2− 24)/7

CRLC 0.70166 = (36
√
2− 46)/7 CRLC 0.70166 = (36

√
2− 46)/7

RLCR 0.61203 = (20
√
2− 24)/7 RLCL 0.52240 = (4

√
2− 2)/7

LCRC 0.34314 = 6− 4
√
2 LCLC 0.21638 = (10− 6

√
2)/7

CRCR 0.07106 = 5
√
2− 7 CLCR 0.04481 = (8

√
2− 11)/7

CRLC (CCCC)

LCRL 0.03451 = (
√
2− 1)/12

LCRC 0.05025 = (10− 7
√
2)/2 CRLC 0.15236 = (2

√
2− 1)/12

CRCR 0.24264 = 3
√
2− 4 RLCR 0.36785 = (3 +

√
2)/12

RCRL 0.58578 = 2−
√
2 LCRL 0.59763 = (5−

√
2)/6

CRLC 0.75735 = 5− 3
√
2 CRLC 0.69526 = (7− 2

√
2)/6

RLCL 0.58578 = 2−
√
2 RLCR 0.59763 = (5−

√
2)/6

LCLC 0.24264 = 3
√
2− 4 LCRL 0.36785 = (3 +

√
2)/12

CLCR 0.05025 = (10− 7
√
2)/2 CRLC 0.15236 = (2

√
2− 1)/12

RLCR 0.03451 = (
√
2− 1)/12

LCRL RLCR

LCLC 0.07106 = 5
√
2− 7 CRLC 0.12132 = (3

√
2− 4)/2

CLCR 0.34314 = 6− 4
√
2 RLCL 0.41421 =

√
2− 1

LCRC 0.60660 = (15
√
2− 20)/2 LCLC 0.68629 = 12− 8

√
2

CRCR 0.68629 = 12− 8
√
2 CLCR 0.60660 = (15

√
2− 20)/2

RCRL 0.41421 =
√
2− 1 LCRC 0.34314 = 6− 4

√
2

CRLC 0.12132 = (3
√
2− 4)/2 CRCR 0.07106 = 5

√
2− 7

RCRL RLCL

CRLC 0.10050 = 10− 7
√
2 CRLC 0.12132 = (3

√
2− 4)/2

RLCR 0.34314 = 6− 4
√
2 RLCL 0.41421 =

√
2− 1

LCRC 0.60660 = (15
√
2− 20)/2 LCLC 0.68629 = 12− 8

√
2

CRCR 0.68629 = 12− 8
√
2 CLCR 0.60660 = (15

√
2− 20)/2

RCRL 0.41421 =
√
2− 1 LCRL 0.34314 = 6− 4

√
2

CRLC 0.12132 = (3
√
2− 4)/2 CRLC 0.10050 = 10− 7

√
2

Table 5: 1D-masks for the Binary-Ternary scheme. An old vertex contributes, with different
weights, to a sequence of new vertices. For each 1D-label of an old vertex, the list of weights
is given from top to bottom alongside the 1D-label on the new vertex. The label of the child
of the old vertex is written in bold.
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CDRL

CLDR

CRDR

CRLC

CRLD

DRLC

DRLD

LCDR

LCLD

LCRD

LCRL

LDRL

LRLR

RDRL

RLCD

RLCL

RLCR

RLDR

RLRL

SSSS

Figure 9: Transition graph between the vertex 1D-labels of the Fibonacci scheme.
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(CDRL) (RLCD)

RLDR 0.72361 = (
√
5 + 5)/10 DRLC 0.11803 = (

√
5− 2)/2

LDRL 0.61803 = (
√
5− 1)/2 RLCR 0.61803 = (

√
5− 1)/2

DRLC 0.11803 = (
√
5− 2)/2 LCRL 0.72361 = (

√
5 + 5)/10

CLDR LCRD

RLCL 0.55279 = (5−
√
5)/5 LCRD 0.23607 =

√
5− 2

LCLD 0.76393 = 3−
√
5 CRDR 0.76393 = 3−

√
5

CLDR 0.23607 =
√
5− 2 RDRL 0.55279 = (5−

√
5)/5

CRDR LCLD

RDRL 0.44721 =
√
5/5 LCRL 0.23607 =

√
5− 2

DRLD 0.85410 = (3
√
5− 5)/2 CRLC 0.85410 = (3

√
5− 5)/2

RLDR 0.23607 =
√
5− 2 RLCL 0.44721 =

√
5/5

CRLC DRLD

RDRL 0.38197 = (3−
√
5)/2 LDRL 0.38197 = (3−

√
5)/2

DRLC 0.76393 = 3−
√
5 DRLC 0.76393 = 3−

√
5

RLCR 0.38197 = (3−
√
5)/2 RLCL 0.38197 = (3−

√
5)/2

(CRLD) DRLC

RDRL 0.38197 = (3−
√
5)/2 LDRL 0.38197 = (3−

√
5)/2

DRLC 0.76393 = 3−
√
5 DRLC 0.76393 = 3−

√
5

RLCL 0.38197 = (3−
√
5)/2 RLCR 0.38197 = (3−

√
5)/2

(LCDR) (SSSS)

(LRLR) 0.12500 = 1/8

LCRL 0.27639 = (5−
√
5)/10 (RLRL) 0.50000 = 1/2

(CRLD) 1 = 1 (LRLR) 0.75000 = 3/4

RLDR 0.27639 = (5−
√
5)/10 (RLRL) 0.50000 = 1/2

(LRLR) 0.12500 = 1/8

LCRL RLDR

LCRD 0.23607 =
√
5− 2 DRLC 0.11803 = (

√
5− 2)/2

CRDR 0.76393 = 3−
√
5 RLCL 0.61803 = (

√
5− 1)/2

RDRL 0.61803 = (
√
5− 1)/2 LCLD 0.76393 = 3−

√
5

DRLC 0.11803 = (
√
5− 2)/2 CLDR 0.23607 =

√
5− 2

LDRL RLCR

LCLD 0.23607 =
√
5− 2 DRLC 0.11803 = (

√
5− 2)/2

CLDR 0.76393 = 3−
√
5 RLCR 0.61803 = (

√
5− 1)/2

LDRL 0.61803 = (
√
5− 1)/2 LCRD 0.76393 = 3−

√
5

DRLC 0.11803 = (
√
5− 2)/2 CRDR 0.23607 =

√
5− 2

(LRLR) (RLRL)

(LCDR) 0.14235 = (3
√
5− 5)/12 DRLC 0.10301 = (

√
5− 1)/12

(CDRL) 0.46066 = (5−
√
5)/6 (RLCD) 0.53934 = (

√
5 + 1)/6

DRLC 0.79399 = (7−
√
5)/6 (LCDR) 0.71530 = (11− 3

√
5)/6

(RLCD) 0.46066 = (5−
√
5)/6 (CDRL) 0.53934 = (

√
5 + 1)/6

(LCDR) 0.14235 = (3
√
5− 5)/12 DRLC 0.10301 = (

√
5− 1)/12

RDRL RLCL

DRLD 0.14590 = (7− 3
√
5)/2 DRLC 0.11803 = (

√
5− 2)/2

RLDR 0.76393 = 3−
√
5 RLCR 0.61803 = (

√
5− 1)/2

LDRL 0.61803 = (
√
5− 1)/2 LCRL 0.76393 = 3−

√
5

DRLC 0.11803 = (
√
5− 2)/2 CRLC 0.14590 = (7− 3

√
5)/2

Table 6: 1D-masks for the Fibonacci scheme with the same organisation as in Table 5. Tran-
sitional 1D-labels for early subdivision steps only, are written between parentheses.
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B Features of L–system based subdivision schemes

In this appendix we list the features of all subdivision schemes based on L–systems on small
alphabets, as described in Section 5.2.

Three symbols {L,C,R}

ρ # masks π(C) M[C; (L,C,R)]

1 +
√
2 ≈ 2.414 6 LCR 1 1 1

This is a minimal number of masks, given all the other constraints. If, for example, we
relax the constraint of at most two sub-intervals for the labels of the edges incident to the
EV, adopted to ease both the implementation and the eigenanalysis, we could consider the
following L-system:  L → LCL

C → L
(49)

which uses only two symbols {L,C}, both symmetric, with L as the axiom (we could also use
C but that would require to introduce another transitional mask corresponding to CCCC),
ratio ρ = 1 +

√
2 ≈ 2.414, and lengths ℓL = 1 and ℓC = ρ− 2, which requires 4 only masks:

LLLL

CLLC = σ̄(CLLC)

CLLL = σ̄(LLLC)

LCLL = σ̄(LLCL)

34



Four symbols {S, L, C,R}

ρ # masks π(C) M[C; (S,L,C,R)]

1+
√
13

2 ≈ 2.302
13 RLR 0 1 0 2

14 LRR 0 1 0 2

14 LLR 0 2 0 1

15 LRL 0 2 0 1

17 LLL 0 3 0 0

17 RRR 0 0 0 3

18 RRL 0 1 0 2

21 RLL 0 2 0 1

ρ # masks π(C) M[C; (S,L,C,R)]

1 +
√
2 ≈ 2.414

10 LCR 0 1 1 1

17 RCL 0 1 1 1

Four symbols {L,C,D,R}

ρ # masks π(C) M[C; (L,C,D,R)]

1 +
√
2 ≈ 2.414

9 LCR 1 1 0 1

9 LDR 1 0 1 1

Five symbols {S, L, C,D,R}

ρ # masks π(C) M[C; (S,L,C,D,R)]

1+
√
5

2 ≈ 1.618
13 R 0 0 0 0 1

15 L 0 1 0 0 0
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ρ # masks π(C) M[C; (S,L,C,D,R)]

1 +
√
2 ≈ 2.414

7 DRL 0 1 0 1 1

9 RLC 0 1 1 0 1

12 RDR 0 0 0 1 2

12 LDR 0 1 0 1 1

13 LLC 0 2 1 0 0

13 DRR 0 0 0 1 2

13 DLR 0 1 0 1 1

14 LCR 0 1 1 0 1

14 CRL 0 1 1 0 1

15 LCL 0 2 1 0 0

15 RLD 0 1 0 1 1

16 LRD 0 1 0 1 1

17 LRC 0 1 1 0 1

17 CLR 0 1 1 0 1

18 DLL 0 2 0 1 0

20 RCR 0 0 1 0 2

21 CLL 0 2 1 0 0

21 RRC 0 0 1 0 2

21 RDL 0 1 0 1 1

22 LDL 0 2 0 1 0

22 RCL 0 1 1 0 1

23 CRR 0 0 1 0 2

24 LLD 0 2 0 1 0

30 RRD 0 0 0 1 2
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ρ # masks π(C) M[C; (S,L,C,D,R)]

3+
√
5

2 ≈ 2.618
12 DDR 0 0 0 2 1

13 CLC 0 1 2 0 0

13 CDR 0 0 1 1 1

14 LCC 0 1 2 0 0

14 DRD 0 0 0 2 1

14 LCD 0 1 1 1 0

14 DLC 0 1 1 1 0

14 DRC 0 0 1 1 1

15 DCR 0 0 1 1 1

16 CDL 0 1 1 1 0

17 DCL 0 1 1 1 0

18 CRC 0 0 2 0 1

18 LDC 0 1 1 1 0

18 RDC 0 0 1 1 1

20 CCL 0 1 2 0 0

20 CLD 0 1 1 1 0

21 CCR 0 0 2 0 1

21 CRD 0 0 1 1 1

22 LDD 0 1 0 2 0

22 DLD 0 1 0 2 0

22 RCC 0 0 2 0 1

23 DDL 0 1 0 2 0

28 RCD 0 0 1 1 1

29 RDD 0 0 0 2 1
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