Schémas de Subdivision

Cédric Gérot

GIPSA-lab

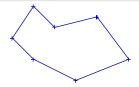
Ecole Jeunes Chercheurs en Informatique Mathématique

28 mars 2011 à Amiens

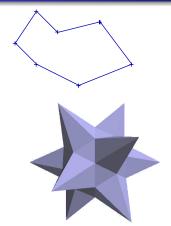
Plan

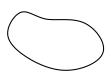
- 1 Un lien algorithmique entre discret et continu
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
- 3 Un outil pour construire de multiples résolutions

Un lien algorithmique entre discret et continu

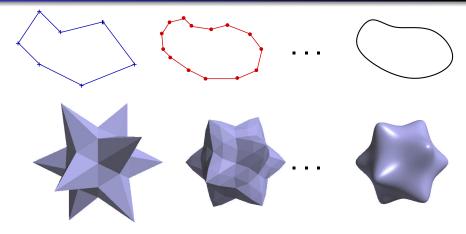


Un lien algorithmique entre discret et continu





Un lien algorithmique entre discret et continu



opérateur qui, appliqué itérativement sur un objet discret, définit une suite d'objets discrets qui tend vers un objet continu.

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- 3 Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

splines

eneralisation i : autre masque

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Un lien algorithmique entre discret et continu
Généraliser les Box-splines aux polyèdres de contrôle quelconque
Construire de multiples résolutions
Références

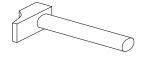
Exemples historiques

B-splines

néralisation I : autre m

énéralisation II : non-stationnaire, non-uniforme

Un peu de mathématiques à propos d'une courbe plane [de Rham, 1947]



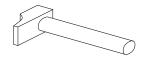
Un lien algorithmique entre discret et continu
Généraliser les Box-splines aux polyèdres de contrôle quelconque
Construire de multiples résolutions
Références

Exemples historiques

s-spiines

eneralisation I : autre masque

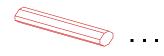
Un peu de mathématiques à propos d'une courbe plane [de Rham, 1947]

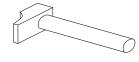


B-spline

eneralisation I : autre masque

Un peu de mathématiques à propos d'une courbe plane [de Rham, 1947]

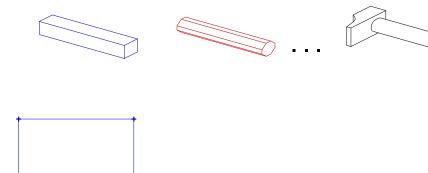




B-spline

teneralisation II . non stationnoise . non . miferon

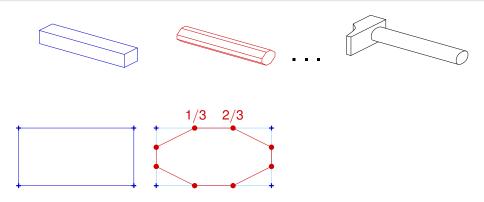
Un peu de mathématiques à propos d'une courbe plane [de Rham, 1947]



B-splin

eneralisation i : autre masque

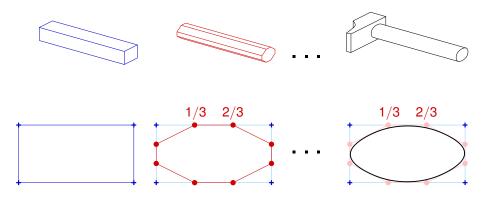
Un peu de mathématiques à propos d'une courbe plane [de Rham, 1947]



B-spline

eneralisation i : autre masque

Un peu de mathématiques à propos d'une courbe plane [de Rham, 1947]

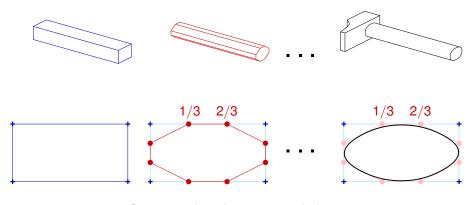


B-spline

enéralisation I : autre masque

Un peu de mathématiques à propos d'une courbe plane [de Rham, 1947]

Références



Cette courbe n'est pas analytique

Un lien algorithmique entre discret et continu
Généraliser les Box-splines aux polyèdres de contrôle quelconque
Construire de multiples résolutions
Références

Exemples historiques

-splines

éralisation I : autre masque

enéralisation II : non-stationnaire, non-uniforme

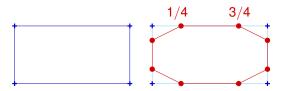
An algorithm for high-speed curve generation [Chaikin, 1974]

Un lien algorithmique entre discret et continu Généraliser les Box-splines aux polyèdres de contrôle quelconque: Exemples historiques

B-splines

néralisation I : autre masque

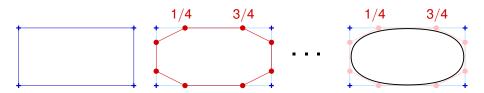
An algorithm for high-speed curve generation [Chaikin, 1974]



B-spline

enéralisation I : autre masque

An algorithm for high-speed curve generation [Chaikin, 1974]

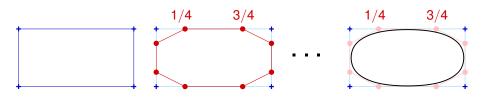


B-spline

eneralisation I : autre masque

An algorithm for high-speed curve generation [Chaikin, 1974]

Références



"Il s'agit d'une B-spline quadratique!"

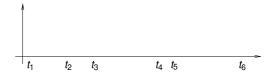
Robin Forrest et Rich Riesenfeld

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II: non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

B-spline: base pour fonct. polynom. par morceaux

input : ensemble de nœuds



B-spline: base pour fonct. polynom. par morceaux

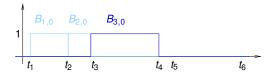
$$d = 0$$

B-spline: base pour fonct. polynom. par morceaux

$$d = 0$$

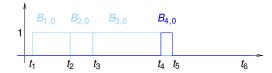
B-spline: base pour fonct. polynom. par morceaux

$$d = 0$$



B-spline: base pour fonct. polynom. par morceaux

$$d = 0$$

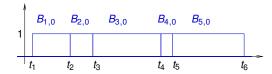


B-spline: base pour fonct. polynom. par morceaux

$$d = 0$$

B-spline: base pour fonct. polynom. par morceaux

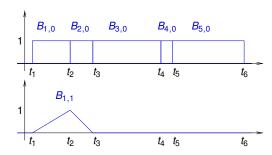
$$d = 0$$



Exemples historiques
B-splines
Généralisation I : autre masque

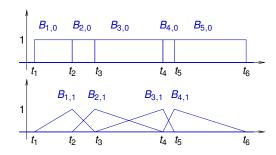
B-spline: base pour fonct. polynom. par morceaux

$$d = 0$$

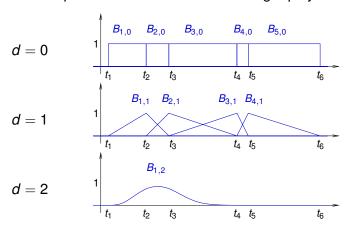


B-spline: base pour fonct. polynom. par morceaux

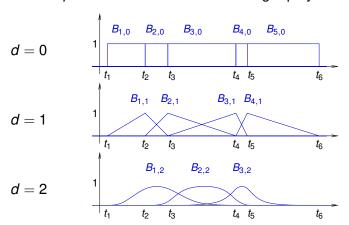
$$d = 0$$



B-spline: base pour fonct. polynom. par morceaux

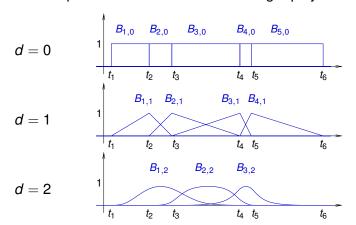


B-spline: base pour fonct. polynom. par morceaux



B-spline: base pour fonct. polynom. par morceaux

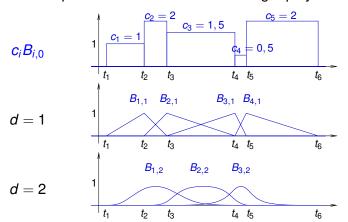
input : ensemble de nœuds + degré polynomial d



B-spline: base pour fonct. polynom. par morceaux

Références

input : ensemble de nœuds + degré polynomial d



B-spline: base pour fonct. polynom. par morceaux

Références

input : ensemble de nœuds + degré polynomial d

$$S_{0} = \sum_{i} c_{i} B_{i,0}$$

$$d = 1$$

$$c_{1} = 1$$

$$c_{2} = 2$$

$$c_{3} = 1, 5$$

$$c_{4} = 0, 5$$

$$t_{1} \quad t_{2} \quad t_{3} \quad t_{4} \quad t_{5} \quad t_{6}$$

$$B_{1,1} \quad B_{2,1} \quad B_{3,1} \quad B_{4,1}$$

$$d = 2$$

$$d = 2$$

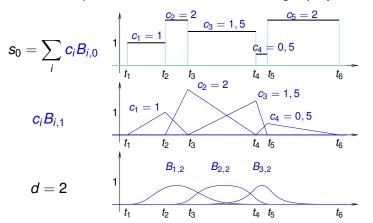
$$d = 2$$

$$t_{1} \quad t_{2} \quad t_{3} \quad t_{4} \quad t_{5} \quad t_{6}$$

B-spline: base pour fonct. polynom. par morceaux

Références

input : ensemble de nœuds + degré polynomial d



B-spline: base pour fonct. polynom. par morceaux

Références

input : ensemble de nœuds + degré polynomial d

$$S_{0} = \sum_{i} c_{i}B_{i,0}$$

$$S_{1} = \sum_{i} c_{i}B_{i,1}$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{6} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{6} = 0,5$$

$$C_{7} = 0$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{6} = 0,5$$

$$C_{7} = 0$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{6} = 0,5$$

$$C_{7} = 0$$

$$C_{7} = 0$$

$$C_{8} = 0$$

$$C_{8} = 0$$

$$C_{8} = 0$$

$$C_{9} = 0$$

$$C_{9} = 0$$

$$C_{1} = 0$$

$$C_{1} = 0$$

$$C_{1} = 0$$

$$C_{2} = 0$$

$$C_{3} = 1$$

$$C_{4} = 0$$

$$C_{5} = 0$$

$$C_{5} = 0$$

$$C_{6} = 0$$

$$C_{7} = 0$$

$$C_{8} = 0$$

$$C_{9} = 0$$

$$C_{9}$$

B-spline: base pour fonct. polynom. par morceaux

Références

input : ensemble de nœuds + degré polynomial d

$$S_{0} = \sum_{i} c_{i}B_{i,0}$$

$$S_{1} = \sum_{i} c_{i}B_{i,1}$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{6} = 1$$

$$C_{7} = 1$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{7} = 1$$

$$C_$$

B-spline: base pour fonct. polynom. par morceaux

Références

input : ensemble de nœuds + degré polynomial d

$$S_{0} = \sum_{i} c_{i}B_{i,0}$$

$$S_{1} = \sum_{i} c_{i}B_{i,1}$$

$$S_{2} = \sum_{i} c_{i}B_{i,2}$$

$$S_{3} = \sum_{i} c_{i}B_{i,2}$$

$$S_{4} = \sum_{i} c_{3} = 1,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{6} = 0,5$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{6} = 1,5$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{7} = 1,5$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{7} = 1,5$$

fonc. déf. sur $[t_{1+d}, t_{m-d}]$, de continuité d-1 en chaque t_i (si \neq)

B-spline: base pour fonct. polynom. par morceaux

Références

input : ensemble de nœuds + degré polynomial d

$$S_{0} = \sum_{i} c_{i}B_{i,0}$$

$$S_{1} = \sum_{i} c_{i}B_{i,1}$$

$$S_{2} = \sum_{i} c_{i}B_{i,2}$$

$$S_{3} = \sum_{i} c_{i}B_{i,2}$$

$$S_{4} = 0.5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{2} = 0.5$$

$$C_{1} = 0.5$$

$$C_{2} = 2$$

$$C_{3} = 1.5$$

$$C_{4} = 0.5$$

$$C_{4} = 0.5$$

$$C_{4} = 0.5$$

$$C_{2} = 2$$

$$C_{3} = 1.5$$

$$C_{4} = 0.5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1.5$$

$$C_{4} = 0.5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1.5$$

$$C_{4} = 0.5$$

$$C_{1} = 0.5$$

$$C_{2} = 0.5$$

$$C_{3} = 0.5$$

$$C_{4} = 0.5$$

$$C_{5} = 0.5$$

$$C_{1} = 0.5$$

$$C_{2} = 0.5$$

$$C_{3} = 0.5$$

$$C_{4} = 0.5$$

$$C_{5} = 0.5$$

$$C_{1} = 0.5$$

$$C_{2} = 0.5$$

$$C_{3} = 0.5$$

$$C_{4} = 0.5$$

$$C_{5} = 0.5$$

$$C_{5} = 0.5$$

$$C_{1} = 0.5$$

$$C_{1} = 0.5$$

$$C_{2} = 0.5$$

$$C_{3} = 0.5$$

$$C_{4} = 0.5$$

$$C_{5} = 0.5$$

$$C_{5} = 0.5$$

$$C_{1} = 0.5$$

$$C_{2} = 0.5$$

$$C_{3} = 0.5$$

$$C_{4} = 0.5$$

$$C_{5} = 0.5$$

fonc. déf. sur $[t_{1+d}, t_{m-d}]$, de continuité d-1 en chaque t_i (si \neq)

B-spline: base pour fonct. polynom. par morceaux

input : ensemble de nœuds + degré polynomial d

$$S_{0} = \sum_{i} c_{i}B_{i,0}$$

$$S_{0} = \sum_{i} c_{i}B_{i,0}$$

$$S_{1} = \sum_{i} c_{i}B_{i,1}$$

$$S_{1} = \sum_{i} c_{i}B_{i,1}$$

$$S_{2} = \sum_{i} c_{i}B_{i,2}$$

$$S_{3} = \sum_{i} c_{i}B_{i,2}$$

$$S_{4} = \sum_{i} c_{3} = 1,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{1} = 1$$

$$C_{2} = 2$$

$$C_{3} = 1,5$$

$$C_{4} = 0,5$$

$$C_{5} = 2$$

$$C_{5}$$

fonc. déf. sur $[t_{1+d}, t_{m-d}]$, de continuité d-1 en chaque t_i (si \neq)

B-spline uniforme : une Box-spline particulière

uniforme : $t_{i+1} - t_i = 1$

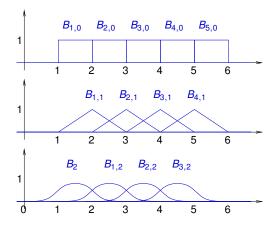
Exemples historiques
B-splines

Généralisation II : non-stationnaire, non-uniforme

B-spline uniforme : une Box-spline particulière

Références

uniforme : $t_{i+1} - t_i = 1$



Exemples historiques
B-splines

Generalisation I : autre masque Généralisation II : non-stationnaire, non-uniforme

B-spline uniforme : une Box-spline particulière

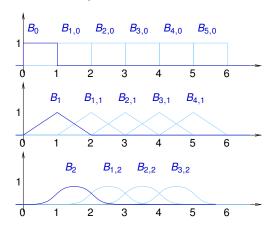
Références

uniforme : $t_{i+1} - t_i = 1$

$$B_{i,0}(t)=B_0(t-i)$$

$$B_{i,1}(t) = B_1(t-i)$$

$$B_{i,2}(t) = B_2(t-i)$$



B-spline uniforme : une Box-spline particulière

Si espace des paramètres de dimension 1, une Box-spline $B(t|v_1 ... v_k)$ est définie

- ullet de ${\mathbb R}$ dans ${\mathbb R}$
- par $k \ge 1$ directions $v_i \in \mathbb{R}$

B-spline uniforme : une Box-spline particulière

Si espace des paramètres de dimension 1, une Box-spline $B(t|v_1 \dots v_k)$ est définie

- ullet de ${\mathbb R}$ dans ${\mathbb R}$
- par $k \ge 1$ directions $v_i \in \mathbb{R}$

B-spline uniforme : une Box-spline particulière

Références

Si espace des paramètres de dimension 1, une Box-spline $B(t|v_1 \dots v_k)$ est définie

- ullet de $\mathbb R$ dans $\mathbb R$
- par $k \ge 1$ directions $v_i \in \mathbb{R}$

$$B(t|v_1) := \begin{cases} 1 & \text{si } t \in [v_1][0,1[\\ 0 & \text{sinon} \end{cases}$$

$$B(t|e_1)=B_0$$

B-spline uniforme : une Box-spline particulière

Si espace des paramètres de dimension 1, une Box-spline $B(t|v_1...v_k)$ est définie

- ullet de $\mathbb R$ dans $\mathbb R$
- par $k \ge 1$ directions $v_i \in \mathbb{R}$

$$B(t|v_1) := \begin{cases} 1 & \text{si } t \in [v_1][0, 1[\\ 0 & \text{sinon} \end{cases}$$

$$B(t|v_1 \dots v_k) := \int_0^1 B(t - \tau v_k|v_1 \dots v_{k-1}) d\tau$$

$$B(t|e_1e_1) = B_1$$

B-spline uniforme : une Box-spline particulière

Si espace des paramètres de dimension 1, une Box-spline $B(t|v_1 \dots v_k)$ est définie

- ullet de $\mathbb R$ dans $\mathbb R$
- par $k \ge 1$ directions $v_i \in \mathbb{R}$

$$B(t|v_1) := \begin{cases} 1 & \text{si } t \in [v_1][0,1[\\ 0 & \text{sinon} \end{cases}$$

$$B(t|v_1 \dots v_k) := \int_0^1 B(t-\tau v_k|v_1 \dots v_{k-1})d\tau$$

$$B(t|e_1e_1e_1) = B_2$$

B-spline uniforme : combi. de translatés contractés

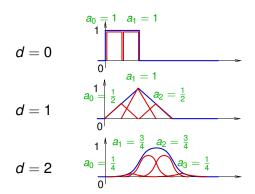
Exemples historiques
B-splines

néralisation I · a

énéralisation II : non-stationnaire, non-uniforme

B-spline uniforme : combi. de translatés contractés

Références



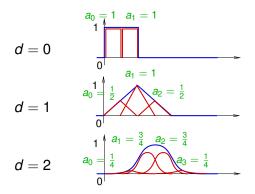
B-splines

Sénéralisation II : non stationnaire, non uniforme

B-spline uniforme : combi. de translatés contractés

Références

combinaison de translatés contractés : $\sum_i a_i B(2t-j)$



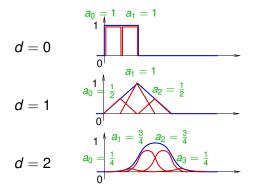
[1 1]

B-splines

Sépéralisation II : non etationnaire, non uniforme

B-spline uniforme : combi. de translatés contractés

Références

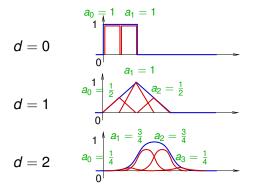


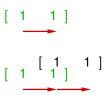
B-splines

seneralisation II : autre masque

B-spline uniforme : combi. de translatés contractés

Références



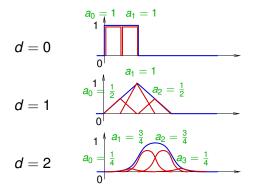


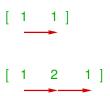
B-splines

seneralisation II : autre masque

B-spline uniforme : combi. de translatés contractés

Références



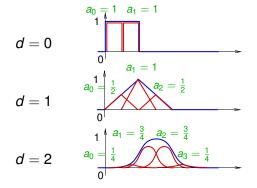


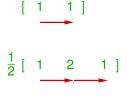
B-splines

sénéralisation II : non-etationnaire, non-uniforme

B-spline uniforme : combi. de translatés contractés

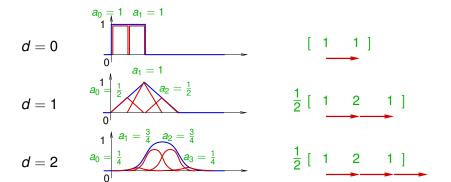
Références





B-spline uniforme : combi. de translatés contractés

Références

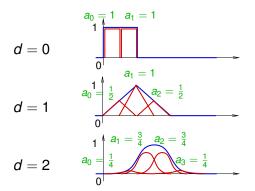


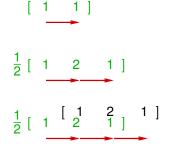
Exemples historiques B-splines

énéralisation I : autre masque

B-spline uniforme : combi. de translatés contractés

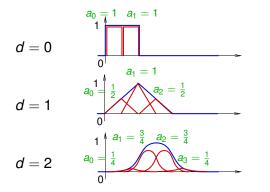
Références

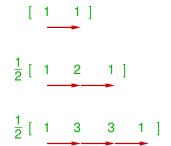




B-spline uniforme : combi. de translatés contractés

Références





Exemples historiques

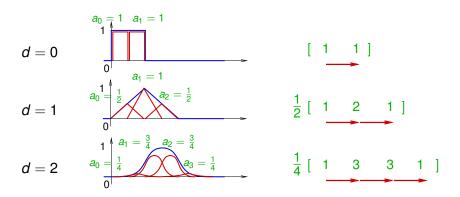
B-splines

Généralisation I : autre masque

Généralisation I : populationnaire populationne

B-spline uniforme : combi. de translatés contractés

Références



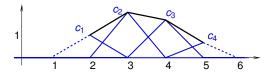
B-splines

énéralisation II : non stationnaire, non uniform

Subdivision vers une B-spline uniforme

Références

$$s_1(t) = \sum_i c_i B_0(t-i)$$



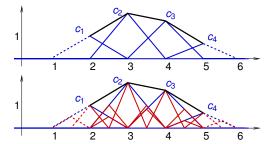
B-splines

Généralisation I : autre masque

Subdivision vers une B-spline uniforme

Références

$$s_1(t) = \sum_i c_i B_0(t-i)$$

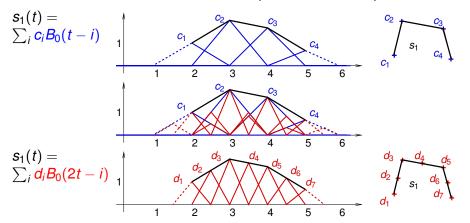


B-splines

Sénéralisation II : non stationnaire, non uniform

Subdivision vers une B-spline uniforme

Références



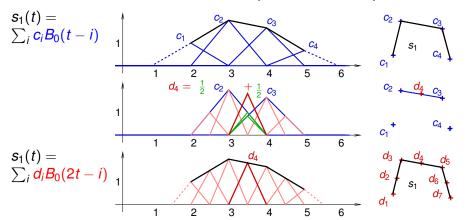
Exemples historiques B-splines

spiiries Spáralicativ

énéralisation II : non-stationnaire non-uniform

Subdivision vers une B-spline uniforme

Références

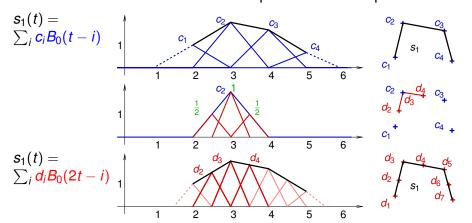


B-splines

zeneralisation II : autre masque Sénéralisation II : non-stationnaire, non-uniform

Subdivision vers une B-spline uniforme

Références



Implantation en subd. topologique + géométrique

1. subdivision topologique

- taille masque impair : primal insérer un nouveau sommet pour chaque arête
- taille masque pair : dual corner cutting

B-splines

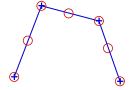
deneralisation I : autre masque

Implantation en subd. topologique + géométrique

1. subdivision topologique

- taille masque impair : primal insérer un nouveau sommet pour chaque arête
- taille masque pair : dual corner cutting

d = 1: primal



Exemples historiques B-splines

Spilites

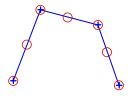
Sénéralisation II : non-stationnaire, non-uniforme

Implantation en subd. topologique + géométrique

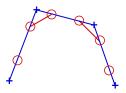
1. subdivision topologique

- taille masque impair : primal insérer un nouveau sommet pour chaque arête
- taille masque pair : dual corner cutting

d = 1: primal



d=2: dual



B-splines

seneralisation II : autre masque

Implantation en subd. topologique + géométrique

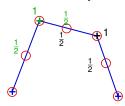
1. subdivision topologique

- taille masque impair : primal insérer un nouveau sommet pour chaque arête
- taille masque pair : dual corner cutting

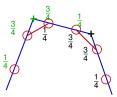
2. subdivision géométrique

appliquer le masque

d = 1: primal



$$d=2$$
: dual



Exemples historiques

B-splines

Généralisation I : autre masque

Implantation en subd. topologique + géométrique

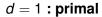
1. subdivision topologique

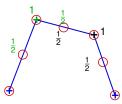
- taille masque impair : primal insérer un nouveau sommet pour chaque arête
- taille masque pair : dual corner cutting

2. subdivision géométrique

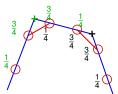
appliquer le masque

d=2: Chaikin!





d=2: dual



Exemples historiques B-splines

> . néralisation I : autre mas

lénéralisation II : non-stationnaire, non-uniforme

Recette

1. Choisir un degré polynomial

d = 2

Exemples historiques **B-splines**Généralisation I : autre masque

Recette

1. Choisir un degré polynomial

$$d = 2$$

2. Construire le masque avec d + 1 flèches

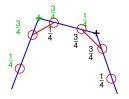
Recette

1. Choisir un degré polynomial

d = 2

2. Construire le masque avec d + 1 flèches

3. Implanter en topo. + géo. selon schéma primal/dual



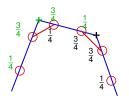
Recette

1. Choisir un degré polynomial

$$d = 2$$

2. Construire le masque avec d + 1 flèches

3. Implanter en topo. + géo. selon schéma primal/dual



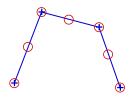
Un schéma de subdivision qui tend vers une courbe polynomiale par morceaux de degré d, ce continuité C^{d-1}

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Masque d'un schéma interpolant

Un schéma primal

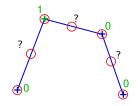


Masque d'un schéma interpolant

Un schéma primal

de masque:

[... 0 ? 0 ? 1 ? 0 ? 0 ...



Masque d'un schéma interpolant

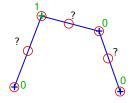
Un schéma primal

de masque :

$$[\dots \ 0 \ ? \ 0 \ ? \ 1 \ ? \ 0 \ ? \ 0 \ \dots]$$
 $[\dots \ a_{-4} \ a_{-3} \ a_{-2} \ a_{-1} \ a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ \dots]$

Condition nécessaire pour convergence :

$$\sum_{i} a_{2i} = 1$$
 et $\sum_{i} a_{2i+1} = 1$



Masque d'un schéma interpolant

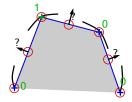
Un schéma primal

de masque :

$$[\dots \ 0 \ ? \ 0 \ ? \ 1 \ ? \ 0 \ ? \ 0 \ \dots]$$
 $[\dots \ a_{-4} \ a_{-3} \ a_{-2} \ a_{-1} \ a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ \dots]$

Condition nécessaire pour convergence :

$$\sum_{i} a_{2i} = 1$$
 et $\sum_{i} a_{2i+1} = 1$



Masque d'un schéma interpolant

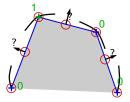
Un schéma primal, le 4-point scheme [Dyn et al., 1987]

de masque :

$$[\dots \ 0 \ -1/16 \ 0 \ 9/16 \ 1 \ 9/16 \ 0 \ -1/16 \ 0 \ \dots]$$
 $[\dots \ a_{-4} \ a_{-3} \ a_{-2} \ a_{-1} \ a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ \dots]$

Condition nécessaire pour convergence :

$$\sum_{i} a_{2i} = 1$$
 et $\sum_{i} a_{2i+1} = 1$



Masque d'un schéma interpolant

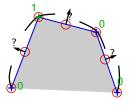
Un schéma primal, le 4-point scheme [Dyn et al., 1987]

de masque :

$$[\dots \ 0 \ -1/16 \ 0 \ 9/16 \ 1 \ 9/16 \ 0 \ -1/16 \ 0 \ \dots]$$
 $[\dots \ a_{-4} \ a_{-3} \ a_{-2} \ a_{-1} \ a_0 \ a_1 \ a_2 \ a_3 \ a_4 \ \dots]$

Condition nécessaire pour convergence :

$$\sum_{i} a_{2i} = 1$$
 et $\sum_{i} a_{2i+1} = 1$



Converge-t-il ? Vers quelle régularité ?

Etude de convergence : conditions suffisantes

idée générale : montrer que $\|\Delta c_i\| := \|c_{i+1} - c_i\| o 0$

Etude de convergence : conditions suffisantes

idée générale : montrer que $\|\Delta c_i\| := \|c_{i+1} - c_i\| \to 0$

- polynôme de Laurent du masque : $a(z) := \sum_i a_i z^i$
- $\{\Delta c_i\}$ suit également un schéma de subdivision de masque

$$q(z)=\frac{a(z)}{1+z}$$

Etude de convergence : conditions suffisantes

idée générale : montrer que $\|\Delta c_i\| := \|c_{i+1} - c_i\| \to 0$

- polynôme de Laurent du masque : $a(z) := \sum_i a_i z^i$
- $\{\Delta c_i\}$ suit également un schéma de subdivision de masque

$$q(z)=\frac{a(z)}{1+z}$$

Le schéma initial S_a est convergeant ssi le schéma aux différences S_q est contractant.

- ssi il existe $L \in \mathbb{N}^*$ tq $\|S_q^L\|_{\infty} < 1$
- En pratique : on se contente de regarder pour
 L = 1...5 ou 10

Etude de convergence : conditions suffisantes

Le 4-point scheme est convergent :

$$a(z) = -\frac{1}{16}z^{-3} + 0z^{-2} + \frac{9}{16}z^{-1} + 1 + \frac{9}{16}z + 0z^{2} - \frac{1}{16}z^{3}$$
$$= (1+z)(-\frac{1}{16}z^{-3} + \frac{1}{16}z^{-2} + \frac{1}{2}z^{-1} + \frac{1}{2} + \frac{1}{16}z - \frac{1}{16}z^{2})$$

Etude de convergence : conditions suffisantes

Le 4-point scheme est convergent :

$$a(z) = -\frac{1}{16}z^{-3} + 0z^{-2} + \frac{9}{16}z^{-1} + 1 + \frac{9}{16}z + 0z^{2} - \frac{1}{16}z^{3}$$
$$= (1+z)(-\frac{1}{16}z^{-3} + \frac{1}{16}z^{-2} + \frac{1}{2}z^{-1} + \frac{1}{2} + \frac{1}{16}z - \frac{1}{16}z^{2})$$

Etude de convergence : conditions suffisantes

Le 4-point scheme est convergent :

$$a(z) = -\frac{1}{16}z^{-3} + 0z^{-2} + \frac{9}{16}z^{-1} + 1 + \frac{9}{16}z + 0z^{2} - \frac{1}{16}z^{3}$$
$$= (1+z)(-\frac{1}{16}z^{-3} + \frac{1}{16}z^{-2} + \frac{1}{2}z^{-1} + \frac{1}{2} + \frac{1}{16}z - \frac{1}{16}z^{2})$$

$$\|S_q\|_{\infty} = \max(\sum |q_{2i}|, \sum |q_{2i+1}|)$$

= $\frac{1}{16} + \frac{1}{2} + \frac{1}{16} = \frac{5}{8} < 1$

Etude de convergence : conditions suffisantes

Vers quelle régularité?

Si
$$a(z) = \frac{(1+z)^m}{2^m}b(z)$$
 et si S_b est convergent alors S_a converge vers une fonction C^m .

Etude de convergence : conditions suffisantes

Vers quelle régularité?

Si
$$a(z) = \frac{(1+z)^m}{2^m}b(z)$$
 et si S_b est convergent alors S_a converge vers une fonction C^m .

4-point scheme: C1

Etude de convergence : conditions suffisantes

Vers quelle régularité?

Si
$$a(z) = \frac{(1+z)^m}{2^m}b(z)$$
 et si S_b est convergent alors S_a converge vers une fonction C^m .

4-point scheme: C1

$$\mathbf{a}(\mathbf{z}) = \frac{(\mathbf{1} + \mathbf{z})^{\mathbf{d} + \mathbf{1}}}{\mathbf{2}^{\mathbf{d}}} = \frac{(\mathbf{1} + z)^{d - 1}}{2^{d - 1}} \frac{(\mathbf{1} + z)^2}{2}$$

Etude de convergence : conditions suffisantes

Vers quelle régularité?

Si
$$a(z) = \frac{(1+z)^m}{2^m}b(z)$$
 et si S_b est convergent alors S_a converge vers une fonction C^m .

4-point scheme: C1

$$\mathbf{a}(\mathbf{z}) = \frac{(1+\mathbf{z})^{\mathbf{d}+1}}{2^{\mathbf{d}}} = \frac{(1+z)^{d-1}}{2^{d-1}} \frac{(1+z)^2}{2}$$

Etude de convergence : conditions suffisantes

Vers quelle régularité?

Si $a(z) = \frac{(1+z)^m}{2^m}b(z)$ et si S_b est convergent alors S_a converge vers une fonction C^m .

4-point scheme: C1

$$\mathbf{a}(\mathbf{z}) = \frac{(1+\mathbf{z})^{\mathbf{d}+1}}{2^{\mathbf{d}}} = \frac{(1+z)^{d-1}}{2^{d-1}} \frac{(1+z)^2}{2}$$

$$b(z) = \frac{(1+z)^2}{2} = (1+z)(\frac{1}{2} + \frac{1}{2}z)$$

Etude de convergence : conditions suffisantes

Vers quelle régularité?

Si $a(z) = \frac{(1+z)^m}{2^m}b(z)$ et si S_b est convergent alors S_a converge vers une fonction C^m .

4-point scheme: C1

$$\mathbf{a}(\mathbf{z}) = \frac{(\mathbf{1} + \mathbf{z})^{\mathbf{d} + \mathbf{1}}}{\mathbf{2}^{\mathbf{d}}} = \frac{(\mathbf{1} + z)^{d - 1}}{2^{d - 1}} \frac{(\mathbf{1} + z)^2}{2}$$

$$b(z) = \frac{(1+z)^2}{2} = (1+z)(\frac{1}{2} + \frac{1}{2}z)$$

Généralisation I: autre masque

Etude de convergence : conditions suffisantes

Vers quelle régularité?

Si $a(z) = \frac{(1+z)^m}{2^m}b(z)$ et si S_b est convergent alors S_a converge vers une fonction C^m .

4-point scheme: C1

$$\mathbf{a}(\mathbf{z}) = \frac{(\mathbf{1} + \mathbf{z})^{\mathbf{d} + \mathbf{1}}}{\mathbf{2}^{\mathbf{d}}} = \frac{(\mathbf{1} + z)^{d - 1}}{2^{d - 1}} \frac{(\mathbf{1} + z)^2}{2}$$

$$b(z) = \frac{(1+z)^2}{2} = (1+z)(\frac{1}{2} + \frac{1}{2}z)$$

$$\|S_q\|_{\infty} = \frac{1}{2} < 1$$

Généralisation I: autre masque

Etude de convergence : conditions suffisantes

Vers quelle régularité?

Si $a(z) = \frac{(1+z)^m}{2^m}b(z)$ et si S_b est convergent alors S_a converge vers une fonction C^m .

4-point scheme: C1

B-spline de degré d: C^{d-1}

$$\mathbf{a}(\mathbf{z}) = \frac{(\mathbf{1} + \mathbf{z})^{\mathbf{d} + \mathbf{1}}}{\mathbf{2}^{\mathbf{d}}} = \frac{(\mathbf{1} + \mathbf{z})^{d - 1}}{2^{d - 1}} \frac{(\mathbf{1} + \mathbf{z})^2}{2}$$

$$b(z) = \frac{(1+z)^2}{2} = (1+z)(\frac{1}{2} + \frac{1}{2}z)$$

$$\|S_q\|_{\infty} = \frac{1}{2} < 1$$

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Schémas non-uniformes

au sein d'une même étape de subdivision les règles diffèrent entre les sommets

- exemple : partir d'une B-spline non-uniforme et insérer un nœud au milieu de chaque intervalle.
- permet de modéliser NURBS (CAGD)
- 1980 Algorithmes de Boehm ou d'Oslo : pour insérer un seul nœud dans une B-spline non-uniforme
- 2009 [Schaefer et Goldman, 2009] et
 [Cashman et al., 2009] algorithmes en refine-and-smooth:
 pour insérer au plus un nœud dans tous les intervalles.

Schémas non-uniformes

au sein d'une même étape de subdivision les règles diffèrent entre les sommets

- exemple : partir d'une B-spline non-uniforme et insérer un nœud au milieu de chaque intervalle.
- permet de modéliser NURBS (CAGD)
- 1980 Algorithmes de Boehm ou d'Oslo : pour insérer un seul nœud dans une B-spline non-uniforme
- 2009 [Schaefer et Goldman, 2009] et
 [Cashman et al., 2009] algorithmes en refine-and-smooth:
 pour insérer au plus un nœud dans tous les intervalles.

Schémas non-uniformes

au sein d'une même étape de subdivision les règles diffèrent entre les sommets

- exemple : partir d'une B-spline non-uniforme et insérer un nœud au milieu de chaque intervalle.
- permet de modéliser NURBS (CAGD)
- 1980 Algorithmes de Boehm ou d'Oslo : pour insérer un seul nœud dans une B-spline non-uniforme
- 2009 [Schaefer et Goldman, 2009] et [Cashman et al., 2009] algorithmes en refine-and-smooth: pour insérer au plus un nœud dans tous les intervalles.

Schémas non-uniformes

au sein d'une même étape de subdivision les règles diffèrent entre les sommets

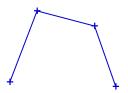
- exemple : partir d'une B-spline non-uniforme et insérer un nœud au milieu de chaque intervalle.
- permet de modéliser NURBS (CAGD)
- 1980 Algorithmes de Boehm ou d'Oslo : pour insérer un seul nœud dans une B-spline non-uniforme
- 2009 [Schaefer et Goldman, 2009] et
 [Cashman et al., 2009] algorithmes en refine-and-smooth:
 pour insérer au plus un nœud dans tous les intervalles.

Schémas non-uniformes

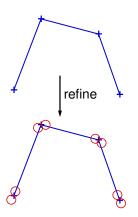
au sein d'une même étape de subdivision les règles diffèrent entre les sommets

- exemple : partir d'une B-spline non-uniforme et insérer un nœud au milieu de chaque intervalle.
- permet de modéliser NURBS (CAGD)
- 1980 Algorithmes de Boehm ou d'Oslo : pour insérer un seul nœud dans une B-spline non-uniforme
- 2009 [Schaefer et Goldman, 2009] et
 [Cashman et al., 2009] algorithmes en refine-and-smooth:
 pour insérer au plus un nœud dans tous les intervalles.

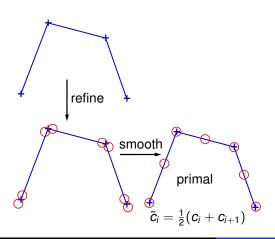
Implantation en refine-and-smooth



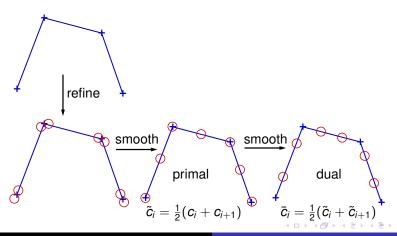
Implantation en refine-and-smooth



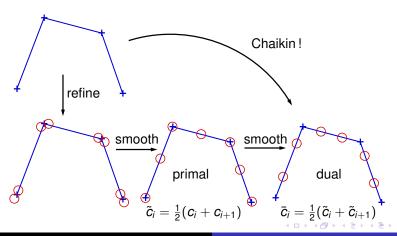
Implantation en refine-and-smooth



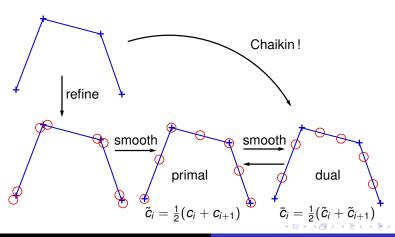
Implantation en refine-and-smooth



Implantation en refine-and-smooth



Implantation en refine-and-smooth



Schémas non-stationnaires

le masque a dépend du pas de subdivision

- pour modéliser des fonctions exponentielles (cercles)
- etude de convergence peut se faire par proximité (asymptotique) avec un schéma stationnaire [Dyn et Levin, 1995].

Schémas non-stationnaires

le masque a dépend du pas de subdivision

- pour modéliser des fonctions exponentielles (cercles)
- etude de convergence peut se faire par proximité (asymptotique) avec un schéma stationnaire [Dyn et Levin, 1995].

Schémas non-stationnaires

le masque a dépend du pas de subdivision

- pour modéliser des fonctions exponentielles (cercles)
- etude de convergence peut se faire par proximité (asymptotique) avec un schéma stationnaire [Dyn et Levin, 1995].

Exemples historiques
B-splines
Généralisation I : autre masque
Généralisation II : non-stationnaire, non-uniforme

Schémas ni stationnaire, ni uniformes

Cutting corners de de Rham:

Cutting corners always works [de Boor, 1987]

Exemples nistoriques
B-splines
Généralisation I : autre masque
Généralisation II : non-stationnaire, non-uniforme

Schémas ni stationnaire, ni uniformes

Cutting corners de de Rham:

Cutting corners always works [de Boor, 1987]

Schémas non-linéaires :

- choisir, pour chaque nouveau sommet, une règle parmi un ensemble pré-défini
- étude de convergence : montrer que, quels que soient les choix successifs adoptés, le schéma aux différences est contractant [Cohen et al., 2003]

Exemples historiques
B-splines
Généralisation I : autre masque
Généralisation II : non-stationnaire, non-uniforme

Schémas ni stationnaire, ni uniformes

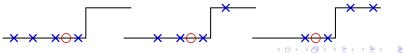
Cutting corners de de Rham:

Cutting corners always works [de Boor, 1987]

Schémas non-linéaires :

- choisir, pour chaque nouveau sommet, une règle parmi un ensemble pré-défini
- étude de convergence : montrer que, quels que soient les choix successifs adoptés, le schéma aux différences est contractant [Cohen et al., 2003]

Essentially Non-Oscillatory interpolation [Harten et al., 1987]



Exemples historiques
B-splines
Généralisation I : autre masque
Généralisation II : non-stationnaire, non-uniforme

Schémas ni stationnaire, ni uniformes

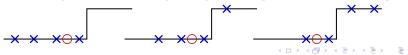
Cutting corners de de Rham:

Cutting corners always works [de Boor, 1987]

Schémas non-linéaires :

- choisir, pour chaque nouveau sommet, une règle parmi un ensemble pré-défini
- étude de convergence : montrer que, quels que soient les choix successifs adoptés, le schéma aux différences est contractant [Cohen et al., 2003]

Essentially Non-Oscillatory interpolation [Harten et al., 1987]



Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting



Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II: non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Box-splines surfaciques pour la subdivision

Si espace des paramètres de dimension 2, une Box-spline $B(t|v_1...v_k)$ est définie

- de \mathbb{R}^2 dans \mathbb{R}
- par $k \ge 2$ directions $v_i \in \mathbb{R}^2$ tels que (v_1, v_2) en est une base

Box-splines surfaciques pour la subdivision

Si espace des paramètres de dimension 2, une Box-spline $B(t|v_1 \dots v_k)$ est définie

- de \mathbb{R}^2 dans \mathbb{R}
- par $k \ge 2$ directions $v_i \in \mathbb{R}^2$ tels que $v_1 = e_1$, $v_2 = e_2$, et $v_i \in \mathbb{Z}^2$

Box-splines surfaciques pour la subdivision

Si espace des paramètres de dimension 2, une Box-spline $B(t|v_1 \dots v_k)$ est définie

- de \mathbb{R}^2 dans \mathbb{R}
- par $k \ge 2$ directions $v_i \in \mathbb{R}^2$ tels que $v_1 = e_1$, $v_2 = e_2$, et $v_i \in \mathbb{Z}^2$

$$B(t|v_1v_2) := \begin{cases} 1 & \text{si } t \in [v_1, v_2][0, 1[\\ 0 & \text{sinon} \end{cases}$$

Box-splines surfaciques pour la subdivision

Si espace des paramètres de dimension 2, une Box-spline $B(t|v_1 \dots v_k)$ est définie

- de \mathbb{R}^2 dans \mathbb{R}
- par $k \ge 2$ directions $v_i \in \mathbb{R}^2$ tels que $v_1 = e_1$, $v_2 = e_2$, et $v_i \in \mathbb{Z}^2$

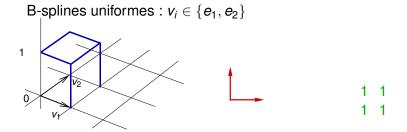
$$B(t|v_1v_2) := \begin{cases} 1 & \text{si } t \in [v_1, v_2][0, 1[\\ 0 & \text{sinon} \end{cases}$$

$$B(t|v_1v_2...v_k) := \int_0^1 B(t-\tau v_k|v_1...v_{k-1})d\tau$$

 $B(x|v_1 \cdots v_k)$ est de continuité C^r si tout sous-ensemble de $\{v_1, \ldots, v_k\}$ obtenu en enlevant r+1 directions est une base de \mathbb{R}^2 .

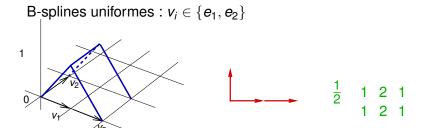
Etude au voisinage d'un sommet extraordinaire
Exemples de *tuning*Généralisations

Box-splines surfaciques pour la subdivision



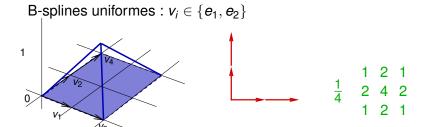
Etude au voisinage d'un sommet extraordinaire
Exemples de *tuning*Généralisations

Box-splines surfaciques pour la subdivision



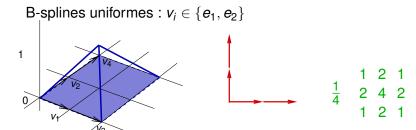
tude au voisinage d'un sommet extraordinaire exemples de *tuning* Généralisations

Box-splines surfaciques pour la subdivision

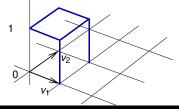


tude au voisinage d'un sommet extraordinaire exemples de *tuning* Sénéralisations

Box-splines surfaciques pour la subdivision

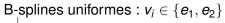


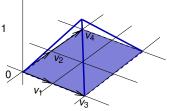
Maillage de contrôle triangulaire : $v_i \in \{e_1, e_2, e_1 + e_2\}$

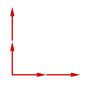


Etude au voisinage d'un sommet extraordinaire Exemples de *tuning* Bénéralisations

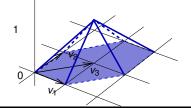
Box-splines surfaciques pour la subdivision





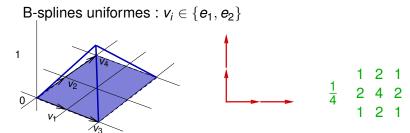


Maillage de contrôle triangulaire : $v_i \in \{e_1, e_2, e_1 + e_2\}$



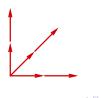
Etude au voisinage d'un sommet extraordinaire Exemples de *tuning* Généralisations

Box-splines surfaciques pour la subdivision



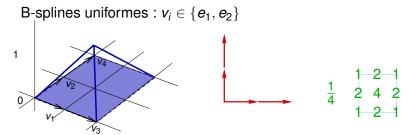
Maillage de contrôle triangulaire : $v_i \in \{e_1, e_2, e_1 + e_2\}$

Schéma de Loop



Etude au voisinage d'un sommet extraordinaire Exemples de *tuning* Généralisations

Box-splines surfaciques pour la subdivision



Maillage de contrôle triangulaire : $v_i \in \{e_1, e_2, e_1 + e_2\}$

Schéma de Loop C²

Etude au voisinage d'un sommet extraordinaire Exemples de *tuning* Généralisations

Maillage non régulier

- Subdivision topologique : possible
- Subdivision géométrique : comment appliquer les

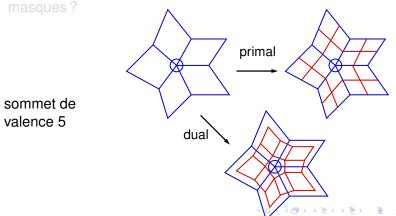
masques?

sommet de valence 5

Etude au voisinage d'un sommet extraordinaire Exemples de *tuning* Généralisations

Maillage non régulier

- Subdivision topologique : possible
- Subdivision géométrique : comment appliquer les



Etude au voisinage d'un sommet extraordinaire Exemples de *tuning* Généralisations

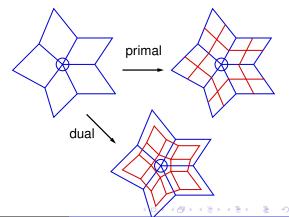
Maillage non régulier

Subdivision topologique : possible

Subdivision géométrique : comment appliquer les

masques?

sommet de valence 5



Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Historique

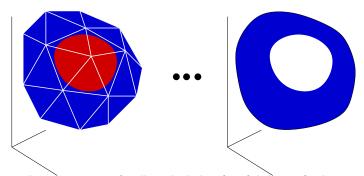
- [Catmull et Clark, 1978] règles extraordinaires pour B-spline bicubique $(4e_1, 4e_2)$, et B-spline biquadratique $(3e_1, 3e_2)$
- [Doo et Sabin, 1978] étude du comportement autour du SE des schémas précédents ⇒ meilleures règles pour le bi-quadratique : 1er tuning
- [Ball et Storry, 1988] conditions nécessaires pour convergence des normales : pas tout à fait C¹ encore !
- [Reif, 1995] le bon formalisme fondé sur la géométrie différentielle : CNS pour convergence vers C¹
- [Prautzsch, 1998] et [Zorin, 2000] indépendamment CNS pour convergence vers C^k

Historique

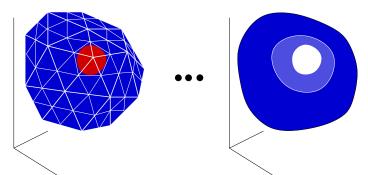
- [Catmull et Clark, 1978] règles extraordinaires pour B-spline bicubique $(4e_1, 4e_2)$, et B-spline biquadratique $(3e_1, 3e_2)$
- [Doo et Sabin, 1978] étude du comportement autour du SE des schémas précédents ⇒ meilleures règles pour le bi-quadratique : 1er tuning
- [Ball et Storry, 1988] conditions nécessaires pour convergence des normales : pas tout à fait C¹ encore!
- [Reif, 1995] le bon formalisme fondé sur la géométrie différentielle : CNS pour convergence vers C¹
- [Prautzsch, 1998] et [Zorin, 2000] indépendamment CNS pour convergence vers C^k

Historique

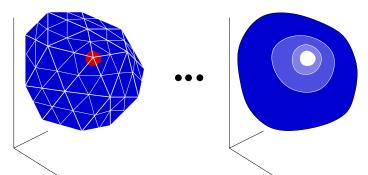
- [Catmull et Clark, 1978] règles extraordinaires pour B-spline bicubique $(4e_1, 4e_2)$, et B-spline biquadratique $(3e_1, 3e_2)$
- [Doo et Sabin, 1978] étude du comportement autour du SE des schémas précédents ⇒ meilleures règles pour le bi-quadratique : 1er tuning
- [Ball et Storry, 1988] conditions nécessaires pour convergence des normales : pas tout à fait C¹ encore!
- [Reif, 1995] le bon formalisme fondé sur la géométrie différentielle : CNS pour convergence vers C¹
- [Prautzsch, 1998] et [Zorin, 2000] indépendamment CNS pour convergence vers C^k



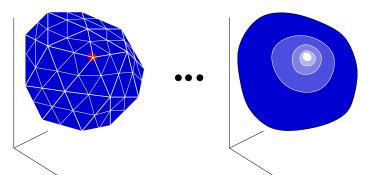
- des ànneaux réguliers imbriqués réduisant à chaque itération la zone irrégulière
- développement de Taylor à l'ordre k+1 d'une paramétrisation de la surface limite au voisinage du SE



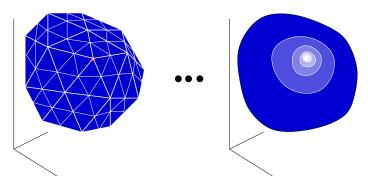
- des ànneaux réguliers imbriqués réduisant à chaque itération la zone irrégulière
- développement de Taylor à l'ordre k+1 d'une paramétrisation de la surface limite au voisinage du SE



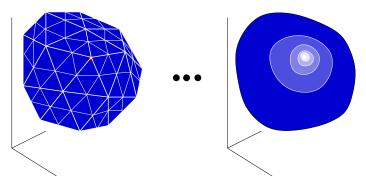
- des ànneaux réguliers imbriqués réduisant à chaque itération la zone irrégulière
- développement de Taylor à l'ordre k+1 d'une paramétrisation de la surface limite au voisinage du SE



- des ànneaux réguliers imbriqués réduisant à chaque itération la zone irrégulière
- développement de Taylor à l'ordre k+1 d'une paramétrisation de la surface limite au voisinage du SE



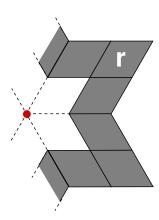
- des ànneaux réguliers imbriqués réduisant à chaque itération la zone irrégulière
- développement de Taylor à l'ordre k+1 d'une paramétrisation de la surface limite au voisinage du SE



- des anneaux réguliers imbriqués réduisant à chaque itération la zone irrégulière
- développement de Taylor à l'ordre k+1 d'une paramétrisation de la surface limite au voisinage du SE

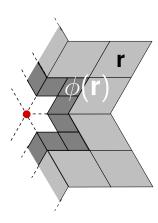
Convergence Ck : CNS théorique

- \mathcal{R} espace linéaire de fonctions réelles C^k -continues définies sur $\Omega = 3n \times [0,1]^2 \to \mathbb{R}$
- φ application linéaire sur R telle que tout r ∈ R³ et φ(r) se joignent continûment



Convergence Ck : CNS théorique

- \mathcal{R} espace linéaire de fonctions réelles C^k -continues définies sur $\Omega = 3n \times [0,1]^2 \to \mathbb{R}$
- ϕ application linéaire sur \mathcal{R} telle que tout $\mathbf{r} \in \mathcal{R}^3$ et $\phi(\mathbf{r})$ se joignent continûment



Convergence Ck : CNS théorique

Valeurs propres de ϕ : λ_0 , λ_1 , λ_2 ... Fonctions propres de ϕ : $\phi \mathbf{f_i} = \lambda_i \mathbf{f_i}$

 C^0 : les anneaux convergent vers une constante $\lambda_0=1>\lambda_1$ et $\phi^q({f r}) o {f f_0}p({f r})$

C1: (carte caractéristique)

 $\lambda_1 \geq \lambda_2 > \lambda_3$ et $\mathbf{x} = (\mathbf{f_1}, \mathbf{f_2})$ régulière et injective

 C^k : développement de Taylor à l'ordre k+1 d'une paramétrisation sur ${\bf x}$

- soit $\lambda_i < \lambda_2^k$;
- soit λ_i a mêmes multiplicités algébriques et géométriques, et $\mathbf{f_i} \in \operatorname{span}\left\{\mathbf{f_1}^{\alpha}\mathbf{f_2}^{\beta}|\lambda_1^{\alpha}\lambda_2^{\beta}=\lambda_i, (\alpha,\beta)\in\mathbb{N}^2\right\}$

Convergence Ck : CNS théorique

Valeurs propres de ϕ : λ_0 , λ_1 , λ_2 ... Fonctions propres de ϕ : $\phi \mathbf{f_i} = \lambda_i \mathbf{f_i}$

 C^0 : les anneaux convergent vers une constante $\lambda_0=1>\lambda_1$ et $\phi^q({\bf r})\to {\bf f_0}p({\bf r})$

C': (carte caractéristique) $\lambda_1 \geq \lambda_2 > \lambda_3$ et $\mathbf{x} = (\mathbf{f_1}, \mathbf{f_2})$ régulière et injective

 ${\it C}^k$: développement de Taylor à l'ordre k+1 d'une paramétrisation sur ${\bf x}$

- soit $\lambda_i < \lambda_2^k$;
- soit λ_i a mêmes multiplicités algébriques et géométriques,

et
$$\mathbf{f_i} \in \operatorname{span}\left\{\mathbf{f_1}^{\alpha}\mathbf{f_2}^{\beta}|\lambda_1^{\alpha}\lambda_2^{\beta} = \lambda_i, (\alpha, \beta) \in \mathbb{N}^2\right\}$$

Convergence Ck : CNS théorique

Valeurs propres de ϕ : λ_0 , λ_1 , λ_2 ... Fonctions propres de ϕ : $\phi \mathbf{f_i} = \lambda_i \mathbf{f_i}$

 C^0 : les anneaux convergent vers une constante $\lambda_0=1>\lambda_1$ et $\phi^q({\bf r})\to {\bf f_0}p({\bf r})$

 C^1 : (carte caractéristique) $\lambda_1 \geq \lambda_2 > \lambda_3$ et $\mathbf{x} = (\mathbf{f_1}, \mathbf{f_2})$ régulière et injective

 C^k : développement de Taylor à l'ordre k+1 d'une paramétrisation sur ${\bf x}$

- soit $\lambda_i < \lambda_2^k$;
- soit λ_i a mêmes multiplicités algébriques et géométriques,

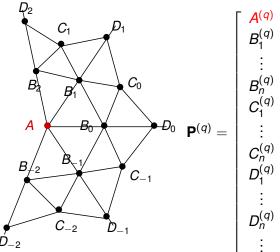
et
$$\mathbf{f_i} \in \operatorname{span}\left\{\mathbf{f_1}^{\alpha}\mathbf{f_2}^{\beta}|\lambda_1^{\alpha}\lambda_2^{\beta} = \lambda_i, (\alpha, \beta) \in \mathbb{N}^2\right\}$$

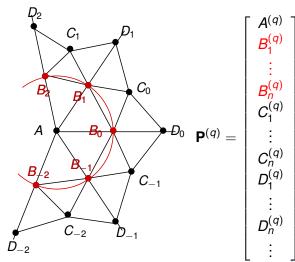
Convergence Ck : CNS théorique

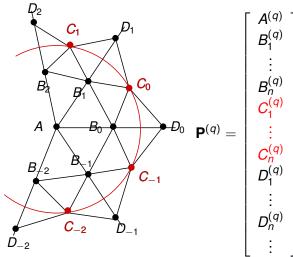
Valeurs propres de ϕ : λ_0 , λ_1 , λ_2 ... Fonctions propres de ϕ : $\phi \mathbf{f_i} = \lambda_i \mathbf{f_i}$

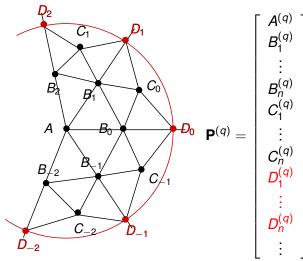
- C^0 : les anneaux convergent vers une constante $\lambda_0=1>\lambda_1$ et $\phi^q({\bf r})\to {\bf f_0}p({\bf r})$
- C^1 : (carte caractéristique) $\lambda_1 \geq \lambda_2 > \lambda_3$ et $\mathbf{x} = (\mathbf{f_1}, \mathbf{f_2})$ régulière et injective
- ${\it C}^k$: développement de Taylor à l'ordre k+1 d'une paramétrisation sur ${\bf x}$
 - soit $\lambda_i < \lambda_2^k$;
 - soit λ_i a mêmes multiplicités algébriques et géométriques, et $\mathbf{f_i} \in \operatorname{span}\left\{\mathbf{f_1}^{\alpha}\mathbf{f_2}^{\beta}|\lambda_1^{\alpha}\lambda_2^{\beta}=\lambda_i, (\alpha,\beta)\in\mathbb{N}^2\right\}$

Etude au voisinage d'un sommet extraordinaire

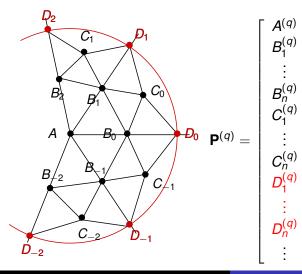








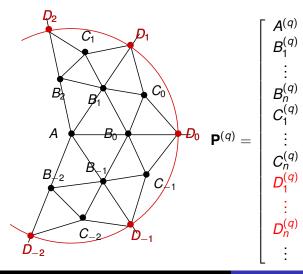
Convergence C^k : en pratique, condition nécessaire



Matrice de subdivision

$$\mathbf{P}^{(q)} = \mathbf{M}\mathbf{P}^{(q-1)}$$

Convergence C^k : en pratique, condition nécessaire



Matrice de subdivision

$$\mathbf{P}^{(q)} = \mathbf{M}\mathbf{P}^{(q-1)}$$

- valeur propre de **M** = λ_i
- V_i vecteur
 propre de M
 ⇒ S[∞]V_i = f_i

Convergence C^k : en pratique, condition nécessaire

Décomposition en éléments propres

$$\mathbf{M} = \mathbf{V} \wedge \mathbf{V}^{-1}$$

$$\mathbf{M}^{q} = \mathbf{V} \wedge^{q} \mathbf{V}^{-1}$$

$$\mathbf{P}^{(q)} = \sum_{i} \lambda_{i}^{q} w_{i} \mathbf{V}_{i}$$

Discrétisation du développement de Taylor

- V_0 : position
- V₁, V₂: plan tangent
- V_3 , V_4 , V_5 : quadratique au-dessus du plan tangent

Convergence C^k : en pratique, condition nécessaire

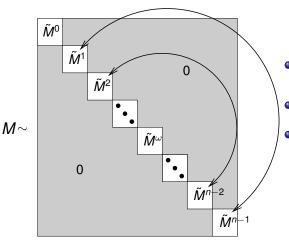
Symétries des règles de subdivision

	16W W+n 6 6	16 W+n 6 2	2	0 2	 0	0	$\frac{16}{W+n}$ 2 0	0 0 0				0 0 0	0 0 0				0 0 0	
<u>1</u> 16	6	2	0		: : 0	2	6 0	0 2	0	:		0	0		:		0	
	2	0	6	6	0		0	0	2	0		0	0				0	
	2 1 1	6 10 1	0 1 10	0 1		0 0	6 1 0	0 1 1	0 1		0 0 	2 1 0	0 1 0	0	0		0 0 0	
	:	1	0		:	1	10	0		:	1	1	0		:	0		

Convergence C^k : en pratique, condition nécessaire

Symétries des règles de subdivision

	- <u>16W</u> W+n	$\frac{16}{W+n}$					$\frac{16}{W+n}$	0				0	0				0]
	6	6	2	0		0	2	0				0	0				0
	6	2	6	2	0		0	0				0	0				0
																	I
										•							
	6	2	0		Ö	2	6	0				0	0				0
	2	6	6	0			0	2	0			0	0				0
1 16	2	0	6	6	0		0	0	2	0		0	0				0
																	1
	:														:		- 1
	2	6	0			0	6	0			0	2	0				0
	1	10	1	0		0	1	1	0		0	1	1	0			0
	1	1	10	1	0		0	1	1	0		0	0	1	0		0
																	İ
																	- 1
	. 1	1	0		0	1	10	0		0	1	1	0			0	1]



- λ_i valeur propre de \tilde{M}^{ω}
- intérêt numérique
- chaque cercle {B_i}, {C_i},...interprété comme un signal discret périodique

Convergence C^k : en pratique, condition nécessaire

Discrétisation du développement de Taylor

$$\mathbf{P}^{(q)} = \sum_{i} \lambda_{i}^{q} w_{i} \mathbf{V_{i}}$$

 V_0 : position

*

 V_1 , V_2 : plan tangent

Convergence C^k : en pratique, condition nécessaire

Discrétisation du développement de Taylor

$$\mathbf{P}^{(q)} = \sum_{i} \lambda_{i}^{q} w_{i} \mathbf{V_{i}}$$

 V_0 : position

 V_1 , V_2 : plan tangent

 V_3 , V_4 , V_5 : quadratique

Convergence C^k : en pratique, condition nécessaire

Discrétisation du développement de Taylor

$$\mathbf{P}^{(q)} = \sum_{i} \lambda_{i}^{q} w_{i} \mathbf{V_{i}}$$

 V_0 : position

 V_1 , V_2 : plan tangent

 V_3 , V_4 , V_5 : quadratique

Convergence C^k : en pratique, condition nécessaire

Discrétisation du développement de Taylor

$$\mathbf{P}^{(q)} = \sum_{i} \lambda_{i}^{q} w_{i} \mathbf{V_{i}}$$

 V_0 : position

 V_1 , V_2 : plan tangent

 V_3 , V_4 , V_5 : quadratique

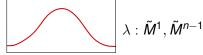
Convergence C^k : en pratique, condition nécessaire

Discrétisation du développement de Taylor

$$\mathbf{P}^{(q)} = \sum_{i} \lambda_{i}^{q} w_{i} \mathbf{V_{i}}$$

 V_0 : position

 V_1 , V_2 : plan tangent



 V_3, V_4, V_5 : quadratique

Etude au voisinage d'un sommet extraordinaire

Convergence C^k : en pratique, condition nécessaire

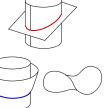
Discrétisation du développement de Taylor

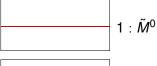
$$\mathbf{P}^{(q)} = \sum_{i} \lambda_{i}^{q} w_{i} \mathbf{V_{i}}$$

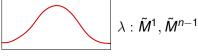
 V_0 : position

 V_1 , V_2 : plan tangent

 V_3, V_4, V_5 : quadratique







Etude au voisinage d'un sommet extraordinaire

Convergence C^k : en pratique, condition nécessaire

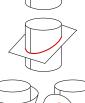
Discrétisation du développement de Taylor

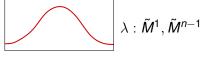
$$\mathbf{P}^{(q)} = \sum_{i} \lambda_{i}^{q} w_{i} \mathbf{V_{i}}$$

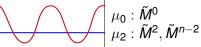
 V_0 : position

 V_1 , V_2 : plan tangent

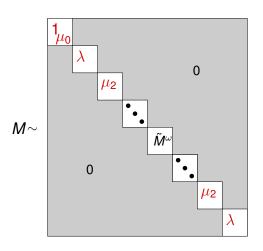
 V_3, V_4, V_5 : quadratique







Convergence C^k : en pratique, condition nécessaire



Conditions nécessaires pour C^2

•
$$1 > \lambda$$

•
$$\mu_0 = \mu_2 = \lambda^2$$

•
$$\mu_0 > \mu$$

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Rétro-conception

Principe

construire $\mathbf{M} = \mathbf{V} \wedge \mathbf{V}^{-1}$ à partir de \mathbf{V} et Λ ad hoc

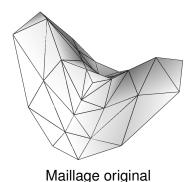
[Prautzsch, 1998]

- stencil du SE uniquement
- $\mu_0 = \mu_2 < \lambda^2$
- artefact : plat

[G. et al, 2010]

- plus de stencils
- $\mu_0 = \mu_2 = \lambda^2$ (ronds dans l'eau)
- $\mu_2 \neq \mu_0 = \lambda^2$ (par mélange de règles)

Rétro-conception [G. et al, 2010]



Surface subdivisée

Rétro-conception [G. et al, 2010]

Surfaces limites

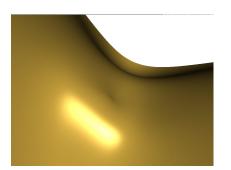
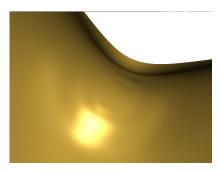


Schéma de Loop



Rétro-conception

Rétro-conception [G. et al, 2010]

Surfaces limites

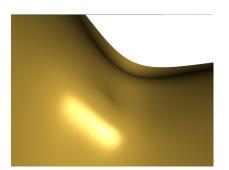
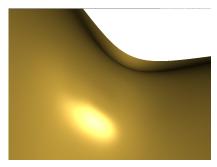


Schéma de Loop



Rétro-conception + mélange

Rétro-conception [G. et al, 2010]

Courbure gaussienne (positive, négative)

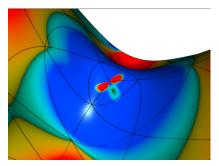
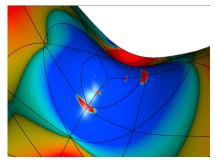


Schéma de Loop



Rétro-conception

Rétro-conception [G. et al, 2010]

Courbure gaussienne (positive, négative)

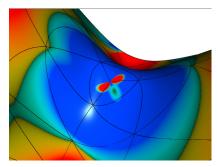
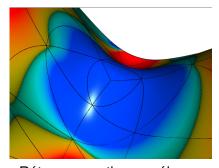


Schéma de Loop



Rétro-conception + mélange

Rétro-conception [G. et al, 2010]

Isophotes

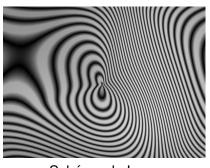
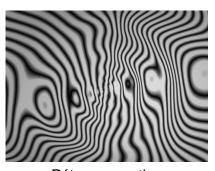


Schéma de Loop



Rétro-conception

Rétro-conception [G. et al, 2010]

Isophotes

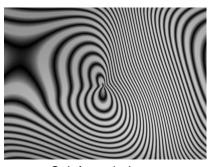
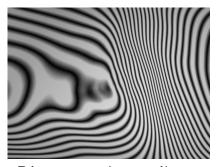


Schéma de Loop



Rétro-conception + mélange

Optimisation

Principe

- exprimer valeurs et vecteurs propres comme fonctions des entrées des stencils/masque
- minimiser une énergie dépendant de ces valeurs

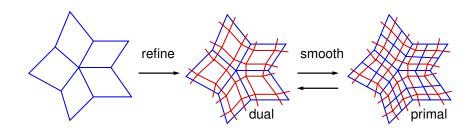
[Barthe et Kobbelt, 2004]

objectif : se rapprocher des conditions nécessaires

[Augsdörfer et al., 2006]

objectif : minimiser des variations de courbure

Généraliser le refine-and-smooth de Riesenfeld



[Zorin et Schröder, 2001]

- étape smooth : calcul de barycentre
- C¹ aux sommets extraordinaires

S'éloigner du cadre

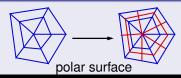
non-stationnaire [Ginkel et Umlauf, 2006]

modifier régulièrement le polyèdre de contrôle au fil des itérations afin d'éviter des voisinages *hybrides*

Guider la position des nouv. sommets avec une autre surface

[Levin, 2006] par un mélange [Karciauskas et Peters, 2007] en échantillonnant la surface guide

Changer la connectivité [Myles et Peters, 2009]



C² aux sommets extraordinaires

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Autre subdivision topologique

4-8 scheme [Velho et Zorin, 2001]

- C⁴, C¹ aux sommets extraordinaires
- 2 étapes $\Leftrightarrow B(x|e_1, e_1, e_2, e_2, e_1 + e_2, e_1 + e_2, e_2 e_1, e_2 e_1)$

Autre subdivision topologique

4-8 scheme [Velho et Zorin, 2001]

- C⁴, C¹ aux sommets extraordinaires
- 2 étapes $\Leftrightarrow B(x|e_1, e_1, e_2, e_2, e_1 + e_2, e_1 + e_2, e_2 e_1, e_2 e_1)$

Autre subdivision topologique

4-8 scheme [Velho et Zorin, 2001]

- C⁴, C¹ aux sommets extraordinaires
- 2 étapes $\Leftrightarrow B(x|e_1, e_1, e_2, e_2, e_1 + e_2, e_1 + e_2, e_2 e_1, e_2 e_1)$

Autre subdivision topologique

4-8 scheme [Velho et Zorin, 2001]

- C⁴, C¹ aux sommets extraordinaires
- 2 étapes $\Leftrightarrow B(x|e_1, e_1, e_2, e_2, e_1 + e_2, e_1 + e_2, e_2 e_1, e_2 e_1)$

- C², C¹ aux sommets extraordinaires
- 2 étapes ⇔ subdivsion ternaire

Autre subdivision topologique

4-8 scheme [Velho et Zorin, 2001]

- C⁴, C¹ aux sommets extraordinaires
- 2 étapes $\Leftrightarrow B(x|e_1, e_1, e_2, e_2, e_1 + e_2, e_1 + e_2, e_2 e_1, e_2 e_1)$

- C², C¹ aux sommets extraordinaires
- 2 étapes ⇔ subdivsion ternaire

Box-splines surfaciques
Etude au voisinage d'un sommet extraordinaire
Exemples de tuning
Généralisations

Autre subdivision topologique

4-8 scheme [Velho et Zorin, 2001]

- C⁴, C¹ aux sommets extraordinaires
- 2 étapes $\Leftrightarrow B(x|e_1, e_1, e_2, e_2, e_1 + e_2, e_1 + e_2, e_2 e_1, e_2 e_1)$

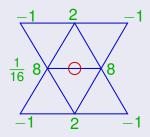
$\sqrt{3}$ scheme [Kobbelt, 2000]

- C², C¹ aux sommets extraordinaires
- 2 étapes ⇔ subdivsion ternaire

Subdivision interpolante

Butterfly scheme [Dyn et al., 1990]

stencil des sommets d'arêtes



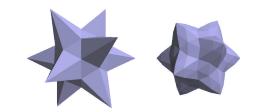
- pas de problème pour les sommets extraordinaires
- \circ C^1

Plan

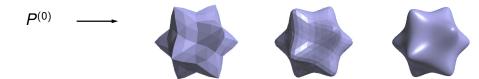
- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- 2 Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting



- ajouter des détails
- est-ce une synthèse multirésolution ?
- si l'on peut construire une analyse...



- ajouter des détails
- est-ce une synthèse multirésolution ?
- si l'on peut construire une analyse...

$$P^{(0)} \longrightarrow P^{(1)} \longrightarrow$$

- ajouter des détails
- est-ce une synthèse multirésolution ?
- si l'on peut construire une analyse...

$$P^{(0)} \longrightarrow P^{(1)} \longrightarrow \bullet \bullet \bullet \longrightarrow$$

- ajouter des détails
- est-ce une synthèse multirésolution ?
- si l'on peut construire une analyse...

$$P^{(0)} \longrightarrow P^{(1)} \longrightarrow \bullet \bullet \longrightarrow P^{(n)}$$

- ajouter des détails
- est-ce une synthèse multirésolution ?
- si l'on peut construire une analyse...

$$P^{(0)} \longrightarrow P^{(1)} \longrightarrow \bullet \bullet \longrightarrow P^{(n)}$$

$$Q^{(0)} \longrightarrow Q^{(n-1)}$$

- ajouter des détails
- est-ce une synthèse multirésolution ?
- si l'on peut construire une analyse...

$$P^{(0)} \longrightarrow P^{(1)} \longrightarrow \bullet \bullet \longrightarrow P^{(n)}$$

$$d^{(0)} \qquad d^{(n-1)}$$

- ajouter des détails
- est-ce une synthèse multirésolution?
- si l'on peut construire une analyse...

$$P^{(0)}$$
 • • • $P^{(n-1)}$ $P^{(n)}$
 $d^{(n-2)}$ $d^{(n-1)}$

- ajouter des détails
- est-ce une synthèse multirésolution?
- si l'on peut construire une analyse...

Plan

- Un lien algorithmique entre discret et continu
 - Exemples historiques
 - B-splines
 - Généralisation I : autre masque
 - Généralisation II : non-stationnaire, non-uniforme
- Un outil pour généraliser les Box-splines aux polyèdres de contrôle quelconque
 - Box-splines surfaciques
 - Etude au voisinage d'un sommet extraordinaire
 - Exemples de tuning
 - Généralisations
- Un outil pour construire de multiples résolutions
 - Synthèse Multirésolution sans détails
 - Prédicteur dans un Schéma Lifting

Schéma Lifting

Origines

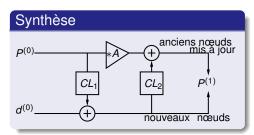
[Sweldens, 1994] après les travaux de [Lounsbery, 1994] sur l'anal. multires. sur les maillages quelc. [Donoho, 1992] sur les transf. en ondelettes interpolantes

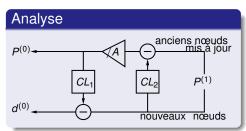
Principe

modélisation particulière d'une transformée en ondelettes qui :

- construit des ondelettes de 2ème génération
 (connectivité non régulière, nœuds non uniformes ...)
- la construction se fait dans le domaine spatial (et non fréquentiel)
- calculs en place : efficace (même pour ondelettes de 1ère génération)

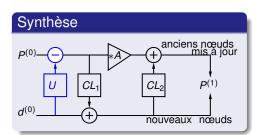
Schéma Lifting



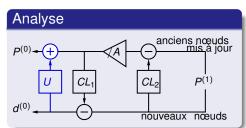


On peut construire ainsi notre propre schéma en ajoutant des éléments à notre guise.

Schéma Lifting



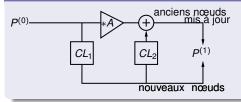
On peut construire ainsi notre propre schéma en ajoutant des éléments à notre guise.



Exemple: mise-à-jour pour conserver la moyenne entre anciens et nouveaux coeff.

Subdivision : prédicteur pour Schéma Lifting

Condition sur le stencil du sommet extraordinaire

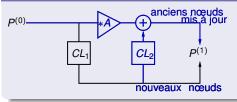


Est-ce possible?

- interpolant : A = 1, $CL_2 = 0$
- non-interpolant : non en toute généralité, mais les classiques oui (Loop, Catmull-Clark . . .)

Subdivision: prédicteur pour Schéma Lifting

Condition sur le stencil du sommet extraordinaire

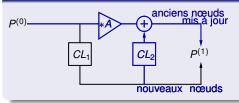


Est-ce possible?

- interpolant : A = 1, $CL_2 = 0$
- non-interpolant : non en toute généralité, mais les classiques oui (Loop, Catmull-Clark . . .)

Subdivision : prédicteur pour Schéma Lifting

Condition sur le stencil du sommet extraordinaire



Est-ce possible?

- interpolant : A = 1, $CL_2 = 0$
- non-interpolant : non en toute généralité, mais les classiques oui (Loop, Catmull-Clark . . .)

Conclusion

Comment construire un schéma de subdivision?

- Recette Box-spline (formalisme flèches)
- Conditions suffisantes pour convergence pour zones régulières (schéma aux différences contractant)
- Conditions nécessaires pour voisinage d'un sommet extraordinaire (analyse des éléments propres de la matrice de subdivision)
- Conditions pour l'utiliser comme prédicteur pour ondelettes de 2ème génération

Conclusion

Actualités de la recherche

- tuning (encore un peu)
- schémas NON (linéaires, stationnaires, uniformes...)
- en particulier pour analyse en ondelettes (pour compression d'images . . .)

riciciono

Ouvrages de référence

J. Warren, H. Weimer.

Subdivision Methods for Geometric Design.

Morgan Kaufmann, 2002.

G. Farin, J. Hoschek, M.-S. Kim. Handbook of Computer Aided Geometric Design

Elsevier, 2002.

C. de Boor, K. Höllig, S. Riemenschneider.

Box Splines

Springer-Verlag, 1993.

A. S. Caravetta, W. Dahmen, C. A. Micchelli.

Stationary Subdivision

Memoirs of the AMS, n.453, 1991.

J. Peters, U. Reif.

Subdivision Surfaces

Springer-Verlag, 2008.

Articles cités (1/6)

U. H. Augsdörfer, N. A. Dodgson, M. A. Sabin.

Tuning subdivision by minimising Gaussian curvature variation near extraordinary vertices.

Computer Graphics Forum, 25(3):263-272, 2006.

A. A. Ball, J. D. T. Storry.

Conditions for tangent plane continuity over recursively generated B-spline surfaces.

ACM Trans. on Graphics, 7(2):83-102, 1988.

L. Barthe, L. Kobbelt,

Subdivision scheme tuning around extraordinary vertices.

Computer Aided Geometric Design, 21(6):561-583, 2004.

C. de Boor.

Cutting corners always works.

Computer Aided Geometric Design, 4(1):125-131, 1987.

T. J. Cashman, N. A. Dodgson, M. A. Sabin.

A symmetric, non-uniform, refine and smooth subdivision algorithm for general degree B-splines.

Computer Aided Geometric Design, 26(1):94-104, 2009.

Articles cités (2/6)

E. Catmull, J. Clark.

Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10(6):183-188, 1978.

G. M. Chaikin.

An algorithm for high-speed curve generation.

Computer Graphics and Image Processing, 3(4):346-349, 1974.

A. Cohen, N. Dyn, B. Matei.

Quasilinear subdivision schemes with applications to ENO interpolation. Applied and Computational Harmonic Analysis, 15(2):89-116, 2003.

D. L. Donoho.

Interpolating wavelet transforms.

Report, Stanford University, 1992.

D. Doo, M. Sabin.

Behaviour of recursive division surfaces near extraordinary points. Computer Aided Design, 10(6):177-181, 1978.

Articles cités (3/6)

A 4-point interpolatory subdivision scheme for curve design. Computer Aided Geometric Design, 4(4):257-268, 1987.

N. Dyn, D. Levin, J. A. Gregory.

A butterfly subdivision scheme for surface interpolation with tension control.

Computer Aided Geometric Design, 9(2):160-169, 1990.

N. Dyn, D. Levin.

Analysis of asymptotically equivalent binary subdivision schemes.

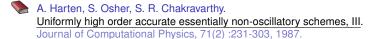
J. Mathematical Analysis and Applications, 193:594-621, 1995.

I. Ginkel, G. Umlauf. <u>Controlling a subdivision tuning method</u>. Curves and Surface Fitting, 170-179, 2006.

C. Gérot, F. Destelle, A. Montanvert.
Smoothing the antagonism between extraordinary vertex and ordinary neighbourhood on subdivision surfaces.

MMCS 2008, LNCS 5862 :242-260, 2010.

Articles cités (4/6)



K. Karciauskas, J. Peters.
Concentric tesselation maps and curvature continuous guided surfaces.
Computer Aided Geometric Design, 24(2):99-111, 2007.

L. Kobbelt.

 $\sqrt{3}$ -subdivision. ACM SIGGRAPH , 103-112, 2000.

A. Levin.

Modified subdivision surfaces with continuous curvature. ACM Transaction on Graphics, 25(3):1035-1040, 2006.

M. Lounsbery.

Multiresolution analysis of surfaces of arbitrary topological type.

PhD thesis, University of Washington, 1994.

Articles cités (5/6)

A. Myles, J. Peters.

Bi-3 C^2 polar subdivision.

ACM Transaction on Graphics, 28(3), 2009.

H. Prautzsch.

Smoothness of subdivision surfaces at extraordinary points.

Advances in Computational Mathematics, 9(3):377-389, 1998.

H. Prautzsch, G. Umlauf.

A G² subdivision algorithm.

Computing, 13:217-224, 1998.

U. Reif.

A unified approach to subdivision algorithms near extraordinary vertices.

Computer Aided Geometric Design, 12(2):153-174, 1995.

G. de Rham.

Un peu de mathématiques à propos d'une courbe plane.

Elemente der Mathematik, 2(4):73-88, 1947.

Articles cités (6/6)

S. Schaefer, R. Goldman.

Non-uniform subdivision for B-splines of arbitrary degree.

Computer Aided Geometric Design, 26(1):75-81, 2009.

W. Sweldens.

Construction and applications of wavelets in numerical analysis.

PhD thesis, Katholieke Universiteit Leuven, 1994.

W. Sweldens, P. Schröder.

Building your own wavelets at home.

Wavelets in Computer Graphics SIGGRAPH Course, 1996.

L. Velho, D. Zorin.

4-8 subdivision.

Computer Aided Geometric Design, 18(5):397-427, 2001.

D. Zorin.

Smoothness of subdivision on irregular meshes.

Constructive Approximation, 16(3):359-397, 2000.

D. Zorin, P. Schröder.

A unified framework for primal/dual quadrilateral subdivision schemes.