

U.F.R. Sciences de l'Homme et de la Société Master MIASHS

TP DHCP et DNS

Câblage et configuration du réseau

1) Lancez Marionnet et créez le réseau tel que représenté sur le schéma ci-dessous.

Vous utiliserez deux concentrateurs H1 et H2 configurés avec **6 ports** chacun, ainsi qu'un routeur R1. Vous utiliserez le réseau 192.168.1.0 découpé en 2 sous-réseaux, 192.168.1.0/25 et 192.168.1.128/25. Les interfaces du routeur R1 prendront les adresses hautes de chaque sous-réseau, c'est-à-dire

- eth0 : 192.168.1.126/25
- eth1 : 192.168.1.254/25

Démarrez *R1* et configurez l'interface eth1.

- 2) Démarrez et configurez les deux machines *dhcpsrv* et *dhcprelay* avec respectivement les adresses IP 192.168.1.1/25 et 192.168.1.129/25, et mettez à jour leurs tables de routage avec les adresses IP de leur passerelle respective.
- 3) Testez le bon fonctionnement de votre réseau (n'oubliez pas de démarrer également *H1*, *H2*) en faisant un ping 192.168.1.129 depuis *dhcpsrv* et ping 192.168.1.1 depuis *dhcprelay*.

Configuration du service DHCP

 Configurez le service DHCP sur *dhcpsrv* en éditant le fichier /etc/dhcp/dhcpd.conf. Veillez à commenter toutes les lignes existantes en les préfixant du caractère « # » et ajoutez les seules lignes suivantes :

```
ddns-update-style none;
default-lease-time 600;
max-lease-time 7200;
authoritative;
log-facility local7;
subnet 192.168.1.0 netmask 255.255.255.128 {
   range 192.168.1.10 192.168.1.20;
   option routers 192.168.1.126;
}
subnet 192.168.1.128 netmask 255.255.255.128 {
   range 192.168.1.140 192.168.1.150;
   option routers 192.168.1.254;
}
```

- 2) Lancez le service DHCP en mode « debug » avec la commande dhcpd -d
- 3) Démarrez la machine spy1. Une fois connecté en tant que « root », éditez le fichier /etc/network/interfaces et ajoutez la ligne iface eth0 inet dhcp
- 4) Sur spy1 tapez la commande ifup eth0
 et observez la trace des échanges DHCP sur *dhcpsrv*. Vérifiez l'adresse IP obtenue ainsi que le contenu de la table de routage de spy1.
- 5) Démarrez et configurez de la même façon *spy2*. Avez-vous le même comportement ? Pourquoi ?
- 6) Sur *dhcprelay*, lancez le relais des broadcasts vers *dhcpserv* en tapant la commande dhcrelay 192.168.1.1 -d
- 7) Sur *spy2*, faites un ifdown eth0 puis réactivez l'interface réseau par un ifup eth0. Que constatez-vous à présent ?
- 8) Lancez wireshark sur *spy1*, puis démarrez *m1*, configurez le fichier /etc/network/interfaces et activez son interface réseau avec la commande ifup eth0. Observez le trafic DHCP capturé.

- 9) Lancez wireshark sur *spy2*. Démarrez et configurez l'interface réseau de *m2* comme pour *m1* et observez le trafic DHCP capturé. Quelle(s) différence(s) notez-vous par rapport à la capture précédente ?
- 10) Sur *dhcpsrv* modifiez la configuration du service DHCP dans /etc/dhcp/dhcpd.conf (arrêtez le service au préalable par CTRL-C) en fixant un bail à 1 mn.
- 11) Relancez le service DHCP avec la commande dhcpd -d
 et étudiez le mécanisme de renouvellement automatique en examinant une capture de 3 minutes.
- 12) On souhaite à présent que les machines *m1* et *m2* disposent toujours respectivement des adresses 192.168.1.30 et 192.168.1.160.

Après avoir relevé les adresses MAC de m1 et m2, éditez le fichier de configuration /etc/dhcp/dhcpd.conf pour ajouter deux entrées de la forme suivante :

```
host m1 {
    hardware ethernet 02:04:06:7d:23:f4;
    fixed-address 192.168.1.30;
}
host m2 {
    hardware ethernet 02:04:06:06:72:be;
    fixed-address 192.168.1.160;
}
```

puis relancez le service DHCP.

13) Désactivez (ifdown eth0) puis réactivez (ifup eth0) les interfaces réseau de *m1* et *m2*. Vérifiez que les adresses IP obtenues sont bien celles déclarées en adresses fixes.

Configuration du service DNS

- 1) Démarrez et configurez la machine *ns1* avec l'adresse IP 192.168.1.2/25 et mettez à jour sa table de routage. Vérifiez la connectivité de votre machine avec des ping.
- 2) Le domaine de votre réseau géré par nsl sera imss.org. Editez le fichier de configuration du service DNS (bind) /etc/bind/named.conf en ajoutant l'inclusion du fichier named.conf.imss-zones qui contient la gestion des deux zones :
 - *imss.org* pour la résolution directe
 - 1.168.192.in-addr.arpa pour résolution inverse

```
zone "imss.org" {
    type master;
    file "/etc/bind/db.imss.org";
};
zone "1.168.192.in-addr.arpa" {
    type master;
    file "/etc/bind/db.imss.org.rev";
};
```

3) Créez le fichier /etc/bind/db.imss.org gérant la zone directe. Utilisez comme modèle le fichier /etc/bind/db.empty (cp /etc/bind/db.empty /etc/bind/db.imss.org)

```
BIND reverse data file for empty rfc1918 zone
; DO NOT EDIT THIS FILE - it is used for multiple zones.
 Instead, copy it, edit named.conf, and use that copy.
;
$TTL
       86400
Q
       IN
               SOA
                      nsl. root.nsl. (
                    2020120901 ; Serial
                                     ; Refresh
                        604800
                                      ; Retry
                         86400
                                     ; Expire
                       2419200
                         86400 ) ; Negative Cache TTL
               NS
                       nsl.imss.org.
       ΙN
                       192.168.1.2
ns1
       ΙN
               А
        IN
                       192.168.1.30
m1
               А
m2
       IN
               Α
                       192.168.1.160
```

Le numéro de série (champ Serial) est de la forme AAAAMMJJNN. A chaque modification, le numéro de série doit être mis à jour (numéro de révision NN incrémenté dans la journée).

4) Créez le fichier /etc/bind/db.imss.org.rev gérant la zone reverse. Utilisez également comme modèle le fichier /etc/bind/db.empty

```
; BIND reverse data file for empty rfc1918 zone
;
DO NOT EDIT THIS FILE - it is used for multiple zones.
;
; Instead, copy it, edit named.conf, and use that copy.
;
$TTL 86400
Q
       IN SOA nsl. root.nsl. (
                   2020120901 ; Serial
                                    ; Refresh
                       604800
                      86400
2419200
                                    ; Retry
                                    ; Expire
                        86400)
                                    ; Negative Cache TTL
       ΙN
              NS
                      nsl.imss.org.
2
       ΙN
              PTR
                     nsl.imss.org.
30
       IN
               PTR
                      ml.imss.org.
              PTR m2.imss.org.
160
       IN
```

- 5) Lancez le service DNS avec la commande /etc/init.d/bind9 start
- 6) Modifiez le fichier /etc/resolv.conf de *ns1* pour que le domaine internet et de recherche soit *imss.org* et le serveur de nom sa propre adresse.Vérifiez le fonctionnement de la résolution de nom directe et reverse avec les commandes nslookup m1 et nslookup 192.168.1.30
- 7) Ajoutez dans la configuration de votre serveur DHCP, le nom de votre domaine et l'adresse du serveur de noms. Redémarrez le service DHCP.

```
option domain-name "imss.org";
option domain-name-servers 192.168.1.2;
```

- 8) Désactivez puis réactivez les interfaces réseau de *m1* et *m2*. Vérifiez le contenu du fichier /etc/resolv.conf puis testez le fonctionnement de la résolution de nom avec un ping m2 depuis *m1* et ping m1 depuis *m2*.
- 9) Ajoutez une nouvelle machine nommée *srv* reliée à *H1*. Configurez votre serveur DHCP pour lui attribuer l'adresse statique 192.168.1.3/25 et mettez à jour votre serveur DNS avec ces informations.
- 10) Démarrez *srv* et modifiez sa configuration pour que la machine obtienne ses paramètres réseau par DHCP. Vérifiez la bonne connectivité de *srv*.
- 11) Créez un enregistrement de type CNAME dans votre DNS afin que votre machine puisse également être « connue » sous le nom www.imss.org.
- 12) Testez le bon fonctionnement de la résolution de noms avec les commandes nslookup www et ping www

Configuration d'un serveur de noms secondaire

- 1) Ajoutez une nouvelle machine *ns2* d'adresse IP 192.168.1.200/25 reliée à *H2*. Configurez sa table de routage et la résolution de nom dans /etc/resolv.conf. Vérifiez la bonne connectivité IP de la nouvelle machine.
- 2) Ajoutez la machine dans les tables de *ns1*. Vérifiez la résolution directe et reverse pour *ns2* (nslookup ns2 et nslookup 192.168.1.200)
- 3) Sur *ns1* autorisez le transfert de zones vers *ns2* en éditant le fichier /etc/bind/named.conf et en ajoutant la ligne allow-transfer { 192.168.1.200; };

```
zone "imss.org" {
    type master;
    file "/etc/bind/db.imss.org";
    allow-transfer { 192.168.1.200;};
};
```

4) Ajoutez dans la zone directe et la zone reverse de *ns1*, un enregitrement de type NS pointant sur ns2.imss.org.

```
; BIND reverse data file for empty rfc1918 zone
; DO NOT EDIT THIS FILE - it is used for multiple zones.
; Instead, copy it, edit named.conf, and use that copy.
       86400
$TTL
Ø
       IN
               SOA
                       nsl. root.nsl. (
                    2020120902 ; Serial
                        604800
                                      ; Refresh
                         86400
                                      ; Retry
                                      ; Expire
                       2419200
                         86400) ; Negative Cache TTL
       ΙN
               NS
                       nsl.imss.org.
               NS
                       ns2.imss.org.
       ΤN
                       192.168.1.2
ns1
       IN
               А
       ΙN
                       192.168.1.30
m1
               А
m2
               А
                       192.168.1.160
       IN
                       192.168.1.200
ns2
       ΙN
               А
```

```
; BIND reverse data file for empty rfc1918 zone
; DO NOT EDIT THIS FILE - it is used for multiple zones.
 Instead, copy it, edit named.conf, and use that copy.
;
       86400
$TTL
Q
               SOA
                      ns1. root.ns1. (
       ΤN
                    2020120902 ; Serial
                                      ; Refresh
                        604800
                         86400
                                      ; Retry
                       2419200
                                      ; Expire
                         86400)
                                      ; Negative Cache TTL
       IN
               NS
                       nsl.imss.org.
       ΙN
               NS
                       ns2.imss.org.
2
                       nsl.imss.org.
       ΙN
               PTR
30
       IN
               PTR
                       ml.imss.org.
160
       IN
               PTR
                       m2.imss.org.
                       ns2.imss.org.
200
       ΙN
               PTR
```

- 5) Relancez le service DNS sur *ns1* pour prendre en compte les modifications avec la commande ns1:~# /etc/init.d/bind9 restart
- 6) Sur ns2, changez les permissions du répertoire de bind avec la commande chmod ns2:~# chmod g+w /etc/bind
- 7) Sur ns2, éditez le fichier /etc/bind/named.conf

```
zone "imss.org" {
    type slave;
    file "/etc/bind/db.imss.org";
    masters { 192.168.1.2; };
};
zone "1.168.192.in-addr.arpa" {
    type slave;
    file "/etc/bind/db.imss.org.rev";
    masters { 192.168.1.2; };
};
```

8) Démarrez le service DNS par la commande /etc/init.d/bind9 start Le transfert de zone devrait s'effectuer, les fichiers .db de *ns1* devraient se retrouver créés sur *ns2*. 9) Testez le bon fonctionnement de *ns2* avec la commande nslookup

```
nslookup
> server ns2
Default server: ns2
Address: 192.168.1.200#53
> m1
Server: ns2
Address: 192.168.1.200#53
Name: m1.imss.org
Address: 192.168.1.30
```

10) Editez la configuration du serveur DHCP pour ajouter l'adresse IP de *ns2* en tant que serveur de nom secondaire du domaine imss.org.

```
option domain-name "imss.org";
option domain-name-servers 192.168.1.2, 192.168.1.200;
```