

U.F.R. Sciences de l'Homme et de la Société Master MIASHS

TP sur IP

L'objectif de ce premier TP est de vous montrer comment les données circulent dans un réseau, comment elles sont représentées, empilées/dépilées par la pile TCP/IP. Accessoirement vous verrez comment configurer une interface réseau sous Linux.

Pour réaliser ce TP, vous utiliserez Marionnet (http://www.marionnet.org). Cet excellent logiciel, conçu par Jean-Vincent Loddo de l'Université Paris 13, est un « laboratoire de réseau virtuel » qui permet d'utiliser un seul ordinateur pour simuler un réseau complet intégrant des hubs virtuels, des switches, des routeurs, des câbles et de nombreux ordinateurs.

Préambule

Adresses MAC, adresses IP, système DNS

- En TCP/IP, chaque machine du réseau est identifiée par une adresse codée sur 32 bits (4 octets en notation décimale pointée), son adresse IP
 Exemple : 192.168.20.25
- Chaque carte réseau dispose d'une adresse codée sur 48 bits (6 octets en notation hexadécimale), son adresse MAC.
 Exemple : 00:11:11:80:FB:3C

Les machines utilisent leurs adresses IP pour communiquer entre elles, mais au niveau du réseau physique sous-jacent (Ethernet dans notre cas), c'est l'adresse MAC qui est utilisée dans les trames échangées.

Un protocole, le protocole ARP ou *Address Resolution Protocol*, permet de faire la correspondance entre les deux adresses (son fonctionnement sera détaillé dans les prochaines séances).

Chaque machine possède donc une adresse IP qui lui est propre. Cependant, il est plus commode pour les utilisateurs de travailler avec des noms symboliques plutôt qu'avec des adresses numériques. Un mécanisme présent dans TCP/IP, le **système DNS** (*Domain Name System*), permet d'associer des noms en langage courant aux adresses IP (exemple : miashs-www.u-ga.fr \Leftrightarrow 129.88.230.12).

Le protocole ICMP

Le protocole ICMP (*Internet Control Message Protocol*) permet de gérer des problèmes au niveau de la couche IP. Il fournit des messages de contrôle pour indiquer les erreurs pendant la transmission du datagramme IP.

La commande ping utilise principalement deux types de messages du protocole ICMP pour informer l'utilisateur sur les conditions de transmissions :

- La machine distante est-elle active ou inactive.
- Le temps de propagation en boucle (*round-trip delay*) lors de la communication avec la machine distante.
- Les pertes de paquets pendant la communication.

Il existe 18 types de messages ICMP. Les deux types de messages employés par la commande ping sont :

- Le type 8 (echo request) est émis vers la machine distante.
- Le type 0 (echo reply) est émis par la machine distante en réponse.

protocole ICMP

Le protocole HTTP

Le protocole HTTP (*HyperText Transfer Protocol*) est le protocole le plus utilisé sur Internet depuis 1990. Il permet un transfert de fichiers (essentiellement au format HTML) localisés grâce à une chaîne de caractères appelée URL entre un navigateur (le client) et un serveur Web.

- Le navigateur effectue une requête HTTP (par exemple obtenir la page référencée par l'adresse http://www.mon-site.com/page.html)
- Le serveur traite la requête puis envoie une réponse HTTP (par exemple le code HTML du fichier page.html)

 $TP \ sur \ IP-Master \ MIASHS-2024/2025-Christian \ Bulfone \ / \ Pierre \ Veyan$

Câblage et configuration du réseau

- 1) Démarrez la machine virtuelle et ouvrez la session
- 2) Lancez le navigateur et téléchargez le projet Marionnet capture1.mar depuis la page Web où vous avez trouvé le présent sujet.
- 3) Lancer Marionnet en cliquant sur l'icône présente sur le bureau.

Allez dans le menu Projet > Ouvrir, puis sélectionnez le projet que vous venez de télécharger. Vous devriez vous retrouver avec 3 machines nommées m10, m11 et m12 et un équipement nommé G1.

4) Démarrez les hôtes *m10*, *m11*, et connectez-vous sur chacun d'entre eux en tant que « root », mot de passe « root »

Lorsque vous saisissez le mot de passe, les caractères ne s'affichent pas, c'est normal ! Faites attention à ne pas vous tromper !

- 5) A l'aide de la commande ifconfig sur chacun des deux hôtes, trouvez et notez :
 - l'adresse Ethernet de la carte réseau,
 - l'adresse IP

Respectez la syntaxe de la commande : ifconfig ≠ if config

6) Reliez les hôtes *m10* et *m11* à l'aide d'un **câble droit**. Depuis *m10*, testez la connectivité réseau en tapant la commande ping *adresse_IP_m11* (faites CTRL-C pour arrêter la commande). Que constatez-vous ?

- 7) Remplacez le câble droit par un **câble croisé**, et refaites le test de connectivité. Que constatezvous à présent ?
- 8) Supprimez le câble croisé entre *m10* et *m11*, et ajoutez un **concentrateur** (hub) *H1*. Reliez par des câbles droits les 3 hôtes à *H1*.

9) Démarrez *m12* (connectez-vous en tant que « root » et notez son adresse IP) et *H1* et testez la connectivité réseau entre *m10*, *m11* et *m12* à l'aide de la commande ping.

Introduction à la capture de trames

1) Sur *m12*, lancez l'analyseur de protocoles réseau en tapant la commande wireshark

- Choisissez le menu Capture/Options
- Une fenêtre vous permettant de définir les paramètres de la capture apparaît à l'écran :

	1	Wireshark:	Capture	optio	ns (m12	2)	~ 2 3
Capture							
Capture	Interfa	ce	Link-	layer hea	ader	Prom. Mode	Snaplen [B] ∸
	eth0 192.168.55.12 fe80::4:6ff:fe37:302	7	Ethernet			enabled	default
	Linux netfilter l	og (NFLO	Linux netfi	lter log n	nessages	enabled	default
	Pseudo-device	that capt	Linux cook	ed		enabled	default
	lo (loopback) 127.0.0.1		Ethernet			enabled	default 🔹
4	41.						Þ
Captu	ire on all interfaces	1				Mana	age Interfaces
🗹 Captu	ire all in promiscuo	us mode					
Capture File(s) Display Options							
File:			Bre	owse	⊡ Upda	ate list of pack	ets in real time
Use m	ultiple files	🗹 Us	e pcap-ng	format	25 		
🔽 Next fi	ile every 1	🕴 meg	abyte(s)	-	Auto	matic scrolling	g in live capture
🗌 Next fi	le every	🗧 minu	ite(s)	-	⊡ <u>H</u> ide	capture info o	dialog
Ring b	uffer with 2	‡ files			Name D	and street	
Stop c	apture after 1	🕆 file(s)			Name Re	esolution	
Stop Capture							
🗌 afte	r 1	‡ packe	t(s)		- Enab	le network na	me resolution
🗌 afte	r 1	t meg	abyte(s)	-		Terwork na	ine resolution
🗆 afte	r 1	🗐 minu	te(s)	-	🗹 Enab	le <u>t</u> ransport n	ame resolution
Help					1	Start	💥 <u>C</u> lose

- Sélectionnez l'interface *eth0* et démarrez la capture en cliquant sur le bouton « Start »
- 2) Depuis l'hôte m10, faites un ping sur m11. Vous devriez voir s'afficher dans la fenêtre de Wireshark les trames capturées. Arrêtez le ping sur m10 puis la capture en cliquant sur la 4^e icône en partant de la gauche dans la barre d'outils. Parcourez les trames que vous avez capturées et explorez leurs différents champs décodés.

L'interface du logiciel Wireshark est découpée en 3 parties.

- La partie supérieure **O** contient la liste des paquets capturés disponibles avec un affichage synthétique du contenu de chaque paquet
- La partie centrale ② contient le décodage exact du paquet actuellement sélectionné dans la liste. Ce décodage permet de visualiser les champs des entêtes des protocoles ainsi que l'imbriquation des différentes couches de protocoles connus.
- La partie inférieure **3** contient le paquet (le début s'il est trop gros) affiché en hexadécimal et en ASCII.
- La zone de saisie permet de définir un filtre d'affichage des paquets capturés

000	🛞 🖨 🙆 eth0: Capturing - Wireshark (sur m12)				
<u>F</u> ile <u>E</u> d	<u>File Edit View Go Capture Analyze Statistics H</u> elp				
8	🗒 🕍 🐏 🗎 🗁 🛣 🏖 🔍 🔶 🌳 🌳 🌴 生 🗐 🗐 🗨 🔍 🕾 🔛 🎬 🕅 🎦 💥 🔀				
Eilter: Expression Clear Apply					
No	Time	Source	Destination	Protocol Info	
18	7.070434	192.168.55.11	192.168.55.10	ICMP ECNO (ping) reply	
19	8.088337	192.168.55.10	192.168.55.11	ICMP Echo (ping) request	
20	8.089127	192.168.55.11	192.168.55.10	ICMP Echo (ping) reply	
21	9.094528	192.168.55.10	192.168.55.11	ICMP Echo (ping) request	
22	9.095254	192.168.55.11	192.168.55.10	ICMP Echo (ping) reply	
23	10.102192	192.168.55.10	192.168.55.11	ICMP Echo (ping) request	
24	10.103098	192.168.55.11	192.168.55.10	ICMP Echo (ping) reply	
25	11.116601	192.168.55.10	192.168.55.11	ICMP Echo (ping) request	
26	11.117596	192.168.55.11	192.168.55.10	ICMP Echo (ping) reply	
27	12.122339	192.168.55.10	192.168.55.11	ICMP Echo (ping) request	
28	12.123008	192.168.55.11	192.168.55.10	ICMP Echo (ping) reply	
29	13.13/332	192.168.55.10	192.168.55.11	ICMP Echo (ping) request	
30	13.138037	192.168.55.11	192.168.55.10	ICMP Echo (ping) reply	
-					
▷ Frame	1 (98 bytes	s on wire. 98 bytes cap	tured)		
Ethernet II, Src: BbnInter 37:41:d3 (02:04:06:37:41:d3), Dst: BbnInter f5:08:84 (02:04:06:f5:08:84)					
▶ Internet Protocol, Src: 192.168.55.10 (192.168.55.10), Dst: 192.168.55.11 (192.168.55.11)					
▶ Internet Control Message Protocol					
0000 02	04 06 f5 0	8 84 02 04 06 37 41 d	3 08 00 45 00		
0010 00	54 00 00 4	0 00 40 01 4b 43 c0 a	3 37 0a c0 a8 .T@.	@. КС7 З	
0020 37	0b 08 00 4	2 e1 e1 0c 00 01 e3 e	3 0b 51 f4 d8 7B.	Q	
0030 05	00 08 09 0	a Ob Oc Od Oe Of 10 1	1 12 13 14 15		
eth0: <live capture="" in="" progress=""> File: /tmp/etherXXXsLgJPA 33 Packets: 30 Displayed: 30 Marked: 0</live>					

- 3) A l'aide de la commande ifconfig, attribuez à l'hôte m11 l'adresse IP 192.168.55.111. La syntaxe de la commande est la suivante :
 ifconfig eth0 adresse_ip netmask 255.255.255.0 up
- 4) Relancez une nouvelle capture, puis depuis m10 faites un ping à destination de l'ancienne adresse de m11. Que constatez-vous ? Redémarrez la machine m11 avant de continuer.
- 5) Reliez le concentrateur H1 à la passerelle G1.
- 6) Lancez une nouvelle capture. Sur *m10*, ouvrez le navigateur avec la commande epiphany, puis tapez l'URL : *www.gnu.org*
 - Arrêtez la capture une fois la page affichée dans le navigateur
 - Analysez le contenu des trames capturées
 - Décodez l'ensemble du dialogue HTTP entre votre navigateur et le serveur Web, en cliquant sur la première trame capturée, puis en sélectionnant le menu « Analyze » puis l'item « Follow TCP Stream »

Utilisation des VLANs

Le composant **commutateur** (switch) de Marionnet permet de simuler la fonctionnalité VLAN de niveau 1 (en pilotant le logiciel sous-jacent vde_switch du projet *virtualsquare*). Pour pouvoir configurer les VLANs, il faut passer par le terminal de configuration qui s'affiche au démarrage du composant lorsque la case « Show VDE terminal » est cochée.

😕 🖨 🗇 Ajouter un com	mutateur (switch)		
*	Nom		
	Étiquette		
Nombre de Ports	4		
Show VDE terminal			
Activate FSTP			
Startup configuration	Modifier		
Aide	Annuler Valider		

Dans le terminal du commutateur la commande help permet d'avoir un aperçu rapide des possibilités de configuration du commutateur :

VDE switch V.2.2.1		
vde\$ help	Team (Coord. R.	Davoll) 2005,2006,2007 - GPLV2
0000 DATA END WITH	'.'	
COMMAND PATH	SYNTAX	HELP
ds	=======	DATA SOCKET MENU
ds/showinfo		show ds info
help	[arg]	Help (limited to arg when specified)
logout		logout from this mgmt terminal
shutdown		shutdown of the switch
showinfo		show switch version and info
load	path	load a configuration script
debug		DEBUG MENU
•••		
•••		
fstp/print	[N]	print fst data for the defined vlan
port port/showinfo		PORT STATUS MENU show port info
port/setnumports	Ν	set the number of ports

TP sur IP – Master MIASHS – 2024/2025 – Christian Bulfone / Pierre Veyan

port/sethub	0/1	1=HUB 0=switch
port/setvlan	N VLAN	set port VLAN (untagged)
port/create	N	create the port N (inactive notallocatable)
port/remove	N	remove the port N
port/allocatable	N 0/1	Is the port allocatable as unnamed? $1=Y O=N$
port/epclose	N ID	remove the endpoint port N/id ID
port/resetcounter	[N]	reset the port (N) counters
port/print	[N]	print the port/endpoint table
port/allprint	[N]	print the port/endpoint table (including
inactive port)		
vlan	======	VLAN MANAGEMENT MENU
vlan/create	N	create the VLAN with tag N
vlan/remove	N	remove the VLAN with tag N
vlan/addport	N PORT	add port to the vlan N (tagged)
vlan/delport	N PORT	delete port to the vlan N (tagged)
vlan/print	[N]	print the list of defined vlan
vlan/allprint	[N]	print the list of defined vlan (including
inactive port)		
1000 Success		
vde\$		

La commande vlan/create permet de créer un VLAN en lui affectant l'étiquette numérique (tag) N. La commande port/setvlan permet d'associer un port au VLAN identifié par son étiquette.

- Remplacez le concentrateur *H1* par un commutateur *S1* et refaites le câblage de *S1* vers *m10*, *m11* et *m12*. N'oubliez pas de cocher la case « Show VDE terminal » au moment de l'ajout du composant. Notez les ports sur lesquel chaque machine est connectée.
- 2) Lancez une nouvelle capture avec Wireshark sur *m12*, puis depuis *m10* faites un ping à destination de *m11*. Que constatez-vous ? Pourquoi ?
- 3) Sur m11 et m12, mettez-vous à l'écoute des requêtes ICMP à l'aide de la commande en ligne tcpdump (man tcpdump pour plus de détails). tcpdump -e icmp
- 4) Testez que le switch joue bien son rôle de « segmentation » en ne redistribuant les trames unicast qu'aux machines concernées, en faisant depuis m10 d'abord un ping vers m11, puis vers m12.
- 5) Testez à présent que les trames en broadcast sont transmises à toutes les machines. Vous utiliserez la commande netcat (man netcat pour plus de détails) pour générer une requête en broadcast vers le port de notre choix 8888. Pour cela, sur m11 et m12 mettez-vous à l'écoute des requêtes sur le port en question (utilisez CTRL-C pour sortir de la commande) : tcpdump -e port 8888
- 6) Sur *m10*, générez une requête en broadcast avec la commande : echo "bonjour" | netcat -ub 192.168.55.255 8888 Vérifiez que la trame est reçue à la fois sur *m11* et sur *m12*.
- 7) Utilisez les VLANs pour créer des domaines de broadcast différents. Dans le terminal du switch, créez les VLANs 100 et 200 à l'aide de la commande vlan/create vlan/create 100 vlan/create 200 puis à l'aide la commande port/setvlan affectez les ports sur lesquels sont connectés les machines *m10* et *m11* au VLAN 100, et le port sur lequel est connecté *m12* au VLAN 200. Vérifiez l'affectation des ports avec la commande vlan/print

- 8) Sur *m10* re-générez la requête en broadcast (CTRL-C pour sortir) et vérifiez qu'elle n'est à présent reçue que sur *m11*.
- 9) Affectez le port de la machine *m10* au VLAN 200, puis refaites le test. Vérifiez que la requête n'est reçue que sur *m12* à présent.