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A B S T R A C T

This article presents a complete review of the modeling and control schemes for overhead cranes operating in
2D and 3D spaces published to date. The modeling schemes including the pendulum-like models with rigid and
flexible links are reviewed and their key characteristics are studied. Subsequently, an overview of the control
methods developed for such models is presented. Afterward, a new simulation-oriented model enabling to
capture both cables’ dynamic and global nonlinearities caused by the pendulation is developed, and different
control methods that exist in the literature are evaluated and compared based on this model using numerical
experiments. In the end, several research gaps are identified to be considered in future works.
1. Introduction

Overhead cranes (OC) are widely employed in factories and con-
struction sites in order to manipulate heavy objects within the
workspace. A typical OC is composed of a cart (trolley) moving on a line
or plane. A tool, e.g., a hook, is suspended to the cart through several ca-
bles, as shown in Fig. 1 (Ramli, Mohamed, Abdullahi, Jaafar, & Lazim,
2017). Accurate modeling and control of OCs are challenging because
of underactuation (Liu & Yu, 2013; Tafrishi, Svinin, & Yamamoto,
2021), and cables’ dynamics (Kamman & Huston, 2001; Khalilpour,
Khorrambakht, Damirchi, Taghirad, & Cardou, 2021; Lv, Liu, Xia, Ma,
& Yang, 2020). Moreover, different types of payloads, swaying around
different axes observed in 3-dimensional (3D) operating space, add
complexity to the problem. OCs require a precise controller design in
order to guarantee an accurate and safe operation. A mathematical
model is usually required to design such a controller (Abdel-Rahman,
Nayfeh, & Masoud, 2003). Moreover, a realistic model helps to evalu-
ate the controllers’ performances using numerical simulations before
practical implementations. Hence, mathematical modeling is an un-
avoidable part of the topic. The OCs are usually modeled based on
the pendulum-like models, i.e., single or double-pendulum systems as
hown in Fig. 2(a, b) (Ramli et al., 2017). According to the litera-
ure, most references deal with the single-pendulum model because
f its simplicity. However, in the presence of heavy tools, the single
endulum model is unable to encapsulate the system’s behavior since
wo sway angles appear in the system as shown in Fig. 2(b). A large
umber of references considered the double-pendulum model to take
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the tool’s effect into account. The modeling has also been tackled
from different points of view, including modeling the cables’ flexibil-
ity (Fig. 2(c)) (d’Andréa Novel, Moyano, & Rosier, 2019), kinematic
modeling corresponding to the multi-cable cranes (Arena, Casalotti,
Lacarbonara, & Cartmell, 2015), etc. The models are then used for the
controller design and numerical simulation. The modeling schemes will
be deeply reviewed in Section 2.

A control scheme, in this topic, is mainly designed to control the
payload position and orientation. Such a controller, in a general classi-
fication, is designed based on open-loop, collocated and noncollocated
control structures (Ramli et al., 2017). The open-loop control scheme is
easy to implement and is designed to avoid excitation of the systems’
natural frequencies causing oscillations. Closed-loop methods, on the
other hand, are developed to ensure stability and robustness (Damaren,
1999). These control strategies as well as their characteristics will be
studied in detail in Section 3.

Reviewing the mentioned modeling and control methods was the
topic of some references including the commercial ones available in
the market (Ramli et al., 2017). In addition, modeling of several
cranes’ structures, as well as an introduction to the relevant controllers,
have been presented in Abdel-Rahman and Nayfeh (2002). However,
choosing and using the most appropriate modeling and control method,
for each specific case is still almost impossible without a comprehensive
guideline. This issue will be addressed in this study. Compared to other
surveys on this subject (see Table 9), the main contributions of this
work are as follows:
https://doi.org/10.1016/j.arcontrol.2023.03.002
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Fig. 1. Schematic diagram of a typical OC in 3D operating space.

• Dynamical models are presented in detail in 2D and 3D oper-
ational spaces, for fixed and variable links’ lengths, for single-
pendulum and double-pendulum systems, and one case with vary-
ing mass is treated.

• The control strategies are categorized into several groups, de-
pending on their structure. The structures are then studied to
extract their key properties. Subsequently, some controllers from
each group have been selected, and comparative analyses are
made among them through numerical experiments;

• A toolbox prototype has been developed, using the matlab Multi-
body and Optimization toolboxes, see Section 7.1. It is based on a
20-pendulum model of the cable (both in 2D and 3D operational
spaces). As pointed out in Section 8, this is certainly not sufficient
to get reliable results in all operating conditions. This is however
expected to pave the way toward a more complete toolbox (in-
corporating, for instance, finite-element cable’s models). To the
best of the authors’ knowledge, it is the first time that such an
effort is made to better understand (at least numerically) how
controllers behave when applied on more complex models than
(2), (3) and (6) below. It also provides a preliminary way to tune
the controllers’ gains;

• The control methods are evaluated based on the simulation-
oriented model enabling to capture both global nonlinearities and
local vibrations (within a limited spectrum) observed in OCs due
to the cables’ flexibility. Hence, it is expected that the numerical
simulations based on this model lead to more realistic results
compared to the studies where control-oriented models (single
and double-pendulum models) are used for the simulations;

• Several research gaps are identified, in the end, and presented as
possible topics for future studies.

The remainder of this manuscript is structured as follows. An in-
roduction to the modeling schemes and their properties are presented
n Section 2. Subsequently, the control methods introduced in the
iterature are classified in Section 3. The simulation-oriented model
s developed in Section 5. Afterward, the comparisons based on the
umerical experiments are then presented in Section 7, and an engi-
eering guideline is provided to enable one to select an appropriate
ethod for each case. In the end, the conclusions are drawn, in Sec-

ion 8, and several research gaps are identified to be addressed in future
tudies. Details on the Lagrange dynamics of the 2D and 3D pendulums’
odels with varying assumptions (constant, variable links’ lengths) are

iven in Appendix A through Appendix F. Appendix G contains some
echnical computations useful for some control designs. Finally, the
omputer software developed in this work will be briefly introduced
n Appendix H.
2. Review of the mathematical modeling developed for OCs

A summary of the models developed for the OCs are presented in
Sections 2.1 to 2.4, and the properties of such models are discussed in
Section 2.5. As is well-known (Brogliato, Lozano, Maschke, & Egeland,
2020a), the Lagrange dynamics (or Euler–Lagrange, or Lagrange of the
second kind, or Lagrangian control system) of a multibody system can
be rewritten as:

𝑀(𝑞)𝑞 + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝐺(𝑞) = 𝑄, (1)

here 𝑞 ∈ R𝑛 is a vector of minimal generalized coordinates, 𝑀(𝑞) =
⊤(𝑞) is the mass matrix (usually assumed to be ≻ 0, but it may be
0 in some cases), 𝐶(𝑞, 𝑞̇)𝑞̇ contains centrifugal and Coriolis nonlinear

eneralized forces, −𝐺(𝑞) = − 𝜕𝑈
𝜕𝑞 is the vector of generalized forces

that derive from a potential (gravity, elasticity, etc). The generalized
coordinate 𝑞 definition varies depending on the modeling assumptions,
as well as the vector of generalized forces 𝑄. In the next sections and
in the appendix, Lagrange dynamics of several lumped-mass multibody
models are presented and discussed.

2.1. Single-pendulum models

Most of the reviewed references used the single-pendulum model
for OCs (see Fig. 2(a)). Its dynamical equations are as follows:
{

(𝑎) (𝑚 + 𝑚1)𝑥̈ + 𝑚1𝑙1𝜃̈1 cos(𝜃1) − 𝑚1𝑙1𝜃̇21 sin(𝜃1) = 𝐹−𝑓𝑟
(𝑏) 𝑚1𝑙21 𝜃̈1 + 𝑚1𝑙1 cos(𝜃1)𝑥̈ + 𝑚1𝑔𝑙1 sin(𝜃1) = 0,

(2)

here 𝑞 = (𝑥, 𝜃1)⊤, 𝑚 and 𝑚1 represent the cart and payload masses, 𝑙1
s the cable’s length, 𝐹 is the force applied to the cart, 𝑓𝑟 is the friction
orce, 𝑔 is the gravity constant, 𝜃1 is the sway angle, and 𝑥 is the cart
osition. The references using (2) are listed in Table 2. Remark that
2) can be generalized to the case when the cable’s length is variable
s follows (Lee, 2004; Sun & Fang, 2014b):

(𝑎) (𝑚 + 𝑚1)𝑥̈ + 𝑚1𝑙1𝜃̈1 cos(𝜃1) + 𝑚1𝑙1 sin(𝜃1) + 2𝑚1 𝑙̇1𝜃̇1 cos(𝜃1)

−𝑚𝑙𝜃̇21 sin(𝜃1) = 𝐹−𝑓𝑟
(𝑏) 𝑚1𝑙1 + 𝑚1 sin(𝜃1)𝑥̈ − 𝑚1𝑙1𝜃̇21 − 𝑚1𝑔 cos(𝜃1) = 𝐹𝑙

(𝑐) 𝑚1𝑙21 𝜃̈1 + 𝑚1𝑙1 cos(𝜃1)𝑥̈ + 2𝑚𝑙1 𝑙̇1𝜃̇1 + 𝑚𝑔𝑙1 sin(𝜃1) = 0,

(3)

here 𝑞 = (𝑥, 𝑙1, 𝜃1)⊤, 𝐹𝑙 is the force input on the hoisting mechanism
if any: let us remind that 𝑙1 may vary also because of elasticity, see
ppendix A). A different choice for 𝑞 can be made, using the winch
echanism pulley radius and angle of rotation instead of 𝑙1 (Shen,

chatz, & Caverly, 2021). The references considering such a model are
ndicated by the letter 𝑙 in the sixth column in Table 2. Following
he references presented in Table 5, (2) can be generalized to the 3D
perating space as follows (Sun, Fang, & Zhang, 2013; Wu, He, Sun, &
ang, 2014) (see Fig. 3(a) for the notation):

(𝑎) (𝑚+𝑚1)𝑥̈+𝑚𝑙1𝜃̈𝑥 cos(𝜃𝑥) cos(𝜃𝑦)−𝑚𝑙1𝜃̈𝑦 sin(𝜃𝑦) sin(𝜃𝑦)−𝑚𝑙1𝜃̇2𝑥 sin(𝜃𝑥) cos(𝜃𝑦)

−2𝑚𝑙1𝜃̇𝑥𝜃̇𝑦 cos(𝜃𝑥) sin(𝜃𝑦) − 𝑚𝑙1𝜃̇2𝑦 sin(𝜃𝑥) cos(𝜃𝑦) = 𝐹𝑥−𝑓𝑟𝑥
(𝑏) (𝑚 + 𝑚1)𝑦̈ + 𝑚𝑙1𝜃̈𝑦 cos(𝜃𝑦) − 𝑚𝑙1 sin(𝜃𝑦)𝜃̇2𝑦 = 𝐹𝑦−𝑓𝑟𝑦
(𝑐) 𝑚𝑙1𝑥̈ cos(𝜃𝑥) cos(𝜃𝑦) + 𝑚𝑙21 𝜃̈𝑥 cos

2(𝜃𝑦)

−2𝑚𝑙21 𝜃̇𝑥𝜃̇𝑦 sin(𝜃𝑦) cos(𝜃𝑦) + 𝑚𝑔𝑙1 sin(𝜃𝑥) cos(𝜃𝑦) = 0

(𝑑) 𝑚𝑙1𝑥̈ sin(𝜃𝑥) sin(𝜃𝑦) − 𝑚𝑙1𝑦̈ cos(𝜃𝑦)

−𝑚𝑙21 𝜃̈𝑦 − 𝑚𝑙21 sin(𝜃𝑦) cos(𝜃𝑦)𝜃̇
2
𝑥 − 𝑚𝑔𝑙1 cos(𝜃𝑥) sin(𝜃𝑦) = 0,

(4)

where 𝑞 = (𝑥, 𝑦, 𝜃𝑥, 𝜃𝑦)⊤, 𝐹𝑥 and 𝐹𝑦 are the forces on the trolley toward
𝑥 and 𝑦 axes, respectively, 𝑓𝑟𝑥 and 𝑓𝑟𝑦 are the friction forces toward 𝑥
and 𝑦 axes, respectively, 𝜃𝑥 and 𝜃𝑦 are the sway angles with respect
to the 𝑥 and 𝑦 axes, respectively. In case of varying link’s length

(but constant total mass), the single-pendulum 3D dynamics take the
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Fig. 2. 2D models used for OCs (a) single-pendulum (b) double-pendulum (c) flexible pendulum models.
orm (Almutairi & Zribi, 2009; Brogliato, 2022; Lee, 1998) (see Fig. 3
a) for an illustration of the notation):

(𝑎) (𝑚 + 𝑚1)𝑥̈ + 𝑚1𝑙1 cos(𝜃𝑥) cos(𝜃𝑦)𝜃̈𝑥 − 𝑚1𝑙1 sin(𝜃𝑥) sin(𝜃𝑦)𝜃̈𝑦
+𝑚1 sin(𝜃𝑥) cos(𝜃𝑦)𝑙1+

+2𝑚1 cos(𝜃𝑥) cos(𝜃𝑦)𝑙̇1𝜃̇𝑥 − 2𝑚1 sin(𝜃𝑥) sin(𝜃𝑦)𝑙̇1𝜃̇𝑦
−𝑚1𝑙1 sin(𝜃𝑥) cos(𝜃𝑦)𝜃̇2𝑥 − 𝑚1𝑙1 sin(𝜃𝑥) cos(𝜃𝑦)𝜃̇2𝑦

−2𝑚1𝑙1 cos(𝜃𝑥) sin(𝜃𝑦)𝜃̇𝑥𝜃̇𝑦 = 𝐹𝑥 − 𝑓𝑟𝑥
(𝑏) (𝑚 + 𝑚1)𝑦̈ + 𝑚1𝑙1 cos(𝜃𝑦)𝜃̈𝑦 + 𝑚1 sin(𝜃𝑦)𝑙1 + 2𝑚1 cos(𝜃𝑦)𝑙̇1𝜃̇𝑦
−𝑚1𝑙1 sin(𝜃𝑦)𝜃̇2𝑦 = 𝐹𝑦 − 𝑓𝑟𝑦
(𝑐) 𝑚1𝑙1 cos(𝜃𝑥) cos(𝜃𝑦)𝑥̈ + 𝑚1𝑙21 cos

2(𝜃𝑦)𝜃̈𝑥 + 2𝑚1𝑙1 cos2(𝜃𝑦)𝑙̇1𝜃̇𝑥
−2𝑚1𝑙21 sin(𝜃𝑦) cos(𝜃𝑦)𝜃̇𝑥𝜃̇𝑦

+𝑚1𝑔𝑙1 sin(𝜃𝑥) cos(𝜃𝑦) = 0

(𝑑) − 𝑚1𝑙1 sin(𝜃𝑥) sin(𝜃𝑦)𝑥̈ + 𝑚1𝑙1 cos(𝜃𝑦)𝑦̈ + 𝑚1𝑙21 𝜃̈𝑦
+𝑚1𝑙21 cos(𝜃𝑦) sin(𝜃𝑦)𝜃̇

2
𝑥 + 2𝑚1𝑙1 𝑙̇1𝜃̇𝑦

+𝑚1𝑔𝑙1 cos(𝜃𝑥) sin(𝜃𝑦) = 0

(𝑒) 𝑚1 sin(𝜃𝑥) cos(𝜃𝑦)𝑥̈ + 𝑚1 sin(𝜃𝑦)𝑦̈ + 𝑚1𝑙1
−𝑚1𝑙1 cos2(𝜃𝑦)𝜃̇2𝑥 − 𝑚1𝑙1𝜃̇2𝑦 + 𝑚1𝑔 cos(𝜃𝑥) cos(𝜃𝑦) = 𝐹𝑙

(5)

where 𝑞 = (𝑥, 𝑦, 𝜃𝑥, 𝜃𝑦, 𝑙1)⊤, 𝐹𝑥, 𝐹𝑦 and 𝐹𝑙 are as above. The kinetic
energy and the specific form of the matrix 𝐶(𝑞, 𝑞̇) yielding the skew-
symmetry property (useful for passivity-based control design) are given
in Appendix C. The dynamics (5) are derived with a different pair of
angles in Chwa (2009).

2.2. Double-pendulum models

This model is depicted in Fig. 2(b) in 2D operational space. Com-
pared to (2), the effect of the tool can be considered. The dynamical
equations corresponding to this model with constant links’ lengths and
constant masses are as follows with 𝑞 = (𝑥, 𝜃1, 𝜃2)⊤ (Sun, Fang, Chen, &
Lu, 2017):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(𝑎) (𝑚 + 𝑚1 + 𝑚2)𝑥̈ + (𝑚1 + 𝑚2)𝑙1
(

𝜃̈1 cos(𝜃1) −
̇𝜃21 sin(𝜃1)

)

+ 𝑚2𝑙2𝜃̈2 cos(𝜃2) − 𝑚2𝑙2
̇𝜃22 sin(𝜃2) = 𝐹−𝑓𝑟

(𝑏) (𝑚1 + 𝑚2)𝑙1 cos(𝜃1)𝑥̈ + (𝑚1 + 𝑚2)𝑙21 𝜃̈1 + 𝑚2𝑙1𝑙2 cos(𝜃1 − 𝜃2)𝜃̈2
+ 𝑚2𝑙1𝑙2 sin(𝜃1 − 𝜃2)𝜃̇22 + (𝑚1 + 𝑚2)𝑔𝑙1 sin(𝜃1) = 0

(𝑐) 𝑚2𝑙2 cos(𝜃2)𝑥̈ + 𝑚2𝑙1𝑙2𝜃̈1 cos(𝜃1 − 𝜃2) + 𝑚2𝑙22 𝜃̈2
− 𝑚2𝑙1𝑙2 sin(𝜃1 − 𝜃2)𝜃̇21 + 𝑚2𝑔𝑙2 sin(𝜃2) = 0,

(6)

where 𝑚, 𝑚1, 𝑚2 are the cart, tool and payload masses, respectively,

𝜃1 and 𝜃2 are the primary and secondary sway angles, respectively, 𝑙1
and 𝑙2 are the (constant) lengths of the cable and (constant) distance
between the tool and the payload, respectively. Eq. (6) has been
considered by the references listed in Table 3. Such a model can be
generalized to the case where the lengths of the links are variable as in-
dicated by the letter 𝑙 in the sixth column of Table 3. Moreover, the 3D
form of this equation has been used by the references shown in Table 6.
The mass matrix in 2D operational space and 𝑁 links with varying
lengths, is obtained in Appendix A. The mass matrix and the nonlinear
inertial forces/torques are detailed for the double-pendulum in 2D
operational space and with varying lengths 𝑙1 and 𝑙2 in Appendix B, for
the 3D operational space with constant lengths in Appendix E, and for
the 3D operational space with varying lengths in Appendix F. The next
step is to consider the model for the 3D OC with varying links’ lengths,
and a 3D payload (a container) associated with three orientation angles.
This yields an 11-degree-of-freedom system which would allow the
designer to take payload rotational nonlinearities into account. This is
not tackled in this article, however.

Remark 1. The pendulum-like models (2)–(6) may present extra
dynamics. For instance, considering the payload as a liquid container,
rather than a point mass payload, the system presents sloshing dynam-
ics (Alshaya & Alghanim, 2020; Khorshid & Al-Fadhli, 2021; Li, Ma, Li,
& Li, 2022). Various finite-dimensional, multibody models of sloshing
are proposed in the literature (Di Leva, Carricato, Gattringer, & Müller,
2022; Ibrahim, 2005; Li, Ma, et al., 2022), and some of them have been
validated experimentally (Di Leva et al., 2022). This adds degrees of
freedom to the OC system and increases its underactuation.

Remark 2. In the models presented in Fig. 2, the dynamics of the
supporting structure have been totally neglected. However, due to
the weak materials, the supporting structures may not present infinite
stiffness leading to deformation and vibration (Golovin, Maksakov,
Shysh, & Palis, 2022). Modeling such flexible structures usually leads
to coupled partial differential equation-ordinary differential equations
(PDE-ODEs).

Remark 3. In this article the focus is on the design of 𝐹 (or 𝐹𝑥
and 𝐹𝑦) as feedback controllers. Another approach, usually employed
in industrial contexts, consists of assuming that this control stage is
designed such that any desired motion, possibly modified online by an
operator, can be perfectly tracked. Then the control problem becomes
that of designing a suitable desired motion. This is known in the
literature as the operator-in-the-loop (Giacomelli et al., 2019, 2018a,
2018b; Khalid, Huey, Singhose, Lawrence, & Frakes, 2005; Parker,
Robinett, Driessen, & Dohrmann, 1996; Ramli et al., 2017; Vaughan,
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Fig. 3. 3D representation of the single-pendulum (a) and double-pendulum (b) models.

Karajgikar, & Singhose, 2011) method, with velocity commands. See
Section 3.8 for more details and references.

The pendulum-like models, e.g., (2)–(6), are presented in the fully
onlinear form that may be difficult to analyze, especially in closed-
oop form. Hence, approximated models, such as the tangent linearized
odel as well as the cubic model have been developed in the litera-

ure (Nayfeh & Baumann, 2008). Compared to the linearized model,
he cubic one contains cubic nonlinearities allowing the bifurcation
nalysis (see Remark 2 in Mojallizadeh, Brogliato, and Prieur (2022)).

.3. Pendulum-like model with flexible link

Several kinds of flexibilities, e.g., transversal deflection (see
ig. 2(c)) and length extension (Le et al., 2022; Pham et al., 2022)
an be taken into account in this category, leading to several dif-
erent equations depending on the flexibility types. The models in
his category lead to PDE-ODEs, e.g., linear wave equation (d’Andréa-
ovel & Coron, 2000; Kim & Hong, 2009; d’Andréa Novel, Boustany,
onrad, & Rao, 1994; d’Andréa Novel & Coron, 2002) or semilinear
ave equation (Lhachemi, Prieur, & Trélat, 2022), caused by the cart
nd cable dynamics, that need to be spatially discretized with finite-
lement methods (FEM) for simulation and for control application (for
nstance see Fatehi, Eghtesad, and Amjadifard (2014)) and yield finite-
imensional Lagrange systems based on FEM approximations of the
ave equation (Egeland & Gravdahl, 2002), and Rayleigh–Ritz dis-

retization (Damaren, 2000). According to the literature, the PDE-ODEs
orresponding to such models follow several different conventions
epending on the flexibility types, leading to different equations. The
ist of references dealing with the flexible cables in cranes is provided
n Table 4 (see Table 1 for the notation). A modeling scheme in this
ategory is briefly introduced below. Assuming that the coordinates
re selected as in Fig. 2(c), the corresponding PDE-ODE model is as
ollows (d’Andréa-Novel & Coron, 2000):

𝑦̄𝑡𝑡 − (𝑎𝑦̄𝑧)𝑧 = 0
𝑦̄𝑧(−𝐿, 𝑡) = 0
𝑦̄(0, 𝑡) = 𝑥(𝑡)
𝑥̈(𝑡) = 𝜆(𝑎𝑦̄𝑧)(0, 𝑡) + 𝐹∕𝑚

𝑔𝑚1 (𝑚1+𝜌𝐿)𝑔

(7)
𝑎(𝑧) = 𝑔(𝑧 + 𝐿) + 𝜌 , 𝜆 = 𝑚𝑎(0)
where 𝑦̄(𝑧, 𝑡) is the horizontal displacement at point 𝑧 in [−𝐿, 0] and
time 𝑡 ≥ 0, 𝑥 is the cart position, 𝑦̄𝑧(𝑧, 𝑡) denotes the link’s angular
nclination, 𝜌 is the mass per unit length of the link, and 𝐿 is the
ength of the cable. Following d’Andréa-Novel and Coron (2000), (7) is
nly valid around the vertical posture when the cable is non-stretching,
nd the payload acceleration is negligible compared to 𝑔 (another
nterpretation, as done in e.g., Wijnand, d´Andréa-Novel, and Rosier
2021), is that the mass of the payload is much larger than the mass
f the cable). Another assumption is done in Chentouf and Mansouri
2022) where a coupled ODE-PDE-ODE model is considered, that is the
ame model as in (7), but with an ODE instead of the second line of
7). Furthermore Eq. (7) has been developed for the case when the
ength of the cable is variable (Kim & Hong, 2009; d’Andréa Novel &
oron, 2002). The letter 𝑙 in the sixth column of Table 4 indicates the
eferences dealing with flexible cables with variable lengths.

.4. Paralleled multi-cable models

In a real crane, the payload is usually suspended through several
arallel cables. To study the posture of the payload, kinematic models
ave been developed in 2D and 3D spaces. Compared to the pendulum-
ike models introduced in Sections 2.1–2.3, such models have not
een yet used for the controller design and only the kinematic models
ave been developed without addressing the dynamics (to the best of
uthors’ knowledge, Cartmell, Morrish, and Taylor (1998) is the only
eference where a dynamic model has been developed for the multi-
able case. However, the obtained model has not been used for the
ontroller design because of its complexity). The list of the references
onsidering the kinematic of the cranes in 2D and 3D spaces are listed
n Tables 7 and 8, respectively.

emark 4. The introduced models are presented in their basic forms
nd several factors including cart friction (Antipov & Krasnova, 2022;
mar & Nayfeh, 2005), damping (Wen, Popa, Montemayor, & Liu,
001; Zhang, Ma, Rong, Tian, & Li, 2016) and stiffness (Sun, Zhang,
in, Yang, & Fang, 2019) in the joints, actuator dynamics (Park, Chwa,
Hong, 2008) and sensor noise (Karkoub & Zribi, 2001; Sano, Ohishi,

aneko, & Mine, 2010), elasticity in the supporting structure (Golovin
t al., 2022; Xing, Yang, & Liu, 2020), different uncertainties and
isturbances (Park, Chwa, & Eom, 2014; Wu, Karkoub, Wang, Chen,
Chen, 2017; Xi & Hesketh, 2010; Zhang, 2019) can slightly modify

he above-mentioned equations.

.5. Properties of the models

OC systems have the following peculiar features:

1. Large underactuation: the degree of underactuation 𝑑unac is
equal to the number of degrees of freedoms, minus the number
of independent torque inputs in 𝑄. In 𝑁-pendulum multibody
models of cranes, there are 1+2𝑁 (with 𝑁 the number of joints)
in the 2D case with varying lengths, or 1 + 𝑁 in the 2D case
with fixed lengths, or 2 + 3𝑁 (3D case with varying lengths) or
2 + 2𝑁 in the 3D with fixed lengths, degrees of freedom. In a
typical overhead crane, the number of independent inputs varies
from 1 (trolley controller in 2D space) to 3 (trolley and length
controllers with a winch in the 3D space). Thus 𝑑unac is usually
very large (if an infinite-dimensional cable’s model is chosen,
it is even infinity), which makes crane mechanisms occupy a
particular place in the class of underactuated systems, which in
fact contains a variety of systems (Liu & Yu, 2013).

2. Dynamical couplings: in view of large 𝑑unac, the couplings
between the actuated and the unactuated coordinates dynamics,
and between the unactuated coordinates dynamics themselves,
play a major role in the general dynamical behavior of cranes

and more specifically in their control.
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3. Passivity: passivity is one major property of Lagrange sys-
tems (Brogliato, Lozano, Maschke, & Egeland, 2020b). System
(1), seen as an input/output operator 𝑄 ↦ 𝑞̇, and under a
boundedness condition on the potential energy, is passive, i.e.,
𝑉 (𝑞(𝑡), 𝑞̇(𝑡)) − 𝑉 (𝑞(0), 𝑞̇(0)) ≤ ∫ 𝑡

0 𝑄⊤(𝑠)𝑞̇(𝑠)𝑑𝑠 along the trajectories
of the system, and where 𝑉 (𝑞, 𝑞̇) = 𝑇 (𝑞, 𝑞̇) + 𝑈 (𝑞) is the total
mechanical energy. However, the passive outputs usually do not
correspond to the output to be controlled, mainly due to the
noncollocation. A passive mapping can be recovered by defining
another suitable output function (Damaren, 2000; Khalilpour
et al., 2021).

4. Output/input collocation or noncollocation: a pair output/
input is said collocated if the feedback is using only the part of
the generalized coordinates on which the input torque performs
work. For instance, the trolley is controlled with the force 𝐹
which works on the displacement coordinate 𝑥, hence the pair
(𝐹 , 𝑥) is collocated. If the actuator dynamics are considered and
𝐹 is seen as the output of the actuator, then collocation is lost.
If 𝐹 uses the payload’s coordinates it is lost also. Noncollocation
is known to make the control problem much harder.

5. High flexibility: though cables are not the only flexible systems
encountered in mechanics, they may be one of the most flexible
ones. The high flexibility of cables also leads us to consider
various different dynamical regimes:

• Small amplitude-high frequency waves (vibrations) when
the cable stays close to the vertical posture,

• Large-amplitude motions during which the cable behaves
like a pendulum that swings,

• Large-amplitude waves with lower frequency, which travel
through the cable.

An important question for control design is: When do these
regimes occur (i.e., with which initial conditions and parame-
ters)? Characterizing the modes of the cable seems mandatory.
This may also imply splitting the overall control problem into
subtasks relying on different models and controllers.

6. Cables with variable length: this may be a consequence of
cable’s longitudinal elasticity, or of winding mechanisms used
to add a control input (see Section 3.5). This is considered
in robotic systems involving cables (Khalilpour et al., 2021),
in tethered systems with long hoisting ropes (marine or space
applications (Kamman & Huston, 2001; Quan & Chang, 2020)).
In case of winding, this implies considering varying cable’s total
mass (depending on the length in some way) in the derivation of
the dynamical equations, and a variation of the trolley’s mass as
well (the total mass being kept constant). If the length variation
is very small, or if the cables’ total mass is small compared to the
hook and payload masses, the cables’ mass variation may be ne-
glected, however (Quan & Chang, 2020). This is what is done to
obtain (3) as well as its double-pendulum counterpart (Brogliato,
2022, section 5.4). See Appendix A.3 in Appendix A.

7. Cables slackness mode: cables can exert very large forces
when in the tensile mode, however, they cannot exert any
action when they are slack (Gueners, Bouzgarrou, & Chanal,
2021). Long cables undergoing large oscillations/deformations
may undergo such phenomena. This yields models with com-
plementarity constraints and impacts (Brogliato, 2016, Example
1.6).

8. Large variations of the payload mass: payloads can have very
large mass (several tons), and typical tasks involve motions with
and without payloads, hence huge variations of the system’s in-
ertial parameters. Should this be taken into account by designing
robust inputs, adaptive inputs, or switching control strategies?
2.6. Main sources of disturbances and uncertainties

In addition to cable flexibilities, other effects considered as distur-
bances/uncertainties can be incorporated for control design or in the
numerical benchmarks:

1. Disturbances: Coulomb-like friction between the trolley and the
rails, mechanical play (static or dynamic backlash), measure-
ment noise (sensors), uncertain parameters (inertial parameters),
wind gust, collision and vessel movement for applications where
the OC is mounted on a boat or a floating platform.

2. Large parameters variations (e.g., switching between heavy-
payload and payload-free subtasks),

3. Neglected dynamics: actuators dynamics, cable flexibilities (for
pendulum-like models), multiple cables vs. single cable (kine-
matics at the payload attachment), 3D effects (for 2D designs),
like payload rotations involving nonlinear inertial torques, and
flexibility in the crane’s structure.

4. Output definition: The cable flexibility hinders to define and
measure specific sway angles, e.g., 𝜃1 and 𝜃2, as shown in Fig. 2.
Hence, sway measurement can be considered as a source of
uncertainty and disturb the measurements.

2.7. Validity

The mentioned models have some limitations and cannot be used in
any condition:

• Single-pendulum model: This is the simplest model, making the
control design easier. However, the secondary sway caused by the
presence of a tool is ignored in this model. Hence, such a model
should be avoided when there are heavy tools.

• Double-pendulum model: This model is more accurate than the
single-pendulum one since it takes into account the presence of
the tool and can model the secondary sway. However, it still
cannot take into account the cable dynamics other than the two
sway angles 𝜃1 and 𝜃2. Hence, in the absence of payload, when
the cable’s flexibility is dominant, this model and the single-
pendulum one should be avoided. Moreover, when there is a
heavy payload, the cable may behave as a string and therefore
high-frequency vibrations that exist in the cable cannot be shown
with such models.

• Pendulum-like model with flexible link (string or wave equa-
tions): cables, in general, can present rich dynamical behaviors
e.g., transversal deflection, length extension, torsion. As can be
seen in Table 4 this topic has not yet been considered deeply for
the overhead cranes and it is not clear how these dynamics can
affect the overall systems behavior of OCs. To the best of the au-
thors’ knowledge, and according to Table 4, such models are only
valid around the vertical posture of the cable and, hence, they are
quite local and are unable to show the global nonlinearities that
can be modeled by the single and double-pendulum systems.
It is noteworthy that the two main classes of models considered so
far for control design belong to two ‘‘extreme’’ classes: (1) multibody
model with few degrees of freedom, global nonlinearities, few vibra-
tional modes, (2) infinite-dimensional (PDE) linear model, valid only
very locally around the vertical posture.

• In the three above-mentioned modeling categories, it is always
assumed that the payload is a point mass and therefore, it is
not possible to model the orientation and 3D motions of the
payload. Hence, in the presence of unbalanced payloads (payload
eccentricity) more sophisticated models are required. However,
controller design for such systems requires more elaborated kine-
matics and dynamical modeling which makes the controller de-
sign cumbersome. As can be seen in Tables 7 and 8, these kinds

of models have not been used yet for the controller design.



M.R. Mojallizadeh et al.
Multibody models are limited in terms of flexibility and cable’s vibration
modeling. Nevertheless they can become quite complex and nonlinear when
enough effects are taken into account (notwithstanding disturbances). This is
witnessed by the dynamics reported in the Appendix, see also the multi-cable
system’s dynamics in Cartmell et al. (1998, Equations (28)–(30)).

A simulation-oriented model will be developed in Section 5 in order
to provide a more accurate model for numerical simulations without
some of the limitations mentioned above.

3. Review of the control strategies proposed for OCs

The main control objective in any industrial crane is payload po-
sitioning. However, due to the underactuation, the payload cannot be
controlled directly, and the payload motions are controlled indirectly
through the forces applied to the cart (𝐹 in Fig. 2). In this case, the pay-
load sway introduced in Section 1 may result in poor positioning. The
control strategies developed for OCs are classified into three categories
in Sections 3.1 to 3.3.

3.1. Open-loop control

In this section, we introduced the open-loop controllers which have
been used to control OCs.

3.1.1. Input shaping
In these schemes, the input 𝐹 (⋅) of the system is calculated such

that the natural frequencies of the system are not excited (Engelberg,
2021) (see for example Hazlerigg (1972) for the very first works in this
topic). A common approach in this class is to obtain the dynamic equa-
tions and extract the tangent linearization around a nominal operating
condition. The linear model is then used to derive the natural fre-
quencies. This approach is usually used along with a human-operated
crane system (Singhose, Porter, & Seering, 1997). In another approach,
linearized equations are used to calculate the responses of the system.
Subsequently, an acceleration profile is calculated such that the total
response of the system satisfies constraints on the operation time, sway,
and hoisting speed (Alghanim, Alhazza, & Masoud, 2015). Input shap-
ing usually provides cost-effective solutions since the sensors and the
feedback path are not required (Vaughan, Maleki, & Singhose, 2010).
Following the literature, the application of open-loop input shaping
is rare and it is usually integrated with sensors and control feedback
to compensate for the wind rejection (Tang & Huang, 2016), sys-
tems initial sway (Wahrburg, Jurvanen, Niemelä, & Holmberg, 2022a,
2022b), uncertainties (Nguyen, Do, & Duong, 2022), or time-delay
compensation (Vyhlídal, Kučera, & Hromčík, 2013).

Input shaping has also been developed for double-pendulum models
to avoid excitation of the primary and secondary oscillatory modes
(Nguyen et al., 2022; Singhose, Kim, & Kenison, 2008; Vaughan, Kim, &
Singhose, 2010). Some references have considered input shaping design
for specific applications such as a suspended liquid container with slosh
effect (Alshaya & Alghanim, 2020; Khorshid & Al-Fadhli, 2021; Li, Ma,
et al., 2022). Zero vibration (ZV) (Singhose, Seering, & Singer, 1990)
and zero vibration derivative (ZVD) (Hong & Shah, 2019) are two
well-known input shaping algorithms that achieve sway reduction by
convolving the unshaped input (usually bang–bang time optimal input)
with a sequence of impulses. These approaches have been utilized by
taking into account some constraints on the sway angles during the
transient (Hong, Huh, & Hong, 2003). While input shapers are usually
designed based on tangent linearization of the nonlinear models, there
are also some works that are dedicated to nonlinear input shaping
design based on heuristic algorithms such as particle swarm optimiza-
tion (PSO) (Maghsoudi et al., 2017). Another input shaping scheme
has been proposed by Alhazza, Masoud, and Alotaibi (2016) based on
the trigonometric manipulations of the responses, and it is shown that
in the nominal case, the final sway can be eliminated. Moreover, this

method may show a faster response compared to the ZV method. The
effect of the hoisting during the motion in the presence of several input
shapers has also been studied by Singhose, Porter, Kenison, and Kriikku
(2000).

3.1.2. Flatness theory
Flatness theory is a known strategy in control theory to provide

a mapping among inputs and outputs of the system, and hence, it
can be used to handle the underactuated dynamics of OCs since the
inputs and states of OCs can be expressed by flatness outputs. The
aim of this method is to generate a reference trajectory for the cart in
order to achieve the payload positioning without sway (Fliess, Lévine,
Martin, & Rouchon, 1995). This is mainly an open-loop technique that
can be combined with some closed-loop controllers (Diwold, Kolar, &
Schöberl, 2022; Knierim, Krieger, & Sawodny, 2010; Zhang, Wu, &
Huang, 2017). Before explaining this topic, it should be noted that the
desired trajectory is normally defined for the payload and not for the
cart. According to the literature, the flatness theory can help with the
following items:

• Calculating a map between the desired cart and payload po-
sitions. This is especially useful for applications with the pre-
installed speed driver where the input is the desired cart posi-
tion (Bonnabel & Claeys, 2020; Fliess et al., 1995; Guo, Chai, &
Liu, 2023; Yu & Niu, 2023).

• Flatness theory can be used to generate the desired trajectory
based on the desired final position such that the total motion is
robust against the perturbations (Zhang, Wu, & Huang, 2017).

• Calculating the control force required for tracking (Fliess et al.,
1995; Zhang, Wu, & Huang, 2017).

• System linearization, different from the feedback linearization
(FL) strategy (Zhang, Wu, & Huang, 2017).

• Taking the actuator dynamic into account for the controller de-
sign (Fliess et al., 1995; Knierim et al., 2010).

3.1.3. Path planning
In this method, the control law is calculated in an online (Sun &

Fang, 2014a) or offline (Sun, Fang, Zhang, & Ma, 2012) manners based
on the model to minimize an objective function for some sort of opti-
mality such as energy (Sun, Wu, Chen, & Fang, 2018) or time (Zhang,
Fang, & Sun, 2014). Some of the input shaping schemes can also be
categorized in this section. For example, Zhang et al. (2014) has used
dynamic programming to optimize the trajectory based on the input
shaping strategy. However, the effect of the actuator dynamic on global
optimality is usually neglected in such studies. Path planning strategies
have been proposed in Sun and Fang (2014a), Sun, Fang, Zhang, and
Ma (2012) to avoid payload sway.

3.2. Collocated control

Compared to the input shaping, this is a closed-loop strategy where
a control algorithm computes the input signal according to the col-
located feedback, i.e., cart position, and/or velocity (𝑥, 𝑥̇) from the
output. In other words, 𝐹 = 𝐹 (𝑥, 𝑥̇, 𝑡) and 𝐹𝑙 = 𝐹𝑙(𝑙1, 𝑙̇1, 𝑡) in (3). PID
(proportional integral derivative) control is the most used collocated
control strategy. This kind of controller is implemented by default on
many speed drivers used in OCs. PID controllers are designed based
on the tangent linearized models using classic control tools like loop-
shaping (Lee, Cho, & Cho, 1997). Its parameters can also be tuned
using Ziegler–Nichols method (Shih, 2022). Ouyang, Hu, Zhang, Mei,
and Deng (2019) has developed a trajectory velocity reference for the
cart based on the S-curve technique to control the sway. Afterward,
a PID controller has been used to track the mentioned velocity refer-
ence where the only required measurement to build the feedback is
the cart position. A similar strategy has been presented in Garrido,
Abderrahim, Gimenez, Diez, and Balaguer (2008) where many details

like parameter tuning, filter design, and practical implementations have
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been addressed. It is shown in Fang, Zergeroglu, Dixon, and Dawson
(2001) that a single PD controller with just a measure of the cart
position can make the whole system asymptotically stable, including
the underactuated dynamics even in a 3D operating space (Ouyang,
Zhao, & Zhang, 2021). However, as reported in Ouyang et al. (2021),
such a collocated control may lead to poor sway reduction. Hence,
noncollocated feedback, e.g., sway angles are included in the control
aw by Ouyang et al. (2021) to increase the damping. A Lyapunov func-
ion allowing the calculation of control laws without having feedback
rom the sway angle has been developed in Sun, Fang, Chen, and He
2015). Furthermore, some adaptation rules are also developed in this
tudy based on the Lyapunov function for uncertainties in the payload’s
eight, friction, etc. The collocated PID controller has been integrated
ith a neural network in Isa, Hamza, Adamu, and Adamu (2022), and

t is shown that it provides a better payload positioning compared to
he classic PID. Feed-forward terms can be added to the collocated
ID controller for the tracking applications (Shi, Yao, Yuan, Hu, et al.,
022).

emark 5. Some of the references have neglected the speed drivers
nd the feedback inside, and considered the collocated control strat-
gy as an open-loop scheme. The main contribution of such works
s to calculate or modify the reference trajectory, e.g., using notch
ilters (R. L. Kress & Noakes, 1994), smoothing the reference tra-
ectory (Bonnabel & Claeys, 2020), and flatness theory in order to
void the payload sway (Bonnabel & Claeys, 2020). Because of the
ast and accurate operation of modern speed drives, such methods can
ead to appropriate solutions for industrial applications as reported
n Bonnabel and Claeys (2020). It should be noted that while the
odification of the reference trajectory can significantly help to reduce

he payload sway, it has not been deeply taken into account in this
ork. The trajectory design or modification can be integrated with the
ajority of the controllers developed in this work.

.3. Noncollocated control

Compared to the collocated control, the noncollocated one needs the
ayload coordinates as well, e.g., payload sway, i.e., 𝐹 = 𝐹 (𝑥, 𝑥̇, 𝜃1, 𝜃2,
̇1, 𝜃̇1). The noncollocated control strategies introduced in the literature
re as follows.

.3.1. Gain-scheduling
Gain-scheduling refers to a method where the gains of the con-

rollers are calculated offline to build a lookup table based on the
perating condition. Such a strategy has been developed in Omar
2003), Omar and Nayfeh (2005) where the gains of a feedback con-
roller are selected based on the linearized model such that the response
s critically damped to avoid sway oscillations.

.3.2. Noncollocated PID (quasi-PID) control
In addition to the collocated PID (see Section 3.2), the PID controller

ay use noncollocated feedback (Mohamed, Abdel-razak, Haraz, & Ata,
022). Noncollocated quasi-PID control laws have been designed for
ingle and double-pendulum systems in Zhang, He, Zhu, Li, and Liu
2022), Sun, Yang, Fang, Wu, and Chen (2019), respectively, based
n the Lyapunov theorem to avoid control saturation. The PID con-
roller may also be integrated with neural networks to compensate for
he steady-state error as introduced in Toxqui, Yu, and Li (2006). It
hould be noted that the application of PID controllers in human-in-
he-loop applications has also been considered by Peng, Singhose, and
haumik (2012). Furthermore, several configurations of PID control
amilies have been studied for OCs in Omar (2003) and compared
ith a fuzzy controller. It is concluded that tuning the parameters
f the fuzzy controller could be cumbersome. However, with proper
uning, the fuzzy controller shows a better transient time than the PID

ontroller. But, in the case of sway control, the PID controller shows m
etter performance than the fuzzy one. Another reference in this subject
s (Shih, 2022) where the parameters of a PID controller are tuned
ased on a reinforcement learning scheme and it is concluded that
uch a scheme can supersede the classic PID controller in terms of
erformance.

.3.3. Linear state-feedback control
In this method, a linear model is developed based on a linearized

odel (tangent linearization) and then a state-feedback law is devel-
ped based on classical methods (Ackermann, 2012; Jaulin & Walter,
996; Moustafa, 1994; Piazzi & Marro, 1996). Such a strategy is used
y Orsini (2022), Piazzi and Visioli (2002) along with state-observers.

.3.4. Passivity-based control
Passivity-based control (PBC) is a well-known control strategy to

nalyze or guarantee stability by studying energy dissipation (Brogliato
t al., 2020b). This method can be used to design a control signal such
hat the energy of the system remains bounded, leading to bounded-
nput bounded-output (BIBO) stability. Considering the system shown
n (2), and assuming that the energy (Lyapunov function) can be
efined as 𝐸 = 1∕2𝑚𝑥̇2+𝑚1𝑔𝑙1(1−cos 𝜃1), the rate of the system’s energy
s 𝐸̇ = 𝑥̇𝐹 . Any control signal 𝐹 leading to 𝐸̇ ≤ 0 ensures the BIBO
tability of the system (See Remark 6). It can be shown that a collocated
D control 𝐹 = −𝑥̇ can lead to such stability. While a collocated control
trategy, e.g., 𝐹 = −𝑥̇, can make the whole closed-loop control system
symptotically stable (as reported by several references such as Collado,
ozano, and Fantoni (2000), Fang, Dixon, Dawson, and Zergeroglu
2003)), it may not be able to control the payload sway efficiently
ince the noncollocated dynamics are controlled only because of the
atural dynamical coupling between the cart dynamic and the payload
ne (Fang et al., 2003) (see (2) and (6)). This issue has been further
ddressed by Sun and Fang (2012) and supported by analytical results,
here horizontal displacements of the payload have been considered
s a new output (see (8) in Sun and Fang (2012) as well as Chen,
uan, Yang, and Chen (2019)) and it is shown that the map between

he input force and the horizontal payload velocity can also be passive
nd dissipative (see (11) in Sun and Fang (2012)). This can be done by
efining a new storage function for the OC which includes the payload
orizontal displacement. Subsequently, a new passivity-based control
aw has been proposed which includes both actuated (cart position) and
nderactuated (payload position) variables and the asymptotic stability
as been ensured based on the Lyapunov and LaSalle’s invariance theo-
ems. Since the new control law contains the underactuated dynamics,
t may lead to a more efficient sway control strategy as reported by Sun
nd Fang (2012).

emark 6. Assuming again single-pendulum model (2), and the
entioned energy function 𝐸 = 1∕2𝑚𝑥̇2 + 𝑚1𝑔𝑙1(1 − cos 𝜃1), leading to

𝐸̇ = 𝑥̇𝐹 , the control 𝐹 = −𝑥̇ just leads to 𝐸̇ = −𝑥̇2 ≤ 0 which is semi-
egative (𝜃1 is absent in 𝐸̇). Hence, Lyapunov stability usually cannot

ensure the asymptotic stability of the system (convergence of 𝜃1, 𝜃2 to
he origin), and LaSalle’s invariance principle should be further used to
nsure the asymptotic stability.

Another passivity-based design is the interconnection and damping
ssignment (IDA) where the sum of the physical potential and kinetic
nergies are considered and the controller is designed such that the
mount of this function is minimized for the desired equilibrium point.
he IDA-PBC provides a systematic way to obtain stabilization through
wo steps. The first step is the so-called energy shaping where the
esired storage function is designed (Zhang, He, Chen, & Feng, 2020).
ubsequently, the damping injection technique is utilized to provide
symptotic stability. However, IDA-PBC law usually requires solving
DEs which might be difficult to handle. Such a strategy has been
eveloped for underactuated systems by Aschemann (2009) and imple-

ented on an OC based on some simplifying assumptions, e.g., sin(𝜃) ≃
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𝜃 and cos(𝜃) ≃ 1. In Alli and Singh (1998), two LTI models have been
developed for OCs. The first one is based on the tangent linearization
of the single-pendulum model. To obtain the other LTI model, the
flexibility of the cable corresponding to the single-pendulum model has
been taken into account which led to a PDE. This passivity approach
has been successively used for infinite-dimensional crane models in
particular in Chentouf and Mansouri (2022), d’Andréa-Novel and Coron
(2000), d’Andrea Novel, Boustany, and Rao (1991), d’Andréa Novel and
Coron (2002), exploiting the energy function that may differ from the
considered model. Subsequently, the PDE has been solved based on the
Laplace transformation to form the transfer functions in the Laplace
domain. It is shown that these two transfer functions are positive
real (PR) (Brogliato et al., 2020b). Hence, any strictly positive real
(SPR) block can be placed in the feedback path to form a passive
closed-loop control system. The coefficients of such SPR controllers are
designed based on an optimization technique. The same strategy has
been employed by Shen et al. (2021) with the difference that the torque
applied to the winch (𝐹𝑙 in (3)) has been also taken into account for
position tracking of the load. PBC has also been developed for the 3D
operating space with initial control saturation avoidance (Zhang, Zhu,
He, Feng, & Pang, 2022). This method has been extended in Zhang,
He, and Chen (2020) without partial feedback linearization to improve
the robustness. An energy shaping method has been introduced by
Sun et al. (2013), Wu and He (2017) for 3D problems where the
differentiations of the variable do not appear in the control law to form
an output feedback control (see also Zhang, He, Zhu, Chen, and Feng
(2020) which employs both the angle displacement and its derivative).
The method is different from the IDA-PBC and another storage function
has been defined based on the concept of virtual payload. Another PBC
design has been introduced by Wu and He (2017) where the main
contribution is to define a new output function that contains both cart
and payload coordinates. Subsequently, a storage function is defined
based on this output. Note that partial feedback linearization (PFL) is
used in the beginning to obtain the appropriate dynamic equations for
the control design. Since the position has been taken into account in
the error signal, the damping characteristic is not constant and changes
according to the distance to the desired position which can reduce both
load sway and operation time. Lyapunov and LaSalle’s theorems are
employed to show the asymptotic stability.

In Zhang, He, Chen, and Zhu (2019), the PBC adopts barrier func-
tions on the coupled-dissipation signal, so that the payload position is
guaranteed in a predefined scope during the whole transportation. In
the mentioned work, a new storage function containing both actuated
and underactuated dynamics has been proposed to form a noncollo-
cated control strategy (see also Chen and Sun (2020) where the barrier
function-based antisway control of overhead crane is proposed). For
infinite-dimensional systems, LaSalle’s invariance principle could be
also applied, but it requires proving a precompactness property for
the solutions (Slemrod, 1989), that could be proven by studying an
injection (as done in e.g. Prieur, Tarbouriech, and Gomes da Silva
(2016)) that could be difficult to establish and that is not needed when
using, e.g., backstepping control design (as described in Section 3.3.7
below). In the context of OC, this approach has been successively
applied in d’Andréa-Novel and Coron (2000), d’Andréa Novel et al.
(1994), d’Andrea Novel et al. (1991).

3.3.5. Feedback linearization (FL)
The aim of FL is to provide a linear input–output map by canceling

the nonlinearities and hence enabling to use the design and analysis
methods developed for the linear systems. As it is reported by Wu and
He (2017), the FL cannot be implemented for the underactuated sys-
tems directly and it is necessary to use Spong’s transformation (Spong,
1994) for the actuated and unactuated coordinates (Tuan, Lee, Ko,
& Nho, 2014). In (2), one computes 𝜃̈1(𝑥̈) from (b), and inserts it in
(a) to get the (𝑥, 𝑥̇) controlled dynamics. In (3), one computes 𝜃̈1(𝑥̈)

̇
(c), and insert it into (a) and (b) to get the (𝑥, 𝑥̇, 𝑙1, 𝑙1) controlled
dynamics. Similar manipulations are performed with (4) (c) (d) and
(a) (b), with (5) (c) (d) and (a) (b) (e), and (6) (a), (b) and (c) (see
Appendix G for more details and developments). Using this transforma-
tion, it is possible to study the underactuated Euler–Lagrange systems
in terms of controllability and the possibility of linearization by state
feedback (Reyhanoglu, van der Schaft, McClamroch, & Kolmanovsky,
1999). However, as reported by Reyhanoglu et al. (1999), unactu-
ated dynamics as in (G.5) are usually nonintegrable and thus can be
interpreted as second-order nonholonomic constraints, which do not
reduce the state-space dimension. Such studies seem to be absent in
the literature for OCs control.

In Park, Chwa, and Hong (2007), firstly, the dynamic model of an
OC with variable-length link has been obtained and it is shown that
there is coupling between the cable’s length and the sway dynamic (see
Appendix A for more details). Subsequently, a control law has been
proposed which can be divided into two parts, to control the actuated
and underactuated dynamics. Asymptotic stability is also shown using
the Lyapunov theorem. Le, Lee, and Moon (2014) has proposed a
PFL controller to control the sway angle. Subsequently, a sliding-mode
control (SMC) is designed for the hoisting mechanism. The combination
of these two controllers is also addressed. A control scheme based
on the FL has been developed in Chwa (2009) and its asymptotic
stability has been studied. This scheme has also been compared with
the PD (Fang et al., 2003) and a Lyapunov-based control called 𝐸2

coupling control law (Fang et al., 2001). PFL has also been developed
for 3D case (Sun, Fang, & Zhang, 2012; Wu & He, 2016). In Lee
et al. (2013), firstly, a single-pendulum 3D model has been obtained
which includes three inputs and five outputs and then the actuated
and underactuated dynamics have been separated. Subsequently, a
map between actuated and underactuated systems has been achieved.
After that, the FL technique is used to obtain the required control
forces for the actuated and unactuated dynamics, and finally, the
linear combination of these control laws is applied to the system. This
strategy has also been integrated with the SMC by Tuan et al. (2014).
Furthermore, FL control for the 3D motion of an OC is introduced
in Tuan, Kim, and Lee (2012) where the controller is mainly designed
for the actuated parts and the sway angle is considered an unactuated
dynamics. Subsequently, it is shown that the unactuated dynamics
are locally stable by analyzing the zero dynamics using Lyapunov’s
linearization theorem. An FL control has been studied in Boustany
and d’Andrea Novel (1992). Since this method can be sensitive to the
payload mass, a mass estimator has been developed, and exponential
stability has been assured using the Lyapunov theorem. While FL can
lead to a lack of robustness (since it relies on the system’s parameters) it
can stabilize the internal dynamics (Hamdy, Shalaby, & Sallam, 2018).
A deadbeat control scheme is then used by Hamdy et al. (2018) after
FL to improve the time-optimality. According to Yu, Lewis, and Huang
(1995), in FL, a singularity may occur around the equilibrium point
which makes the control design complicated. This problem has been
resolved by separating the whole dynamics into fast and slow parts,
corresponding to the average and oscillatory movements, and designing
two different controllers for these parts.

3.3.6. Sliding-mode control (SMC)
SMC is another widely used approach in this topic because of its

robustness to matched and unmatched disturbances (Chen, Cheng, Liu,
& Du, 2022; Gu & Xu, 2022; Hu & Xu, 2022; Wang, Wu, & Lei, 2022).
It can also handle the elasticity exists in the supporting structure as
reported by Cuong and Tuan (2023). In the simplest case, SMC has been
designed for the single-pendulum model with a constant length link,
and a linear sliding surface is defined containing the cart position (𝑥)
and sway angle (𝜃1), as well as their time derivations (Chen, Yang, Ni, &
Yan, 2020). Subsequently, an equivalent-based control law is proposed,
and the asymptotic stability of the closed-loop system is ensured based
on the Lyapunov stability theorem. This classic approach has been

employed in Kuo-Kai Shyu, Cheng-Lung Jen, and Li-Jen Shang (2005).
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A similar procedure with a variable length link has also been developed
where the sliding surface also contains error variables corresponding to
the length of the link (Lee, Liang, & Segura, 2006). Note that the SMCs
in this topic usually need full-state feedback. SMC with a nonlinear
sliding surface has also been introduced for the single-pendulum (Lee,
2004) with variable length cable and double-pendulum (Chen et al.,
2022; Ouyang, Hu, Zhang, Mei, & Deng, 2019; Shehu, Li, & Zeng,
2022) systems. The SMC designed for the double pendulum system
in Chen et al. (2022) does not require the payload feedback, i.e.,
secondary sway (𝜃2), length of the second link (𝑙2), and the payload

ass (𝑚2). In addition, SMC has also been designed based on the
angent linearized model of the double-pendulum system integrated
ith the state observer.

SMC is integrated with disturbance observers to compensate for
isturbances based on the single-pendulum model (Lu, Fang, & Sun,
017b). Similarly, Park et al. (2014, 2008) have developed fuzzy ob-
ervers for this purpose to estimate the dead-zone characteristic of the
ctuator as an uncertainty when the SMC is used. Furthermore, Moon
t al. (2013) has proposed an SMC for cart position, hoisting, and
way control. Since this control law depends on the payload mass
nd friction factors, adaptation laws are developed to estimate these
arameters (Moon et al., 2013) or to tune the control gains (Hu &
u, 2022; Wang, Liu, He, et al., 2022). In addition to the first-order
MCs, other variants of the SMCs have also been developed for the
Cs such as super-twisting SMC (Vázquez, Collado, & Fridman, 2014;
ang, Wu, & Lei, 2022) leading to continuous structures. Second-order

MC in 3D space without considering the hoisting mechanism has been
ddressed in Bartolini, Orani, Pisano, and Usai (2000). This strategy has
een further developed by Bartolini, Pisano, and Usai (2002) to include
he hoisting mechanism as in (3). The sliding surface depends on the
oad sway for sway reduction. As a result, a kind of virtual damping is
dded to the closed-loop equations which stabilizes the zero dynamics
orresponding to the unactuated dynamics. Such a control strategy has
een compared with the 𝜇-synthesis controller (Karkoub & Zribi, 2001)
nd it is concluded that the SMC provides a better sway reduction,
ut it suffers from the chattering and higher energy consumption. An
daptive fuzzy SMC has been developed by Lee, Huang, Ku, Yang,
nd Chang (2014) for cart position and sway control in 3D space
here two linear sliding surfaces have been defined for the position
nd sway angle. The value of the sliding surfaces is fed into a fuzzy
ystem through two gains to generate the control signal. The gain of
he sway angle is calculated adaptively to achieve both tracking and
way reduction simultaneously. The design of the SMC for the 3D
perating space has been studied in other works (Ngo & Hong, 2012).
or instance, SMC design for the single-pendulum model in 3D space
ith a variable-length link has been addressed in Almutairi and Zribi

2009) where a Luenberger observer is used to estimate the velocities.

It should also be noted that SMC has been used along with FL
cheme because of its robustness. For instance, Le et al. (2014) has
esigned a PFL controller for the cart motion to control the sway
ngle. Subsequently, an SMC is designed for the hoisting mechanism.
urthermore, a hybrid control strategy has been proposed by Tuan
t al. (2014) where SMC and PFL have been used together. The PFL is
or sway control and the SMC is used for payload lifting. An adaptive
racking SMC has been developed in Ouyang, Wang, Zhang, Mei, and
eng (2019) for a double-pendulum model where one of the parameters
f the sliding surface, i.e., the pole of the linear sliding surface, is
alculated based on an adaptation law. Asymptotic stability has been
uaranteed based on the Lyapunov theorem. Practical experiments
how that the adaptive method can improve the tracking performance,
ompared to a few non-adaptive schemes. A discrete-time integral SMC
as been developed in Xi and Hesketh (2010) for a general class of
iscrete-time linear systems, and robustness in the presence of matched
nd mismatched uncertainties (which cannot be handled in typical

MCs) has been addressed. Application of this controller to an OC in
3D space is also considered. Another integral SMC has been designed
for the negative imaginary systems in Abdullahi et al. (2016) and the
application of this control method on the OCs has been studied.

Some studies have also been dedicated to the numerical chattering
reduction of SMCs implemented with explicit Euler methods using
alternative methods, e.g, Park et al. (2008) where the control gain of
an SMC is calculated using a fuzzy system to determine the width of
the boundary layer of the saturation function to reduce the numerical
chattering. Two SMCs, i.e., first and second orders strategies, along
with the sliding-mode-based differentiators are developed in Bartolini,
Pisano, and Usai (2003) and compared with the PI controller and
a time-varying feedback strategy. Experimental results indicate that
the SMC schemes are more robust than the other considered models.
An SMC named ‘‘global-equivalent’’ has been introduced by Wang,
Tan, Qiu, et al. (2021) and compared with conventional SMC and the
PID controller. The control is designed for the single-pendulum model
with varying length links. The simulations show smaller chattering
compared to the conventional SMC. The reaching phase of the system
has been ensured. However, the sliding phase, as well as the stability
of the sliding surface, has to be further addressed. Additionally, the
chattering reduction mechanism, i.e., replacing the signum function
with the saturation one to have a boundary layer, imposes extra design
parameters to the system, where there is not any straightforward tuning
procedure. This strategy has been further modified by Wang, Tan,
Zhang, et al. (2021) to form a time-variant sliding surface.

3.3.7. Backstepping control design
According to the literature, backstepping control has been used

for overhead cranes when the model has a triangular form. Such a
model usually appears when dealing with pendulum-like systems with
a flexible link (7). In d’Andréa Novel and Coron (2002), considering
the flexibility of the cable with variable length, a PDE-ODE model
is obtained. Subsequently, a boundary feedback law is proposed to
stabilize the system. Such a control law has been integrated with the
neural networks to handle the uncertainties (Ma, Lou, Wu, & Huang,
2022). Since the cascade structure directly appears in the PDE-ODEs
model, the backstepping control scheme can be utilized for the sys-
tem (d’Andréa Novel & Coron, 2002). See also d’Andréa-Novel and
Coron (2000), where the backstepping design is used to prove the
exponential stability of the closed-loop system. Moreover, finite-time
stability can be ensured using the same approach as done in Liu, Li,
and Ding (2012), d’Andréa Novel et al. (2019), Wen, Lou, Wu, and Cui
(2022), Wijnand et al. (2021) for a fixed-length cable. To do that, a
non-Lipschitz condition has been employed and nonlinear semigroup
has been used to prove the global wellposedness of the closed-loop
systems. Note that such property usually is not observed in the ODEs
developed for the single and double pendulum systems (2) and (6), and
a state transformation may be used to realize a triangular system. Such
a model has been obtained in Chen and Saif (2008) for an experimental
OC. Subsequently, a backstepping controller has been designed and
combined with the sliding-mode observer to form an output feedback
control law.

3.3.8. Fuzzy control
Fuzzy control can be considered a model-free control scheme since

it is designed based on the behavior of the system rather than the
mathematical models. These kinds of control strategies are usually
provided without solid stability proof. One of the earliest works on
this subject has been done in Liang and Koh (1997). In Zhao and Gao
(2012), a Takagi–Sugeno fuzzy model has been developed for an OC
based on obtaining the dynamical equations, and linearization over
three different points using three fuzzy rules. Then, the control rules
are developed based on these rules. Input delay and actuator saturation
are also considered in the control design. A terminal SMC has been
designed in Lin, Chou, Chen, and Lin (2012) where the uncertainties

are estimated using a type-2 fuzzy system. The parameters of the fuzzy
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system are also tuned online based on adaptation laws developed in
the work using the Lyapunov theorem. In Chunshien Li, Chun-Yi Lee,
and Kuo-Hsiang Cheng (2004), a self-organizing neuro-fuzzy system
has been proposed based on the pseudo error concept. It seems that
pseudo error is used as a kind of input shaping. As usual, there is no
stability proof for such a model-free control strategy. An adaptive fuzzy
control scheme coupled with 𝐻∞ control is designed in Wu et al. (2017)
or a class of nonlinear multi-input multi-output underactuated systems
ith a combination of dead-zone, hysteresis non-linearity in the input,
xternal disturbance, and time-delays. The application of the control
cheme for the cranes is then considered. Another fuzzy controller for a
ingle-pendulum model has been developed in Yi, Yubazaki, and Hirota
2003) which requires full-state feedback. In Yi et al. (2003), a fuzzy
nference system has been used for trajectory planning of the cart to
educe the payload sway based on the single-pendulum model and full-
tate feedback. Moreover, a fuzzy controller has been developed by Li,
hen, and Zhang (2022) for the double-pendulum system in 2D space
ith variable length cable to address input uncertainties, e.g., dead-

one. The parameters of the fuzzy system are updated adaptively, and
he effect of the adaptation has been taken into account for the stability
roof using the Lyapunov theorem (see also Pham et al. (2022) for fuzzy
ain tuning of SMC in 3D operating space and cable length extension
ue to cable’s flexibility).

.3.9. Model predictive control
Model predictive control (MPC) calculates the control sequences

ased on the model to minimize some objective functions (e.g., cor-
esponding to energy consumption Wu, Xia, & Zhu, 2015) over a
orizon while satisfying some constraints like input saturation or colli-
ion avoidance. MPC can directly calculate the force (Chen, Fang, &
un, 2016), or on the other hand, it may just calculate the optimal
rajectory integrated with other controllers (Vu et al., 2022). MPC can
e designed based on the tangent linearized (Chen et al., 2016; Vu
t al., 2022) or nonlinear models (Schindele & Aschemann, 2011) of
single-pendulum. MPC has also been combined with offline trajec-

ory planners to increase the calculation speed and realize a real-time
mplementation (Vu et al., 2022). In Smoczek and Szpytko (2017), it is
ssumed that the dynamics of the cart and the sway angle are decoupled
hich is obviously unrealistic, see (2)–(4) and (6). Then two discrete-

ime transfer functions are obtained for input force to cart velocity and
art velocity to the sway angle. These transfer functions have fixed
rders (first and two-order models), and the coefficients of these models
re obtained using PSO. Subsequently, MPC is used based on these
odels. Inspired by d’Andréa-Novel and Coron (2000), d’Andréa Novel

t al. (1994), d’Andréa Novel and Coron (2002) (see also (Crépeau
Prieur, 2006; Le Gall, Prieur, & Rosier, 2007)), the paper Artola,
ynn, and Palacios (2021) developed a control design method for

uler–Bernoulli and Timoshenko beam models, using linear abstract
heory and nonlinear model predictive approach. The performance
f the closed-loop systems is checked on numerical simulations on a
igh-resolution scheme for the underlying PDE model. As explained
n Krupa, Nemcik, Ozana, and Slanina (2022), MPC based on the
onlinear model may show a heavy calculation burden and special
ttention has to be made to its implementation, e.g., the multi-threaded
mplementation may be necessary.

.3.10. Optimal control
Optimal control refers to any control method where the aim to

inimize an objective (cost) function. The LQR is probably the most
ell-known one in the control community. An LQR controller has been
eveloped by Yoshida and Kawabe (1992) for the linearized model
f a single-pendulum system while satisfying some constraints on the
ontrol input to avoid control saturation. This approach was further
eveloped for 3D operating space by Al-Garni, Moustafa, and Javeed
izami (1995). However, the LQR controller can ensure optimality
ust for linear systems (or locally for nonlinear systems). To solve this e
drawback, soft computing-based algorithms like PSO have also been
developed for optimal control of nonlinear systems. PSO algorithm has
been employed by Maghsoudi, Mohamed, Husain, and Tokhi (2016)
to tune the parameters of a PID controller such that an objective
function indicating the payload tracking error and sway are minimized.
This scheme has been integrated with an input shaping scheme and
compared with classic PID controllers. However, these approaches
usually lead to offline optimizations which may lead to a lack of
robustness to perturbations. Optimal controllers can be designed to
satisfy some constraints on the state variables and the control input
as well. Considering the constraints, the optimization usually leads to
a boundary value problem (Auernig & Troger, 1987), which can be
solved by Pontryagin maximum principle. However, Manson (1982) has
reported that optimal controllers can be sensitive to parameters, and
they just provide a kind of sub-optimality for real online applications.
Optimal controllers have also been designed considering the presence
of winding and input torque (Sakawa & Shindo, 1982) where the
controller is designed based on five different operating conditions. Note
that flatness theory is widely used in optimal control to provide a
map among inputs and the desired outputs while respecting various
constraints, e.g., collision avoidance (Chen, Fang, & Sun, 2016).

.3.11. Lyapunov-based control design
The Lyapunov method has been employed by almost all references

ither for control design or stability analysis. Methods that do not
elong to other control classifications are reviewed here. This strategy
ay lead to full-state feedback for 2D (Shi, Li, Ma, & Sun, 2019; Sun,
u, Fang, & Chen, 2018) and 3D problems (Fang et al., 2001). The

yapunov-based design has been compared with the linear quadratic
egulator (LQR) and PD controllers for single-pendulum (Zhang, Ma,
ong, Tian, & Li, 2017) and double-pendulum (Zhao, Ouyang, &

wasaki, 2021) models. Note that there is a very strong link between
he Lyapunov-based control and passivity-based control when the Lya-
unov function is the physical energy of the system. In this case,
assivity-based theory can be used to investigate the stability and
ehavior of the system (Fang et al., 2001; Sun & Fang, 2012). Some
tudies have also been conducted to develop output feedback strategies
ased on Lyapunov design (Sun et al., 2017) or to avoid control
aturation (Sun et al., 2017). See also (Wu & He, 2015), where two
yapunov functions have been proposed. The first one only includes the
way angle. By calculating their time derivatives, the desired velocity
rajectory has been obtained to reduce the sway. The other Lyapunov
unction includes both the sway angle and the cart position and is used
o obtain the control law.

The integration of the Lyapunov-based control with input shaping
as been proposed in Antipov and Krasnova (2022), Zhang et al. (2016)
o reduce the payload sway. The Lyapunov-based design can be used
o handle the unknown system’s parameters, e.g., length of the cable,
eights, and external forces (Antipov & Krasnova, 2022; Lu, Fang,
Sun, 2017a; Zhang et al., 2016). In Fang, Ma, Wang, and Zhang

2012), an input shaping is developed for the cart to reduce the sway.
fterward, an adaptive controller is designed based on the Lyapunov
ethod. This is a full-state feedback control, and the adaptation laws

re derived for friction, external forces, cable length, and weights.
yapunov-based control design has also been considered for a multi-
able OC based on the equivalent single-pendulum model in Lu, Fang,
nd Sun (2018). A simple linear state-feedback controller is obtained,
hich contains the first derivatives of the state variables. The effect
f the distributed parameter modeling in the state-feedback design
hen considering PDE models corresponding to flexible cables has been

tudied by Chentouf and Han (2020) and it is shown that the system
an remain exponentially stable. A Lyapunov-based feedback controller
as been introduced by d’Andréa Novel et al. (1994) where the model
f the OC given by a PDE-ODE model and the flexibility of the cable
as been taken into account (see also Cuong and Tuan (2023), Golovin

t al. (2022), Oguamanam, Hansen, and Heppler (1998, 2001) for the
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case where flexibility exists in the supporting structures). This control
law only needs the absolute position of the cart and the angle between
the cable and the vertical axis at the attached end. Asymptotic stability
of the closed-loop system is ensured, and by studying the decay of
he energy, it is concluded that the provided feedback cannot ensure
niform convergence (see also Chentouf and Han (2020) for similar
esults with an input delay, He and Ge (2016) for the use of cooperative
ontrol in the presence of parameter uncertainties, and Sun et al. (2019)
ith stiffness in the joints). A tracking controller has been developed

n Zhang et al. (2018) for the 3D space, and it is concluded that this
ontroller supersedes the collocated PD and the energy coupling output
eedback (Sun et al., 2013) in terms of transient response. Another
yapunov-based control strategy has been introduced for the double-
endulum system where the length of the first link is variable (Shi,
ao, Yuan, Tong, et al., 2022). Subsequently, a Lyapunov function has
een defined containing the error variables of both cart position and
he cable’s length to obtain the coupled control forces applied to the
art as well as the cable’s winch for the tracking case (see also Lu
t al. (2017a) for the double-pendulum model where the length of the
irst link is variable). The Lyapunov design has also been employed for
he double-pendulum system in 3D space integrated with a fuzzy gain
uner (Miao, Zhao, Wang, & Ouyang, 2022).

.4. Control in 3D operational space

The control of OCs in 3D space has been studied from a different
oint of view. The studies considering the control of lumped mass
ultibody models in 3D space are as follows:

• Decentralized control: In this method, the linearized model
around a stable equilibrium point (vertical position) is used to
design the controller. Under such conditions, the coupling among
the axes is eliminated and controllers can be designed for each
axis independently, without taking the couplings into account.
In this case, the controllers that are designed for the 2D space
can be used to control each channel, separately (the studies in
this category are Ebeid, Moustafa, and Emara-Shabaik (1992),
Garrido et al. (2008), Toxqui et al. (2006), Yoshida and Tabata
(2008)). Maghsoudi et al. (2016) has designed a PID controller
to control one axis of a crane modeled in 3D space. The PID
controller is tuned using the PSO algorithm to show the best
possible payload positioning. Moreover, Maghsoudi et al. (2017)
has designed an input shaping control for one axis of a crane.
Similarly, the PSO algorithm is used to tune the parameters of the
shaper. To handle the coupling effect, in at least one study, each
controller has been designed independently for each channel and
the coupling is considered a disturbance. For instance, Vázquez
et al. (2014) developed a super-twisting controller while the
coupling is considered a disturbance (though this is not an a priori
bounded disturbance).

• Control design considering the coupling: In this category, the
controllers are designed based on the nonlinear model of the
system and the couplings among the axes have been taken into
account in the control design. In this method, the controllers are
usually designed based on a Lyapunov function containing the
variables corresponding to all axes in order to derive a centralized
control rule (Wu & He, 2017). PFL has been also employed in
this category to take the coupling into account (Chwa, 2009; Lee
et al., 2013; Sun, Fang, & Zhang, 2012; Sun et al., 2013; Tuan
et al., 2012, 2014; Wu & He, 2016). While a centralized control
law can be obtained based on these procedures to handle the
coupling, the stability is usually ensured locally (Lee et al., 2013;
Tuan et al., 2012, 2014). SMC is another approach in this category
to handle the coupling (Chwa, 2017). Flatness control leads also

to a centralized control law (Knierim et al., 2010) in 3D space. f
3.5. Sway control using cable length manipulation

All the above-mentioned studies try to control the payload sway by
manipulating the force applied to the cart as the only control input.
However, there are still other studies (Abdel-Rahman & Nayfeh, 2002;
Abdel-Rahman et al., 2003; Bockstedte & Kreuzer, 2005; Hayajneh,
Radaideh, AL-Oqla, & Nejdawi, 2008; Moustafa, 1994; Wei, Limin, &
Zhengnan, 2017) where the sway is controlled by manipulating the ca-
ble length 𝑙1. In other words, the cable length is considered as a control
input rather than a control output, and the dynamics corresponding
to the winding mechanism are neglected. Couplings exist between the
winding mechanism and the sway (Abdel-Rahman & Nayfeh, 2002;
Abdel-Rahman et al., 2003; Moustafa, 1994) (and between the 𝑙, 𝑙̇-
ynamics and the rest of the dynamics, see Section 2, Appendices A–C
nd E for more details). Hence, cable length manipulation can be used
o control the sway.

.6. Sway control using passive mechanical elements

The above-mentioned references are considered as active control,
.e., the required damping for the stability is injected virtually using
he force applied to the cart. On the other hand, some of the control
bjectives can be achieved by the implementation of passive dampers
s introduced in Balachandran, Li, and Fang (1999), which is out of the
cope of this paper. In this strategy, the cart is attached to the frame
hrough mechanical dampers. This approach can modify the bifurcation
oint of the mechanical system leading to the payload sway reduction,
s done in Balachandran et al. (1999).

.7. Summary of all methods

A summary of all studies presented for modeling and control of
Cs is made in Tables 2–8. The nomenclature corresponding to these

ables is provided in Table 1. These tables allow to review the liter-
ture at a glance and help in finding the most appropriate reference
orresponding to each application.

.8. Operator-in-the-loop methods

The foregoing sections deal with autonomous systems where no
uman intervenes in the loop. Another approach consists of considering
he actions of the operator inside the control loop. A survey of this
amily of control methods is made in Bonnabel and Claeys (2020),
ee also Giacomelli et al. (2019, 2018a, 2018b). Trajectory tracking
ontrollers combined with suitable desired trajectories (for the so-
alled velocity-command strategy) are very important in this context,
ee Section 7.2.2 and Remark 10. However, the basic assumption in
he operator-in-the-loop control systems is that the low-level controller
usually a collocated feedback 𝐹 ) allows to perfectly track cart velocity
rofiles. In other words, it is assumed that the system’s output is the
art’s velocity (i.e., 𝑦 = 𝑥̇) and 𝑦(𝑡) → 𝑦𝑑 (𝑡) should be achieved by
he collocated input 𝐹 (𝑡). If the convergence is fast enough, the cart’s
elocity can be used to control the payload using suitable cart’s motion
esigned with flatness (i.e., the cart’s desired velocity is a suitable
unction of the payload’s desired motion, designed from a suitable
nversion method, like flatness).

emark 7. This paper follows the standard convention in the control
ommunity where the open-loop control strategy refers to any control
ethod where there is no feedback. As explained in Section 3.1, in the

pen-loop strategies, the controller directly generates the force applied
o the cart based on the reference trajectory without using feedback.
owever, the feedback that exists in the motor speed driver is usually
eglected in the operator-in-the-loop literature and any collocated

eedback where there is no feedback from the sway angle is called
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Table 1
Symbols used in the tables.
Feedback (feed) O: open-loop, C: collocated, N: noncollocated
Scenario (sce.) R: regulation, T: tracking
Stability (stab.) GE: global exponential, LE: local exponential

GA: global asymptotic, LA: local asymptotic
GF: global finite-time, LF: local finite-time, N/A: not available

Validation (val.) S: simulation, E: experiment, SE: simulation and experiment
Control (cont.) 𝑥: control cart in one direction, 𝜃: just sway control

𝑥, 𝑦: control cart in two direction, 𝑙: control the cable’s length
Number of cables The indicated number is the number of parallel cables. Moreover,
(NC) R and F stand for rigid and flexible links, respectively
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the open-loop method in some of the resources (Bonnabel & Claeys,
2020). Because of the fast dynamics (compared to the dynamics of the
crane), the dynamics of the speed drive are usually neglected in this
approach and it is assumed that the payload exactly tracks the reference
trajectory.

Following Bonnabel and Claeys (2020), the operator-in-the-loop ap-
plication refers to a condition where the velocity trajectory is generated
by an operator (a human who drives the crane). This case imposes the
following two extra challenges to the controller design:

• The reference velocity is generated by the driver and therefore is
not totally known for the future time steps. Hence, the application
of the control method where the reference trajectory for the next
time steps is required, e.g., MPC and flatness (see the example
in Bonnabel and Claeys (2020) where the second derivative of the
reference trajectory has to be available for the flatness control) is
limited.

• The driver may generate several impulses in order to drive the
payload to the destination as fast as possible. Such discontinuous
impulses can hinder the application of the controllers where the
derivatives of the reference signal are required to synthesize the
control signal, for instance, the flatness control where the second
order derivative of the reference signal is necessary (Bonnabel &
Claeys, 2020). To solve this issue, Bonnabel and Claeys (2020) has
proposed to use a low-pass filter to make the reference trajectory
continuous and differentiable. The cutoff frequency of this filter
should be tuned accurately to avoid a large delay and a poor
transient response (a detailed filter design procedure is available
in Bonnabel and Claeys (2020)).

. Review of the experimental systems considered in the literature

According to Tables 2–7, many references have considered ex-
erimental validation of the control systems on different kinds of
xperimental setups. Hence, it is of interest to review such references
ased on the methodology and employed laboratory setup. The ex-
erimental implementations made in the literature can be classified
ased on the size of the crane, the computer used to implement the
ontrol algorithms, the types of actuators, and sensors as explained in
ections 4.1 to 4.4, respectively.

.1. Scale of the experimental setups

The cranes used in the literature can be classified into three cate-
ories, i.e., full-scale setups, scaled laboratory setups adopted from the
eal industrial one, and small laboratory setups. The full-scale cranes
re barely employed for the experiments because of clear reasons. A
ull-scale 15 tons crane with 25 m of hoisting cable is used by Singhose
t al. (2000). A tower crane with 1650 kg lifting capacity and 45 m
oisting height is considered in Rauscher and Sawodny (2021). Another
ull-scale 3.2 tons crane has been employed by Arena et al. (2015). A
ower crane with 40 m hoisting cable is used in Bonnabel and Claeys
2020). A 5-ton overhead crane is considered in Aschemann (2009) for
he experiments. In addition to the mentioned full-scale cranes, scaled
 e
etups have also been used for the experiments. For instance, Kim et al.
2004), Sano et al. (2010) have considered the 1/4 and 1/50 scales
f some specific industrial cranes. See also Ma, Lou, and Jia (2023)
or the illustration on experiments of a Lyapunov and Neural Network
pproach for the control design. Moreover, most of the references
ave built or used small laboratory setups for the experiments. In
his context, two commercially available laboratory setups with a few
ilograms capacity made by inteco (Alhazza et al., 2016; Chen & Saif,
008; Cuong & Tuan, 2023; Hong & Ngo, 2012; Kim & Hong, 2009; Ngo
Hong, 2012; Park et al., 2007; Toxqui et al., 2006; Vázquez et al.,

014) and quanser (Khorshid & Al-Fadhli, 2021; Park et al., 2008; Shen
t al., 2021) have been used in the literature. All other references have
eveloped their own laboratory setups with small payloads (typically
he cart mass is between 5 to 20 kgs and the payload is less than one
g with less than one meter of hoisting height) (Chen et al., 2019;
hwa, 2017; Lu et al., 2018; Ouyang et al., 2019, 2019; Peng et al.,
012; Sun & Fang, 2012; Sun et al., 2017; Sun et al., 2013, 2018; Sun
t al., 2018, 2019; Sun et al., 2019; Wu & He, 2015, 2016; Wu & He,
017; Yoon et al., 2014; Zhang, 2019; Zhang, Ma, et al., 2017). As it
an be seen, most of the references have considered light payloads for
he experiments. Under such conditions, the high-frequency vibrations
aused by the hoisting cable may not be observed. Hence, future works
ith heavier payloads seem to be necessary to study the string behavior
f the cable.

.2. Computers employed to implement the control algorithms

Different kinds of computer architectures have been employed to
mplement control algorithms on OCs. In most cases, the hardware-
n-the-loop (HIL) simulation strategy is used to do the experiments,
here the controllers are implemented on a personal computer in the
atlab environment, and data acquisition (DAQ) interfacing devices
re connected to the computer to receive the measurements and send
he control signals to the actuators (Alhazza et al., 2016; Chen et al.,
019; Diwold et al., 2022; Khorshid & Al-Fadhli, 2021; Le, Kim, Kim,

Lee, 2012; Le et al., 2014; Lee et al., 2014; Li, Ma, et al., 2022;
u et al., 2017b; Miao et al., 2022; Moon et al., 2013; Ouyang et al.,
019, 2021; Sun & Fang, 2012; Sun et al., 2015; Sun et al., 2013; Sun
t al., 2018, 2019; Sun et al., 2019; Tuan et al., 2012; Vázquez et al.,
014; Wu & He, 2016; Zhang, He, Chen, & Feng, 2020; Zhang, Ma,
t al., 2017) are used. In this context, different kinds of DAQ systems,
.g., dSPACE cards (Diwold et al., 2022; Rauscher & Sawodny, 2021),
ational Instrument (NI) boards (Le et al., 2012, 2014; Moon et al.,
013; Ouyang et al., 2021; Tang & Huang, 2016; Tuan et al., 2012,
014), Advantech boards (Lee et al., 2014), Quanser data-acquisition
erminal (Khorshid & Al-Fadhli, 2021), Googol boards (Li, Chen, &
hang, 2022; Lu et al., 2017b, 2018; Ouyang et al., 2019; Sun & Fang,
012; Sun et al., 2018, 2019), artisan Technology boards (Bartolini
t al., 2000; Bartolini et al., 2003) and inteco daq boards (Alhazza
t al., 2016; Chen & Saif, 2008; Hong & Ngo, 2012; Kim & Hong,
009; Park et al., 2007; Toxqui et al., 2006; Vázquez et al., 2014)
re used. Furthermore, customized digital signal processor (DSP) or
icroprocessor-based systems have been designed (Lin et al., 2012),
specially for the industrial-scale cranes (Arena et al., 2015). For the
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Table 2
Summary of the control methods in 2D space for the lumped single-pendulum.

Ref. Feed. Sce. Stab. Val. Cont. Control method

Park et al. (2007) N T GE SE 𝑥 SMC
Chen et al. (2020) N T GA S 𝑥 SMC
Kuo-Kai Shyu et al. (2005) N T GA S 𝑥 SMC
Hamdy et al. (2018) N T LA S 𝑥 Partial feed. lin. + deadbeat
Fang et al. (2012) N T GA S 𝑥 Lyapunov der. + adap. frict. comp.
Lee et al. (1997) C R LA E 𝑥 PID
Lee (2004) N T GA S 𝑥, 𝑙 SMC
Fliess, Levine, and Rouchon (1991) N T N/A S 𝑥, 𝑙 Flatness
Lee et al. (2006) N T GA E 𝑥, 𝑙 SMC
Alhazza et al. (2016) O – N/A SE 𝑥 Input shaping
Chen et al. (2016) N R N/A SE 𝑥 MPC
He, Zhang, and Ge (2014) N T LA S 𝑥 Feedback lin. + adaptive law
Sun et al. (2015) C R GA SE 𝑥, 𝑙 Lyapunov derived adaptive law
Abdullahi et al. (2018) O – N/A E 𝑥 Input shaping
Ngo and Hong (2012) N T GA SE 𝑥 SMC
Moon et al. (2013) N T GA SE 𝑥, 𝑙 SMC with parameter estimation
Park et al. (2014) N T GA S 𝑥 SMC + fuzzy uncertainty estimation
Sano et al. (2010) C T N/A SE 𝑥 Obs.-based time-delay tolerant PI
Yi et al. (2003) N R LE S 𝑥 State-feedback + fuzzy traj. generator
Park et al. (2008) N T GA SE 𝑥 SMC + fuzzy compensator
Ohnishi, Tsuboi, Egusa, and Uesugi (1981) N R N/A S 𝑥 Linear state feedback
Collado et al. (2000) C R GA S 𝑥 PD control
Omar (2003) N T LA SE 𝑥 PD - fuzzy - time-delayed
Zhang, Wu, and Huang (2017) N R Lya. S 𝑥, 𝑙 Flatness control
Diwold et al. (2022) N T LE E 𝑥, 𝑙 Discrete-time flatness control
Hong et al. (2003) O – N/A S 𝑥 Input shaping
Singhose et al. (2000) O – N/A SE 𝑥 Input shaping with hoisting
Wu and He (2015) N R LA S 𝑥 Lyapunov derived
Zhang, Ma, et al. (2017) N R GA SE 𝑥 Lyapunov derived
Moustafa (1994) N T LA S 𝜃 Linear feedback (𝑥, 𝑙 are inputs)
Zhang (2019) N T GF SE 𝑥 Terminal SMC
Fliess et al. (1995) O – N/A S 𝑥 Flatness control
Kimiaghalam, Homaifar, Bikdash, and Dozier (1999) N T N/A S 𝑥, 𝑙 Linear feedforward + GA generated traj.
Antipov and Krasnova (2022) N T GA S 𝑥 State-feedback with trajectory modification
Wahrburg et al. (2022a) N R N/A SE 𝑥 Input shaping robust to initial sway
Wahrburg et al. (2022b) N R N/A SE 𝑥 Input shaping robust to initial sway
Wang, Liu, He, et al. (2022) N R GA E 𝑥 Terminal SMC with adaptive parameters
Hu and Xu (2022) N R GA S 𝑥, 𝑙 Adaptive SMC
Wang, Tan, Qiu, et al. (2021) N Sce. GA S 𝑥, 𝑙 SMC
Qian and Yi (2016) N R GA S 𝑥 SMC
Zhang, He, Chen, and Feng (2020) N R GA E 𝑥 Lyapunov derived
Singhose et al. (1997) O – N/A S 𝑥 Input shaping
Zhang et al. (2014) O – N/A SE 𝑥 Dynamic programming
Shao, Zhang, Zhang, Zhao, and Chen (2020) N R LA S 𝑥 LMI design based on fuzzy model
Fatehi et al. (2014) N T LA S 𝑥 Linear state feedback
Wu et al. (2015) N R N/A S 𝑥 MPC
Sun and Fang (2012) N R GA SE 𝑥 Lyapunov derived
Fang, Dixon, Dawson, and Zergeroglu (2001) N R GA S 𝑥 Lyapunov derived
Yu et al. (1995) N T LA S 𝑥 Approx. FL + LQR
Sun and Fang (2014b) N T GA SE 𝑥, 𝑙 Lyapunov derived
Piazzi and Visioli (2002) C T N/A S 𝑥 Observer-based linear state-feedback
Wu and Xia (2014) O – N/A S 𝑥 Offline trajectory design
Chen et al. (2016) N T GE SE 𝑥 FL + flatness
Bartolini et al. (2003) C T N/A SE 𝑥, 𝑙 SMC
Le et al. (2014) N T GA SE 𝑥, 𝑙 PFL + SMC
Smoczek and Szpytko (2017) N T N/A E 𝑥 PSO model identification + MPC
Aschemann (2009) N T N/A E 𝑥, 𝑙 Observer-based IDA-PBC
Chunshien Li et al. (2004) C T N/A S 𝑥 Neuro-fuzzy system
Karkoub and Zribi (2001) N R N/A S 𝑥, 𝑙 SMC, 𝜇 synthesis, state-feedback
Hičár and Ritók (2006) C R LA SE 𝑥, 𝑙 State-observer based classic linear
Bartolini et al. (2002) N T GA S 𝑥, 𝑙 SMC
Singhose et al. (1990) O – N/A S 𝑥 Input shaping
Vyhlídal et al. (2013) O – N/A S 𝑥 Input shaping
Lu et al. (2017b) N T GA SE 𝑥 Disturbance observer based SMC
Kolonic, Poljugan, and Petrovic (2006) N R LA SE 𝑥 Convex combination of LTI systems
Auernig and Troger (1987) O – N/A S 𝑥, 𝑙 Optimal control (Pontryagin’s principle)
Manson (1982) O – N/A S 𝑥 Optimal control
Peng et al. (2012) C R N/A SE 𝑥 PD control
Golovin et al. (2022) C R LA SE 𝑥 Lyapunov control considering structural deformations
Mohamed et al. (2022) N – N/A S 𝑥 PID with multi-objective genetic gain optimization
Orsini (2022) N T LA S 𝑥 Observer-based state feedback
Gu and Xu (2022) N R GA S 𝑥, 𝑙 SMC robustness to matched and unmatched disturbances
Zhang, He, et al. (2022) N R GA E 𝑥 Quasi-PID with control saturation avoidance
Krupa et al. (2022) C R N/A E 𝑥 Nonlinear MPC
Wang, Wu, and Lei (2022) N R GA SE 𝑥 SMC with disturbance observer

(continued on next page)
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Table 2 (continued).
Ref. Feed. Sce. Stab. Val. Cont. Control method

Alghanim et al. (2015) O – N/A SE 𝑥 Input shaping
Wu, Xu, and He (2020) N R GA SE 𝑥 Lyapunov-based design
Table 3
Summary of the control methods in 2D space for the lumped-mass double-pendulum.
Ref. Feed. Sce. Stab. Val. Cont. Control method

Ouyang et al. (2019) N T GF SE 𝑥 SMC
Chen et al. (2019) N R GA E 𝑥 Lyapunov derived
Wang, Tan, Zhang, et al. (2021) N R GA S 𝑥 SMC
Zhang et al. (2016) N T GA E 𝑥 Lyapunov der. + adap. param. estim.
Vaughan et al. (2010) O – N/A SE 𝑥 Input shaping
Sun et al. (2017) N R GA E 𝑥 Lyapunov der. output feedback
Sun et al. (2018) O – N/A SE 𝑥 Dynamic programming
Vaughan et al. (2010) O – N/A SE 𝑥 Input shaping
Ouyang et al. (2019) C T LA SE 𝑥 PID control + S-shaped trajectory
Li, Chen, and Zhang (2022) N R GA E 𝑥, 𝑙 SMC with Adaptive fuzzy law
Hong et al. (2003) O – N/A S 𝑥 Input shaping
Tang and Huang (2016) O – N/A SE 𝑥 Input shaping for distributed mass
Zhao and Gao (2012) N R N/A SE 𝑥 Input shaping for distributed mass
Qian and Yi (2016) N R Asymptotic S 𝑥 SMC
Singhose et al. (2008) O – N/A SE 𝑥 Input shaping
Sun et al. (2018) N R GA E 𝑥 Adaptive Lyapunov derived
Ouyang et al. (2019) N T GA E 𝑥 SMC with adaptive pole surface
Khorshid and Al-Fadhli (2021) O – N/A SE 𝑥 Input shaping for sloshing payload
Li, Ma, et al. (2022) O – N/A SE 𝑥 Trajectory planning with sloshing payload
Khorshid and Al-Fadhli (2021) O – N/A SE 𝑥 Input shaping for sloshing payload
Weiping, Diantong, Jianqiang, and Dongbin (2004) C R GA S 𝑥 PD control
Shi, Yao, Yuan, Tong, et al. (2022) C R GA SE 𝑥, 𝑙 PBC
Tuan and Lee (2013) N R GA S 𝑥 SMC
Sun et al. (2019) N R GA E 𝑥 Quasi-PID
Nguyen et al. (2022) C R LA S 𝑥 Robust input shaping with state-observer
Shehu et al. (2022) N R GA S 𝑥 SMC
Chen et al. (2022) N R GE S 𝑥 SMC
Shi, Yao, Yuan, Hu, et al. (2022) C T GA SE 𝑥 Tracking PID with feedforward terms
Table 4
Summary of the control methods for flexible single-pendulum model.
Ref. Feed. Sce. Stab. Val. Cont. Control method

d’Andréa-Novel and Coron (2000) N R LE S 𝑥 Lyapunov derived
Wen, Lou, et al. (2022) N R LE S 𝑥 Lyapunov derived
d’Andréa Novel et al. (1994) N R LA S 𝑥 Lyapunov derived
d’Andréa Novel et al. (2019) N R LF S 𝑥 Lyapunov derived
Shen and Caverly (2020) N R LA E 𝑥, 𝑙 PBC with Ritz discretization
Sun et al. (2019) C R GA E 𝑥 Joint stiffness + Lyapunov derived
Chentouf and Han (2020) N R LA S 𝑥 Lyapunov derived with extra actuators
Alli and Singh (1998) C T LA S 𝑥 PBC
Shen et al. (2021) C R LA SE 𝑥, 𝑙 Adaptive PBC
d’Andréa Novel and Coron (2002) N R LA S 𝑥, 𝑙 Boundary Lyapunov derived controller
Cui and Zheng (2019) N R LA S 𝑥 Lyapunov derived
Pham et al. (2022) N R GA S 𝑥, 𝑦, 𝑙 Fuzzy SMC in 3D space
Le et al. (2022) N R GA S 𝑥, 𝑦, 𝑙 Control of sway because of cable’s length extension in 3d
Ma et al. (2022) N R LA SE 𝑥 Boundary Lyapunov derived controller
older implementations, the use of the VMEbus computer has been
reported by Lee (1998), Lee and Cho (2001), Lee et al. (1997, 2006).
Note that to connect the computers to the actuators and sensors, RS-
232 communication protocol is usually employed according to the
literature (Tuan et al., 2014).

4.3. Actuators employed for the experiments

Electric motors are installed on the cranes as actuators to drive
the cart and the winding mechanism. The nominal powers of these
actuators are calculated based on the weights of the cart and payload.
The motors used for the cart movements are employed with different
powers, e.g., 100 W (Sun et al., 2019), 200 W (Li, Chen, & Zhang,
2022), 400 W (Chen et al., 2019; Li, Ma, et al., 2022). On the other
hand, electric machines with different powers, e.g., 100 W (Chen et al.,
019; Li, Chen, & Zhang, 2022) are employed to actuate the winding
echanism for the payload hoisting.
4.4. Sensors used in the experiments

Sensors have been used in the experiments to measure the position
of the cart, the length of the hoisting cable, as well as the sway angles.
The cart’s position and the length of the hoisting cables are usually
measured through the optical encoders installed on the shaft of the
motor driving the cart and the hoisting mechanism. Shaft encoders are
identified by their resolutions in the pulse per rotation (PPR) unit, e.g.,
100 (Khorshid & Al-Fadhli, 2021), 360 (Bartolini et al., 2000; Bartolini
et al., 2003), 550 (Miao et al., 2022), 2000 (Lee et al., 2014), 2500
(Sun et al., 2015, 2019), 4096 (Chang & Chiang, 2008), 131072 (Li,
Ma, et al., 2022), 1048576 (Ouyang et al., 2019; Ouyang et al., 2019)
PPR. Note that considering rigid links, some references have measured
the sway angles using the shaft encoders installed at the attached point
of the link to the cart with different resolutions, e.g., 2500 (Lee et al.,
2014; Li, Ma, et al., 2022), 6000 (Sun et al., 2015), 16384 (Miao et al.,
2022) PPR. In addition, the inertial measurement units (Arena et al.,
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Table 5
Summary of the control methods in 3D space for the lumped single-pendulum with rigid link.
Ref. Feed. Sce. Stab. Val. Cont. Control method

Wu and He (2017) N R GA SE 𝑥, 𝑦 Lyapunov derived
Tuan et al. (2014) N R GA SE 𝑥, 𝑦, 𝑙 PFL
Tuan et al. (2012) N R LA SE 𝑥, 𝑦, 𝑙 PFL
Lee et al. (2013) N R LA S 𝑥, 𝑦, 𝑙 PFL
Sun et al. (2013) N R GA E 𝑥, 𝑦 Lyapunov derived
Chwa (2009) N T GA S 𝑥, 𝑦 Lyapunov derived
Wu and He (2016) N T GA SE 𝑥, 𝑦 PFL
Chwa (2017) N R GA S 𝑥, 𝑦 SMC
Knierim et al. (2010) N T GA E 𝑥, 𝑦, 𝑙 Flatness
Lee and Cho (2001) C T N/A E 𝑥, 𝑦, 𝑙 Fuzzy
Yang and Yang (2006) C R GA E 𝑥, 𝑦 Lyapunov derived adap. param. est.
Zhang et al. (2018) N T GA SE 𝑥, 𝑦 Lyapunov derived.
Maghsoudi et al. (2017) O – N/A SE 𝑥, 𝑦 PSO optimized input shaping
Maghsoudi et al. (2016) C R N/A SE 𝑥, 𝑦 optimized PID with PSO
Toxqui et al. (2006) N R LA E 𝑥, 𝑦 PID + neural compensator
Garrido et al. (2008) C R N/A E 𝑥, 𝑦 PID + input shaping
Xi and Hesketh (2010) C R LA SE 𝑥, 𝑦 Discrete-time integral SMC
Chen, Gao, and Zhang (2005) N T GA S 𝑥, 𝑦, 𝑙 PFL
Hong and Ngo (2012) – – N/A SE – Kinematic of ship mounted cranes
Lee et al. (2014) N T N/A E 𝑥, 𝑦 adaptive fuzzy SMC + visual feedback
Ebeid et al. (1992) N T LE S 𝑥, 𝑦, 𝑙 Classic linear control + motor dynamics
Schindele and Aschemann (2011) N T N/A E 𝑥, 𝑦 MPC
Bartolini et al. (2000) N T LA E 𝑥, 𝑦 SMC
Lee (1998) C T LA E 𝑥, 𝑦, 𝑙 Classic linear control
Fang et al. (2003) N R GA S 𝑥, 𝑦 Lyapunov derived
Fang et al. (2001) N R GA SE 𝑥, 𝑦 Lyapunov derived
Al-Garni et al. (1995) N T N/A S 𝑥, 𝑦, 𝑙 Linear state feedback
Chen and Saif (2008) N T GA E 𝑥, 𝑦, 𝑙 backstepping + exact differentiators
Vázquez et al. (2014) N T GA SE 𝑥, 𝑦, 𝑙 SMC (coupling as disturbance)
Chang and Chiang (2008) N R N/A E 𝑥, 𝑦 Fuzzy control
Lin et al. (2012) N T GA E 𝑥, 𝑦 TSMC + adaptive fuzzy tuning
Yoshida and Tabata (2008) N R N/A E 𝑥, 𝑦 Optimal control
Vu et al. (2022) N – N/A SE 𝑥, 𝑦 Trajectory optimization + MPC
Yoshida and Tabata (2008) N R N/A E 𝑥, 𝑦 Optimal control
Zhang, Zhu, et al. (2022) N R GA S 𝑥, 𝑦 PBC
Almutairi and Zribi (2009) N R GE S 𝑥, 𝑦, 𝑙 SMC + Luenberger observer
Table 6
Summary of the control methods in 3D space for the lumped double-pendulum with rigid link.
Ref. Feed. Sce. Stab. Val. Cont. Control method

Zhao et al. (2021) N T GA E 𝑥, 𝑦 Adaptive Lyapunov derived
Ouyang et al. (2021) N R GA SE 𝑥, 𝑦 Lyapunov derived
Miao et al. (2022) N R GA E 𝑥, 𝑦 Adaptive Lyapunov derived with fuzzy gain tuner
Guo et al. (2023) N T LA SE 𝑥, 𝑦 Flatness SMC neglecting nonlinearities and couplings
Table 7
Summary of the control methods in 2D space for multi-cable models.
Ref. Feed. Sce. Stab. Val. NC Cont. Control method

Kim, Hong, and Sul (2004) N R LE E 4R 𝑥 Linear state-feedback
Yoon, Nation, Singhose, and Vaughan (2014) O – N/A SE 2F 𝑥 Input shaping
Yoon et al. (2010) O – N/A SE 2F 𝑥 Input shaping
Nayfeh, Masoud, and Baumann (2005) C T N/A S 2R 𝑥 LQR time-delayed and classic linear
Nayfeh and Baumann (2008) N R LE S 2R 𝜃 Control 𝜃 when 𝑥 is input
Lu et al. (2018) N R GA E 2R 𝑥 Lyapunov derived
Table 8
Summary of the control methods in 3D space for multi-cable models.
Ref. Feed. Sce. Stab. Val. NC Cont. Control method

Klaassens, Honderd, El Azzouzi, Cheok, and Smid (1999) C R N/A S 4R 𝑥, 𝑙 classic linear
Arena et al. (2015) – – N/A SE 4RF – kinematic modeling
Morrish, Cartmell, and Taylor (1997) – – N/A S 4R – kinematic modeling
Ngo, Hong, Kim, Shin, and Choi (2008) C R N/A S 4R 𝑥 Kinematic + skew control
Ngo and Hong (2012) N T GA S 6R 𝑥 SMC
Arena, Casalotti, Lacarbonara, and Cartmell (2013) – – N/A S 4RF – kinematic modeling
2015) as well as cameras have been used to measure the sway angles
or payload position (Lee et al., 2014; Peng et al., 2012; Schindele &
Aschemann, 2011). Moreover ultrasonic sensors are used in Li, Ma,
et al. (2022) to measure the sloshing level of the liquid container
cranes.
5. Modeling for numerical simulations

As it was seen in Section 2, different types of models have been
developed for OCs allowing to design and study the controllers in the
closed-loop, analytically, e.g., the single and double-pendulum models.
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Table 9
A list of the review papers in the literature.
Ramli et al. (2017) Review of several control methods for single and double-pendulum systems in 2D space
Hong and Shah (2019) Review of control methods for several models in 2D and 3D spaces
Bonnabel and Claeys (2020)Survey on flatness control
Nayfeh et al. (2005) Comparison of three different feedback controllers
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This is also the case for the PDE-ODE models developed to capture
the cable’s flexibility since, in the end, spatial discretization is used to
obtain a model with a small number of degrees of freedom suitable for
the controller implementation. While such models are convenient for
the controller design, they suffer from some drawbacks as explained in
Section 2.7. Another model has been developed in this work, allowing
the implementation and evaluation of all the controllers, regardless of
the model used to design them. The proposed model is a multibody,
pendulum-like system with a large number 𝑁 of links. Lumped-mass
models consist of a multibody system’s approach to model cables (Hus-
ton & Kamman, 1981, 1982; Huston, Passerello, & Harlow, 1978;
Kamman & Huston, 1985, 2001; Winget & Huston, 1981). As such,
they can easily handle large deformations and associated nonlineari-
ties. Sometimes they can also be seen as a set of particles linked by
suitable potentials. Then they become closer to finite-element spatial
(inconsistent) discretization of PDEs (Egeland & Gravdahl, 2002). They
can also be seen as an extension of linear oscillators: if the cable is
in the vertical posture, and a torsional spring is associated with each
flexible link, the system is equivalent to a linear chain of oscillators,
the control of which is tackled in Ovseevich and Ananievski (2021),
Ovseevich and Fedorov (2015). Such models are known to be less
accurate than those stemming from continuum mechanics (Lv et al.,
2020), but they have the advantage of being more tractable for control
and thus are abundantly used in Robotics and in Automatic Control.
Hence, it is expected that the simulations based on the proposed model
lead to more realistic results compared to the case where the simulations
are conducted based on the low-degrees-of-freedom control-oriented models.
The dynamics is studied in Appendix A. The Matlab Multibody Toolbox
has been used in this study to realize such a model without writing
down the equations.

The scheme of the 20-link model is depicted in Fig. 4, where
two sets of joint angles are indicated since both can be useful for the
analysis. The model is composed of 18 links with damping and stiffness
in the joints to model cables’ dynamics. Moreover, two other links
are considered to take into account the presence of the tool and the
payload as seen in the double-pendulum model Fig. 2(b). Note that the
first 18 links can be considered as a simplified finite element model
of the cable yielding a non-consistent mass matrix in a spatial set of
coordinates (Brogliato, 2022). While increasing the number of links
can improve the model’s accuracy, it increases the required time for
the numerical simulations. Hence, the number of 18 links is considered
by trial and error to provide the best trade-off between the simulation
time and the accuracy of the model. In addition, the damping and
stiffness considered in the joints are selected empirically. One can
change all these parameters in the toolbox and redo the simulations
to have customized results corresponding to each specific application
(see Section 7).

6. State, parameter and disturbance estimation

As it was seen, the reviewed controllers need different types/
numbers of sensors depending on the feedback structure. Sensor selec-
tion was the topic of some references. For instance, the implementation
of vision-based sensors for sway detection has been addressed in Huang,
Xu, Zhao, and Yuan (2022), Lee et al. (2014), Sano et al. (2010).
Moreover, feedback based on inclinometers and IMUs have been con-
sidered in Kim and Hong (2019), Kim et al. (2004), respectively,
and it is reported in Kim et al. (2004) that a simple inclinometer

sensor can provide the same performance as sophisticated vision-based e
Fig. 4. Schematic diagram of the simulation-oriented model in 2D operating space
with 20 links used for the simulations.

feedback. However, there are still cases where it is not possible to use
sensors for measurements. In addition, some of the system’s parameters
contributing to the control law synthesis may be unknown in general.
All these issues motivate the design of the estimation and observation
methods for the overhead cranes as explained below.

6.1. State-observation

The state variables required to synthesize the control signal cannot
be always measured because of the cost, and technical constraints.
In such cases, it is necessary to develop state-observation algorithms.
The state-observer design based on the tangent linearized models of
the cranes, e.g., Luenberger observer (Guo et al., 2023; Hičár & Ritók,
2006; Kim et al., 2004; Piazzi & Visioli, 2002), or its discrete-time
form (Sano et al., 2010) has already been addressed in the literature.
A Kalman–Bucy filter is developed in Rauscher and Sawodny (2021) to
improve the accuracy of the measurements by removing the sensors’
offset error. Since these observers are designed based on the linearized
model, their stability is only valid locally, when the sway angle is
small. The parameters of such linear observers can be designed using
Ackermann’s formula as used by Hičár and Ritók (2006). In order to es-
timate the velocities, e.g., 𝑥̇, 𝜃̇1, 𝜃̇2, from the position and angles 𝑥, 𝜃1, 𝜃2,
time-differentiation methods, e.g., pure differentiator integrated with
ow-pass filters (Zhang, He, Chen, & Feng, 2020), sliding-mode based
ifferentiators (Chen & Saif, 2008) (see also Mojallizadeh, Brogliato,
nd Acary (2021) for a general introduction to the differentiators) are
mployed.
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6.2. Disturbance and uncertainty observer

In Lu et al. (2017b), Ren, Chen, and Wu (2019), Wu et al. (2020),
nonlinear adaption laws based on the Lyapunov theorem are obtained
in order to estimate the matched disturbance when it is bounded and
differentiable which relaxes more conservative assumptions considered
in the previous works, e.g., Sawodny, Aschemann, and Lahres (2002).
t is shown, in Wu et al. (2020), that the control, integrated with
he observer, eliminates the disturbance effect in finite time. The
atched disturbance observer design based on the algebraic manipu-

ations on the dynamic equations is studied by Ouyang et al. (2019). In
ddition to the external disturbance, more general types of uncertain-
ies, e.g., system parameter variations, unknown actuator nonlinearities
dead-zone), and unmodeled dynamics have been estimated based on
uzzy inference systems (Li, Chen, & Zhang, 2022; Park et al., 2014,
008). Note that apart from estimation algorithms, the adaptation laws
ave been designed along with the control design using the Lyapunov
ethod (Zhao et al., 2021) for the uncertain parameters. In addition,

tatic laws in algebraic forms (Omar, 2003; Omar & Nayfeh, 2005)
s well as neural networks (Ma et al., 2023) have been developed to
stimate or compensate the friction.

. Numerical experiments

As it was seen in Section 3, a very large number of controllers have
een developed for OCs. For the sake of briefness, and since our goal
n this article is to pave the way toward more general studies, a few
ypical controllers have been selected from each category to extract
heir key properties. An overview of these controllers as well as their
tructures are presented in Tables 10 and 11, respectively. They are
riefly introduced below.

• Unshaped input: In this method, the whole system is considered
as a point mass and the required force is calculated using the
Newton formula as shown in Table 11, where 𝑚𝑡 is the total
system’s mass and 𝑎𝑑 is the provided acceleration trajectory. The
application of this method is rare because of too much payload
sway and is considered in the literature only for comparisons.
Hence, this controller is usually integrated with input shapers,
e.g., ZV and ZVD.

• ZV: In this method, the unshaped input is convoluted with two
impulses included in 𝑃1 (see Table 11) to avoid payload sway.

• ZVD: Compared to ZV, in this method, the unshaped input is
convoluted with three impulses included in 𝑃2 (see Table 11) in
order to reduce the payload sway more effectively.

• Collocated PD: This controller has a proportional gain 𝑘𝑝 and a
derivative gain 𝑘𝑑 . Moreover, 𝑒𝑥 = 𝑥− 𝑥𝑑 and 𝑒𝑣 = 𝑥̇− 𝑥̇𝑑 with 𝑥𝑑
as the reference position.

• Quasi-PID: This controller has five gains 𝑘𝑝, 𝑘𝑑 , 𝑘𝜙1, 𝑘𝜙2, 𝜆. Since
this controller has been designed based on the double-pendulum
system, it needs two feedbacks from the first (𝜃1) and the second
(𝜃2) sway angles.

• Noncollocated PD regulation: This controller has been designed
for the single-pendulum system and needs the corresponding sway
angle 𝜃1. The three gains are 𝑘𝑝, 𝑘𝑑 and 𝑘𝑎.

• Collocated PD tracking: The stability of this controller has been
ensured for the tracking case. This controller has five gains 𝑘𝑝, 𝑘𝑑 ,
𝜆, 𝜉, 𝜙.

• PD-PD: This controller has been designed based on PDEs with the
four gains 𝛼𝑖, 𝑖 = 1, 2, 3, 4.

• SMC single and double-pendulum: The control law in these
methods is based on the nonlinear combination of several pa-
rameters. For the sake of space, the formula of these controllers
are neglected in this article. The single-pendulum SMC has six
parameters 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑘, 𝜂 and the SMC designed based on the

double-pendulum system has five tuning parameters 𝜆, 𝛼, 𝛽, 𝐾, 𝑐.
• PD energy: The parameters of this controller are 𝑘𝑝, 𝑘𝑑 , 𝑘𝑞 , 𝜆, 𝜁 .
Moreover, 𝜒 = 𝑒𝑥 + 𝜆 sin(𝜃1) and 𝜀 = 𝑥 + 𝜆 sin(𝜃1).

• Coupling tracking: Compared to the previous 2D controllers,
in this scheme, two control signals, e.g., 𝐹𝑥 and 𝐹𝑦 (see (4))
are calculated in order to control the payload in 3D space. This
controller has five tuning parameters 𝑘𝑝𝑥, 𝑘𝑑𝑥, 𝑘𝑝𝑦, 𝑘𝑑𝑦, 𝜆. Note that
if this controller is used for the 2D case, one can simply ignore
one of the axis, e.g., 𝑘𝑝𝑥 = 𝑘𝑝, 𝑘𝑑𝑥 = 𝑘𝑑 , 𝑘𝑝𝑦 = 0, 𝑘𝑑𝑦 = 0, 𝜆 = 0.
Moreover, 𝜃𝑥 and 𝜃𝑦 are the projection of 𝜃1 on the 𝑥 and 𝑦 axes,
respectively.

Remark 8. According to Table 11, it can be seen that, apart from the
classifications, most controllers are composed of the linear combination
of feedforward, proportional, derivative, and integration terms.

7.1. Hoisting toolbox

A computer software named Hoisting Toolbox has been developed
in this work in order to compare all the considered controllers using
numerical simulations for an OC with parameters listed in Table 12. The
toolbox is briefly introduced in Appendix H. Two main functionalities
of this toolbox, i.e., parameter tuning and evaluation are introduced in
Sections 7.1.1 and 7.1.2, respectively. Before that, three remarks are
presented as follows:

1. Sway angle, in the pendulum-like models, e.g., single and double-
pendulum models shown in Fig. 2 (a, b), refers to the angle of the
links with respect to the vertical axis. For the single pendulum
model Fig. 2(a), the only sway angle is 𝜃1 while for the double-
pendulum model Fig. 2(b), two sway angles 𝜃1 and 𝜃2 can be
defined. Note that, with such a definition, the sway angle cannot
be clearly defined for the pendulum-like model with flexible
links Fig. 2(c).

2. The controllers have been tuned based on a double-pendulum
model. The implementation of the controllers designed for the
double-pendulum system is straightforward on such a model.
However, some of the control methods are originally designed
for the single-pendulum system and only a single angle can
contribute to the control law. This issue has not been addressed
in the literature and it is not clear how to manage it. In this
study, two independent implementations have been considered
for such methods with the first and last sway angles feedback.
These implementations are indicated by (first) and (last) in
Table 13.

3. The SMCs are mainly composed of discontinuous (set-valued)
signum functions. It is well-known that the time-discretization
of such controllers is a crucial step in their implementation, and
that the implicit (or semi-implicit) algorithms drastically super-
sede explicit ones (Acary, Brogliato, & Orlov, 2012; Brogliato
& Polyakov, 2021; Brogliato, Polyakov, & Efimov, 2020; Huber,
Acary, & Brogliato, 2016; Mojallizadeh et al., 2021). Therefore
these set-valued inputs have been implemented based on two
different discretization schemes, i.e., Euler explicit and implicit
methods, indicated by ‘‘exp’’ and ‘‘imp’’, respectively.

7.1.1. Parameter tuning
Parameter tuning is one of the most important topics that has to

be addressed clearly for providing a fair comparison among all control
methods. As it can be seen in Table 11, each controller has some
parameters that need to be tuned. The appropriate intervals of some
parameters have been obtained in the literature in order to ensure
stability, etc. However, a systematic and comprehensive method has not
been yet introduced in the literature to tune the parameters correspond-
ing to all controllers. In fact, because of the complexity of the tuning

raised by the nonlinearity and perturbation, parameter tuning is still an
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Table 10
Overview of the controllers.
Controller Feedback Model Space Scenario

Unshaped input (Hong & Shah, 2019) open-loop point mass 2D –
ZV (Hong & Shah, 2019) open-loop 1,2-pendulum 2D –
ZVD (Hong & Shah, 2019) open-loop 1,2-pendulum 2D –
Collocated PD (Chen et al., 2019; Sun & Fang, 2012) collocated 1,2-pendulum 2D regulation
Noncollocated Quasi-PID (Sun et al., 2019) noncollocated 2-pendulum 2D regulation
Noncollocated PD (Sun & Fang, 2012) noncollocated 1-pendulum 2D regulation
Collocated PD tracking (Sun & Fang, 2014b) collocated 2-pendulum 2D tracking
PD-PD (d’Andréa Novel et al., 2019) noncollocated PDE 2D regulation
SMC single-pendulum (Qian & Yi, 2016) noncollocated 1-pendulum 2D regulation
SMC double-pendulum (Tuan & Lee, 2013) noncollocated 2-pendulum 2D regulation
PD energy (Zhang, He, Chen, & Feng, 2020) noncollocated 1-pendulum 2D regulation
Coupling tracking (Zhang et al., 2018) noncollocated 1-pendulum 3D tracking
Table 11
Structure of the selected controllers for the simulations.
Controller Feed-forward terms Proportional terms Derivative terms Integration terms

Unshaped input +𝑚𝑡𝑎𝑑 – – –

ZV +conv(𝑚𝑡𝑎𝑑 , 𝑃1) – – –

ZVD +conv(𝑚𝑡𝑎𝑑 , 𝑃2) – – –

Collocated PD – +𝑘𝑝𝑒𝑥 +𝑘𝑑𝑒𝑣 –

−𝑘𝑑 tanh(𝑒𝑣) −𝑘𝑖 tanh
(

𝜆2𝑒𝑥
Quasi-PID – −𝑘𝑝 tanh(𝑒𝑥) −𝑘𝜙1 tanh

2(𝜃̇1) tanh(𝑒𝑣) + 𝜆 ∫ 𝑡
0 tanh(𝑒𝑥)𝑑𝑡

)

−𝑘𝜙2 tanh
2(𝜃̇2) tanh(𝑒𝑣)

Noncollocated PD – −𝑘𝑝
(

𝑒𝑥 − 𝑘𝑎 sin(𝜃1)
)

−𝑘𝑑
(

𝑒𝑣 − 𝑘𝑎 𝜃̇1 cos(𝜃1)
)

–

Collocated +𝑚𝑡𝑎𝑑 −𝑘𝑝𝑒𝑥 −𝑘𝑑𝑒𝑣 —

PD tracking −
2𝜆𝜉2

𝜉2 − 𝑒2𝑥
𝑒𝑥 −𝜙 sgn(𝑒𝑣)

PD-PD – −𝛼1𝑒𝑥 −𝛼2𝑒𝑣 –
−𝛼3𝜃1 −𝛼4 𝜃̇1

SMC single-pendulum discontinuous combination of

SMC double-pendulum – proportional and derivative terms

PD energy – −𝑘𝑝 tanh(𝜒) − 𝑘𝑞𝜒× −𝑘𝑑 𝜒̇ –
(𝑥𝑑 + 𝜁 )2 − 𝜀2 + 𝜒𝜀
((𝑥𝑑 + 𝜁 )2 − 𝜀2)2

Coupling track.
𝐹𝑥 +𝑚𝑡𝑎𝑑𝑥 −𝑘𝑝𝑥 ∫

𝑡
0 𝜁𝑥𝑑𝑡 −𝑘𝑑𝑥𝜁 + 𝜆𝑚𝑡 cos(𝜃𝑥) cos(𝜃𝑦) ̇𝜃𝑥 –

𝐹𝑦 +𝑚𝑡𝑎𝑑𝑦 −𝑘𝑝𝑦 ∫
𝑡
0 𝜁𝑦𝑑𝑡 −𝑘𝑑𝑦𝜁𝑦 + 𝜆𝑚𝑡𝜃𝑦 –
t
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open problem and there exist only embryonic solutions, e.g., parameter
ptimization based on genetic algorithm (Mohamed et al., 2022). In
his work, heuristic algorithms, i.e., pso, fminunc and patternsearch,1
vailable in matlab, are implemented in an iterative manner to tune the
arameters in order to minimize the objective function:

𝐽 = ‖𝑒𝑝(𝑡)‖2,𝑡∈[0,100]𝑠 + 60‖𝑒𝑝(𝑡)‖2,𝑡∈[16,100]𝑠 + 300‖𝑒𝑝(𝑡)‖2,𝑡∈[33,100]𝑠
+600‖𝑒𝑝(𝑡)‖∞ + 0.05

∑𝑡𝑓 ∕ℎ
𝑘=1 |𝐹 (𝑘ℎ) − 𝐹 ((𝑘 − 1)ℎ)|

(8)

where 𝑒𝑝 = 𝑥𝑝 − 𝑥𝑑 , 𝑥𝑝 is the payload position on 𝑥 axis, 𝑡 is the time,
𝑡 = 𝑘ℎ, and ℎ is the sampling time. The term ∑𝑡𝑓 ∕ℎ

𝑘=1 |𝐹 (𝑘ℎ) − 𝐹 ((𝑘 − 1)ℎ)|
is added to 𝐽 to decrease the chattering on the force since a real
actuator may not be able to produce a force with large chattering.
As can be seen in (8), ‖𝑒𝑝(𝑡)‖2 is calculated in different windows with
different gains to decrease the steady-state error. As it was mentioned,
the parameters are optimized for a double-pendulum system with the
following condition:

• The system starts with initial sway angles 𝜃1(0) = 15◦, 𝜃2(0) =
−15◦;

• A white noise with signal-to-noise ratio (SNR) = 90 dB is added
to the feedback;

1 See matlab manual for more information about these optimization
ethods.
• A disturbance force is applied directly on the cart to simulate
the external disturbances (a pulse force with period 20 s and
amplitude ±19600 N);

• Damping is considered for the cart (1000𝑣(𝑡) N) to simulate a kind
of friction between the cart and the surface under the full payload.

The above-mentioned condition is selected in order to tune the con-
troller gains for as realistic as possible conditions under the regulation
trajectory defined in Section 7.1.3. The optimized parameters are pro-
vided in the report corresponding to this study which is available
online (Mojallizadeh et al., 2022). In addition, one may use the Hoisting
oolbox to regenerate the parameters. Since heuristic algorithms used
or the optimization are based on random initial guesses, the tuning
esults are not unique. In addition, these optimization algorithms do
ot necessarily lead to optimal solutions since different executions lead
o different gains: only suboptimal gains are calculated.

It should be noted that the parameters of the only controller de-
igned for the 3D case, i.e., coupling tracking, have been calculated
or two cases. In the first case, this controller has been tuned for the
D case when the feedback is made of the first and the last sway
ngles separately. Compared to the previous controllers, this controller
as also been tuned for the 3D case based on the single-pendulum
ystem (tuning in 3D space using the double-pendulum model takes
oo much time on Intel Core i7-10850H) processor. Hence, the 3D

implementation of this controller with the last angle as the feedback
has been ignored. Moreover, the total calculation time required for
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Table 12
Parameters of the simulation.
cart mass 10 T
tool mass 13.6 T
maximum payload mass 40 T
distance between the tool and the payload 1 m
damping coefficient for the joints 1.6 (NM/(deg/s))
joint flexibility coefficient 0.8 NM/deg
cart damping coefficient 1000 N/(m/s)
distance between the cart and the payload 10 m
controller sampling time 50 ms
measurement delay 100 ms

the parameter tuning and the numerical simulations corresponding to
12 selected controllers, shown in Table 10, under different conditions,
listed in Table 13, is around one week. The developed toolbox can do
all the procedures automatically without user intervention. However,
one may easily change all the parameters in the toolbox to achieve
customized results. Also computation time may be reduced by choosing
smaller 𝑁 . Optimizing 𝑁 is possible and worth doing, but it is outside
the scope of this article.

7.1.2. Evaluation
Ideally increasing the number of links for the developed model

(see Section 5) helps improving the accuracy which is not always
possible because of the limited computational resources. In this study,
a 20-link pendulum system is considered for this purpose, where the
payload and the tool are connected to the last and the one before the
last link, respectively. The implementations of the methods designed
for the single and double-pendulum system on such a model follow
the same rule mentioned in Section 7.1, where the first (𝜃1) and the
last (𝜃20) angles are used for double-pendulum based design. Two
separate implementations have been considered for single-pendulum-
based controllers with the first and the last angles as the sway angles.
Note that such a selection is not unique and one may use the provided
toolbox to verify other feedback’s configuration, depending on sensors
which are mounted on the OC.

7.1.3. Trajectory profile
Two different trajectory profiles have been employed to evaluate

the performances of the controllers under regulation and tracking con-
ditions. The regulation trajectory is generated as follows (this trajectory
has been employed by industrial crane developers):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑑 (𝑡) = 3.5𝑡2∕8 + 1 0 ≤ 𝑡 ≤ 4
𝑥𝑑 (𝑡) = 3.5𝑡 − 6 4 < 𝑡 < 8
𝑥𝑑 (𝑡) = −3.5𝑡2∕8 + 10.5𝑡 − 34 8 ≤ 𝑡 ≤ 12
𝑥𝑑 (𝑡) = 29 𝑡 > 12

(9)

he regulation profile is composed of three constants values for the
cceleration. Moreover, the target position is constant for 𝑡 > 12 s (the
uration of each simulation is 100 s as in (8)). On the other hand, the
racking trajectory is 𝑥𝑑 (𝑡) = 5 sin(𝜔𝑡). Note that for the 3D case, the
rajectory along the 𝑦 axis is defined as follows:

𝑦𝑑 (𝑡) =
𝑥𝑑 (𝑡 − 2)

2
for 𝑡 ≥ 2

𝑦𝑑 (𝑡) = 0 for 𝑡 < 2
(10)

.2. Numerical simulation under different conditions

A set of comparative analyses have been performed for the regula-
ion and the tracking profiles in Sections 7.2.1 and 7.2.2, respectively.
ote that, in the tables, the colors blue, black, and red indicate the
est, moderate and the worst performances in Table 13. Moreover,
he results, i.e., 𝐿2 norm of the payload position error, corresponding
o each case are listed in one column of Table 13.
.2.1. Regulation in nominal condition
This simulation has been performed under six different conditions

s follows and the results are shown in Table 13. The cable’s parameters
re shown in Table 12, they were chosen according to some industrial
C parameters. They can be customized for a specific industrial crane

n the developed Hoisting Toolbox.

• Unperturbed case: This simulation has been conducted under
an unperturbed condition, i.e., no feedback noise and no cart
damping with the piecewise-smooth trajectory (9). Since there is
no perturbation, even the performances of the open-loop methods
are comparable with the closed-loop ones. According to this
simulation, the collocated PD tracking controller seems to be the
best in minimizing the payload position error under this unper-
turbed condition. Another observation is that the SMC designed
for the double-pendulum system shows the worst responses. The
waveforms corresponding to the best and the worst results are
shown in Fig. 5 (many other responses can be found in the
report Mojallizadeh et al. (2022)).

• Initial sway: In this experiment, 𝜃1(0) = 𝜋∕6 rad while other
initial sway angles are zero. Double-pendulum SMC is one of the
worst. On the other hand, collocated PD tracking shows one of
the best tracking performances.

• Disturbance on the payload: The aim of this simulation is
to study the performances when a disturbance affects the pay-
load. To this end, a pulse force with period 20 s and amplitude
±19600 N is applied directly to the payload toward the x-axis.
According to Table 13, the open-loop methods show the worst
responses since they cannot compensate for the perturbation be-
cause of the lack of feedback. In general, the best responses
belong to the quasi-PID, noncollocated PD regulation, collocated
PD tracking, PD-PD, and the single-pendulum SMCs. Note that,
compared to the previous cases, the SMC designed for the single-
pendulum model shows one of the best responses in this specific
case since it is mainly designed to be robust against disturbances.

• Measurement noise: This simulation mainly evaluates the con-
trollers in the presence of measurement noise where a white noise
with SNR = 90 dB affects all measurements within the feedback
path. The results, in this case, are not unexpected since the noise
affects the closed-loop controllers more than the open-loop ones.
Moreover, the tracking controllers are less affected by noise, since
according to Table 11, the control law is synthesized based on the
feedforward terms in addition to the feedback ones, which are not
affected by noise.

• No-load condition: The aim of this simulation is to study the reg-
ulation performances under an unperturbed case where there is
no load (the masses of the tool and the payload are equal to 20 kg
to avoid singularity in the simulations). The double-pendulum
SMC has achieved the worst results again. Unexpectedly, the PD-
PD method does not achieve good results for this case. In fact,
PD-PD is designed based on the PDEs enabling to capture the
vibrations that appear when the payload is heavy. The lumped-
mass model does not incorporate enough modes to show this
controller’s capabilities, especially with light loads.

• 3D space: The spherical joints are used in the model along with
the distributed mass payload in order to model the 3D payload
rotations. Moreover, the objective functions in this simulation are
different. The 𝐿2 notation in Table 13 denotes the standard norm
and the measurements are sampled with the same sampling rate
as the controller, i.e., 50 ms. This simulation is conducted for the
nominal conditions with full payload and the regulation profile
(9). It can be seen that the open-loop methods show the worst
responses even for this unperturbed case which was not the case
for the 2D case. This is probably caused by the coupling effects
between 𝑥 and 𝑦 axis that each axis generates disturbances on

the other axis. Hence, feedback is crucial for the 3D case, even



M.R. Mojallizadeh et al.

R

Table 13
𝐿2 norms of the payload position error.
Method Nominal Initial sway Disturbance Noise No-load 3D

Unshaped input 1.08 3.55 34.69 1.08 2.24 223.84
ZV 2.14 5.23 36.70 2.14 2.17 144.75
ZVD 3.13 5.32 36.66 3.13 3.16 209.58
Collocated PD 2.12 2.03 1.95 2.12 1.82 142.18
quasi-PID 1.38 2.81 1.29 1.38 1.94 87.58
Non.CO.PD.Reg. (first) 2.14 2.04 1.97 2.14 1.81 143.40
Non.CO.PD.Reg. (last) 1.37 1.68 1.44 1.37 1.86 92.05
Col.PD.Track 0.55 0.90 1.42 0.55 1.78 36.70
PD-PD 1.40 1.71 1.47 1.40 6.86 93.60
SMC-single-first (explicit) 1.39 1.70 1.47 1.39 6.34 93.36
SMC-single-first (implicit) 1.39 1.70 1.47 1.39 6.32 93.30
SMC-single-last (explicit) 1.37 1.68 1.44 1.37 1.86 92.04
SMC-single-last (implicit) 1.37 1.68 1.44 1.37 1.86 91.85
SMC-double (explicit) 21.65 35.33 18.32 13.08 123.33 178.71
SMC-double (implicit) 1.86 17.18 2.04 3.81 4.52 76.20
PD energy (first) 2.00 4.44 1.79 2.00 3.78 131.31
PD energy (last) 2.14 2.04 1.91 2.14 1.81 141.57
Coupling tracking (first) 1.17 1.74 3.43 1.17 1.36 78.73
Coupling tracking (last) 1.11 1.44 2.44 1.11 1.94 74.28
Coupling tracking (3D) - - - - - 69.68

The data provided in this table are presented to show the abilities of the developed toolbox and
have been obtained under specific conditions and may change depending on several factors e.g.,
gain optimization algorithm and the corresponding cost function. One may modify such
parameters in the toolbox to obtain the customized results corresponding to different conditions.
Fig. 5. Waveforms corresponding to the best and the worst performances under the unperturbed condition (a) collocated PD tracking controller (b) SMC-double-pendulum (explicit).
for the unperturbed condition. Another observation is that the
collocated PD tracking control shows one of the best responses.
As before, the SMC designed for the double-pendulum system
shows the worst responses. Comparing the coupling tracking con-
troller implemented in a decentralized way (with two separate
implementations with the first and the last angles as sway) with
the centralized form (see the last row of the last column, where
the coupling in 3D space has been taken into account) one can
see that while it can slightly improve the results, there is no
significant difference between these implementations.

emark 9. As alluded to above, the results reported in Table 13 are
preliminary and are to be considered as an illustration of the proposed
toolbox capabilities for parameter tuning. More results can be found
in the report Mojallizadeh et al. (2022). Clearly controllers gains have
to be tuned according to the considered applications. Nevertheless,
globally the obtained results seem logical: explicit SMC performs worse
than its implicit counterpart, open-loop controllers are not robust, and
collocated controllers perform better. From Fig. 5, trajectory tracking
controllers show the best performance when the sinusoidal desired
trajectory frequency increases.

7.2.2. Tracking under nominal condition
In this case, the sinusoidal tracking trajectory is considered, instead

of the regulation one, to evaluate the trajectory tracking performances
under an unperturbed case and the results are shown in Fig. 6. The
first observation is that the tracking controllers, i.e., collocated PD
tracking, and the coupling tracking achieve the best results. Moreover,
for the coupling tracking controller, it is better to measure the last sway
angle rather than the first one. Also, non-collocation feedback may not
provide any advantages for this scenario since the best results have
been achieved for the collocated PD tracking controller. It can be seen
that the open-loop methods are the worst in the case of tracking. Similar
to the previous case, the SMC designed for the double-pendulum with
the first angle sensing has achieved the worst results among the closed-
loop controllers. Moreover, the tracking controllers show the smallest
position tracking errors and are almost insensitive to 𝜔.

Remark 10. Trajectory tracking controllers 𝐹 may be very important
in the context of operator-in-the-loop systems. Indeed such trajectory
tracking controllers could be used in such control systems, where the
operator would assign online desired trajectories to be tracked by the
overall system (cart+ payload). Apparently, this is not yet considered
in operator-in-the-loop control strategies with velocity control inputs.

7.2.3. Summarized results
According to the preliminary comparative analyses made in this

section, the following conclusions can be drawn:

• The open-loop control strategies could provide good
performances in unperturbed cases for the regulation scenario
in 2D space. Moreover, they are easy to implement since they
do not need feedback measures. However, in the presence of
perturbation or for the tracking problem, they show one of the
worst responses, as expected.

• It is clear that noncollocated feedback can lead to a more complex
implementation since the sway angles or payload’s coordinate
have to be measured for control law synthesis. However, the
results show that in some specific cases, the collocated controllers
show better responses than the noncollocated ones. Such a con-
clusion may not be true for all cases. For instance, quasi-PID
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Fig. 6. 𝐿2 norms of the payload position tracking error for the trajectory 𝑥𝑑 (𝑡) = 5 sin(𝜔𝑡) under nominal condition.
sometimes leads to a better result compared to the collocated
PD controller, meaning that this noncollocated feedback strategy
behaves better than some collocated strategies.

• For the tracking problem, the tracking controllers show better
results compared to the regulation ones, and their performances
are almost independent of the trajectory’s frequency (see Fig. 6).
This is an expected feature since they are designed to achieve this
preference. Moreover, the tracking controllers are more robust
to the measurement noise because according to Table 11, their
control laws also depend on the feedforward terms in addition to
the feedback which decreases their sensitivity.

• Some of the controllers are designed based on the PDE models,
e.g., PD-PD controller. One of the key assumptions in their design
is that the payload mass is much larger than the mass of the
cable (see Section 2.3). As a result, as it was seen in Table 13,
this controller presents one of the worst responses for the no-load
case.

• The PDE-based models enabling one to take into account the
cable’s flexibility are unable to model large nonlinearities and
lose their accuracy in the presence of large sway angles. As a
result, the controllers designed based on such models (PD-PD
for example) cannot guarantee global stability. This issue should
be addressed in the future by either calculating the domain of
attraction of such controllers or extending them to take into ac-
count general nonlinearities. The characterization of the domain
of attraction may also bring an answer to the previous idea.

• The controllers designed for the 3D space can handle the coupling
between the axes and are expected to show advantages for such
conditions. The only 3D controller shows almost the best result af-
ter the collocated PD tracking controller (which is in fact designed
for the 2D case). Based on these results, it can be seen that the
3D design of the coupling tracking controller shows slightly better
responses than the 2D counterpart (the same controller when the
coupling exists in the 3D space is neglected, see the last row of
Table 13).

The full report corresponding to this work can be found in Mo-
jallizadeh et al. (2022), where one may find the extended results as
follows:

• The complete mass matrix of the Euler–Lagrange dynamics of the
proposed simulation-oriented model with an arbitrary number of
links has been developed in Mojallizadeh et al. (2022, Section
3) and Brogliato (2022). Moreover, the key characteristics of the
model under different conditions, e.g., presence of elasticity in the
links, heavy and light payloads, have been extracted.

• A more comprehensive comparative study under different oper-
ating conditions has been made in Mojallizadeh et al. (2022,
Section 7) for 2D operating space, where several different objec-
tive functions such as control energy, cart and payload tracking
performances, and the required time to satisfy the control ob-
jectives have been calculated. Note that, in this survey, only the
payload tracking position has been selected for the comparisons of
the controllers as shown in Table 13. However, considering other
objective functions for the comparisons may lead to different
results as explained in Mojallizadeh et al. (2022, Section 7). For
instance, while the open-loop methods present one of the worst
responses in the presence of disturbances, they always need the
smallest amount of control energy which makes them energy
optimal among all the considered controllers.

• The extended results for the 3D case when the payload eccentric-
ity can cause undesired 3D motions are presented in Mojallizadeh
et al. (2022, Section 8), where the general results are in accor-
dance with the 2D case except that the controllers taking into
account the dynamic coupling between 𝑥 and 𝑦 axes, e.g., the
coupling tracking controller, may be more efficient in payload

positioning.
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Remark 11. It should be again asserted that the results presented
in this survey are drawn under specific conditions and controller pa-
rameters which are obtained in Mojallizadeh et al. (2022) and may
not be valid under all scenarios and applications. Hence, the toolbox
developed in this work has to be used for each specific application to
achieve customized results.

8. Conclusion

A complete review of the modeling schemes developed for overhead
cranes has been presented in this review article, with their key prop-
erties. Subsequently, a comprehensive review has been made for the
control methods based on their characteristics, e.g, the feedback (open-
loop, collocated, and noncollocated feedback), scenario (regulation and
tracking), operating space (2D and 3D), stability (local, global, etc.),
nd the model used to design the controller. Moreover, a compact
abular presentation allows one to select the appropriate controller at

glance. Some controller candidates have been selected from each
lass and preliminary comparative analysis has been made based on
umerical experiments under different conditions to extract the main
roperties of each classification. The results obtained from such a
omparison and the available toolbox for gains calculation provided a
ser’s guideline to select the most appropriate method for each specific
ondition. The following research gaps have been identified in this
tudy which potentially can be addressed in future research, as far a
odeling issues are concerned:

• In the literature, the forces applied to the cart toward the 𝑥 and 𝑦
axes as well as the force on the hoisting mechanism are the only
accessible control inputs. While these inputs might be sufficient
for the payload positioning toward the 𝑥 and 𝑦 axes, they cannot
be used to control the 3D payload’s orientation. The reason is that
the lengths of the cables are always equal and there is not any
freedom to change the cables’ lengths independently (note that
in a real crane, the tool is suspended to the cart through several
cables). For the equal cables’ lengths, in this context, the literature
just addressed the kinematic problem without taking the control
design into account (Arena et al., 2013, 2015; Cartmell, Morrish,
Alberts, & Taylor, 1996; Cartmell et al., 1996; Morrish, Cartmell,
& Taylor, 1996; Morrish et al., 1997). The authors believe that
the methods developed for the cable-driven robotic systems (Wei
et al., 2017) may be useful to control the payload rotation in 3D
space based on the kinematic developed in Arena et al. (2013,
2015), Cartmell et al. (1996, 1996), Klaassens et al. (1999), Mor-
rish et al. (1996, 1997) if each cable’s length can be controlled
independently. Such a scenario has been addressed in Klaassens
et al. (1999), Ngo et al. (2008) where the payload is suspended
by four cables which can be adjusted separately by four actuators.
Note that in Carricato (2013), Carricato and Merlet (2013), Merlet
(2017), it can be seen that the considered system is quite similar
to an OC. Apparently, such references do not consider dynamics
but just static analysis with inextensible cables that are in two
modes: taut or slack. Another relative issue is the definition of
the payload in 3D space usually defined by industrial terms such
as trim, list, and skew motions in the literature which are unable
to describe the motions when they occur simultaneously. Hence, a
more accurate convention should be proposed for the 3D motions
of the payload, e.g., based on the Euler or Bryan angles used in
the mechanics community.

• There are many different ways to model a cable (Lv et al.,
2020), which is a complex mechanical deformable system to
characterize (many cables are made of braided wires, and their
behavior depends not only on materials but on the braiding
structure (Gueners et al., 2021) and internal interactions). A
simplified pendulum-like 20-link model has been implemented

in the toolbox developed in this work to capture the global
inertial nonlinearities and cable flexibility simultaneously (this
type of modeling approach is often used for virtual environment
simulation (Choe, Choi, & Ko, 2005; Servin & Lacoursière, 2008)).
It has the advantage that several parameters can be changed and
tuned easily (like longitudinal, joint stiffnesses, total mass, num-
ber 𝑁 of links), and it is the natural extension of the single and
double-pendulum models widely used in the Automatic Control
literature. However, as said above this is a preliminary multibody
system model which oversimplifies some cable’s dynamics. While
cables’ models based on finite element method (FEM) have been
thoroughly studied, it has not yet been considered for OC control,
except for very few works. Hence, FEM models of cables should
be implemented in the toolbox in future works, leading to a more
accurate and customizable cable model for simulation (this is
especially true for multiple-cable systems). The FEM approaches
proposed in Bertrand, Acary, Lamarque, and Svadkoohi (2020),
Sonneville and Brüls (2014) look promising because they in-
corporate large-deformation nonlinear dynamics, hence bridging
the gap between global, multibody models, and local FEM dis-
cretizations of the string equation. The ALE-ANCF method yields
cable’s dynamics which can be recast in a multibody framework,
familiar to Automatic Control and Robotics researchers. It takes
the form of quasi-Lagrange equations with equality holonomic
constraints (Fotland & Haugen, 2022, Equ. (12)) (Hong, Tang, &
Ren, 2011, Equ. (26)). It is well-suited for cables with varying
lengths (Hong et al., 2011), and applies to slender geometries
with large deformations, and circular cross-sections. It models
axial and bending stiffnesses. The inertial nonlinearities stem
from the varying length (which implies some mass flows between
the elements), and the mass matrix is constant. Concerning con-
trol: advanced control methods have been applied to FEM cables
models in Faravelli, Fuggini, and Ubertini (2010), Faravelli and
Ubertini (2009), Gattulli (2007), Gattulli, Martinelli, Perotti, and
Vestroni (2004), Ubertini (2008), however, they seem to apply
primarily to cables with important sag, in a static framework. The
main obstacle with FEM models is that stability and feedback control
may not be obvious using these models, in particular with respect to
the available measured outputs. For the moment they are expected
to be useful mainly for numerical simulation. Computational time
may be an issue the designer has to take into account when
performing the FEM spatial discretization (see Section 7.1.1).

• As alluded to above, some industrial multiple-cable gantry cranes
possess a rotational degree-of-freedom along the vertical axis.
When limited to small deviations from the vertical axis, such
systems possess dynamics of the form (see also Bauer, Schaper,
Schneider, and Sawodny (2014) for slightly different equations):
{

𝐼1𝛽1 = 𝐾(𝛽1, 𝛽2)
𝐼2𝛽2 = −𝐾(𝛽1, 𝛽2) + 𝜏,

(11)

where 𝜏 is the control torque (applied by a motor mounted
on the trolley), 𝛽1 is the payload rotation angle, 𝛽2 is the mo-
tor angle, 𝐾(𝛽1, 𝛽2) is the elastic torque due to the cables de-
formation, 𝐼1 and 𝐼2 are some equivalent moments of inertia.
The dynamics in (11) possesses the required triangular form
for backstepping (Brogliato, Ortega, & Lozano, 1995; Lozano &
Brogliato, 1992). In an industrial context, the difficulties may be:
a good estimation of the mapping 𝐾(⋅, ⋅) from experimental data,
where 𝐾(⋅, ⋅) represents a kind of equivalent rotational stiffness
which depends on the multiple cables kinematics and mechanical
properties, the payload angle 𝛽1 measurement or observation
according to available sensors (in an industrial context, this may
be a crucial issue). This should be extended to the 3D operational
space, where the payload orientation plays a crucial role.

• In the same vein, sloshing dynamics inside payloads carrying liq-
uids, involve a hard control problem. Multibody finite-

dimensional models exist for sloshing effects dynamics. A fine
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analysis of the couplings introduced by sloshing and payload
rotations may be mandatory if the application involves liquid
transport.

• From a general control perspective (not restricted to OC carrying
very large payloads), one has to take into account the fact that
cables can pull but not push. This yields models incorporating
slack modes, hence complementarity constraints and possible im-
pacts inside the cables (Brogliato, 2016). The multibody lumped
masses dynamics is unable to model such effects (Mojallizadeh
et al., 2022). Thus when light cables are considered, which are
likely to reach such slack modes, another model has to be chosen.
See Appendix A.5.

• Negative-imaginary (NI) systems are well suited to the study of
lightweight mechanical structures (Brogliato et al., 2020b, Chap-
ter 2). This has not been exploited much in OC control (we could
find only one reference using it (Abdullahi et al., 2016)), but it has
been studied for quadrotors with cable-suspended payloads (Tran,
Santoso, Garrat, & Anavatti, 2021a; Tran, Santoso, Garratt, &
Anavatti, 2021b; Tran, Santoso, Garratt, & Petersen, 2020). NI
theory mainly applies to linear time-invariant systems, hence may
yield an alternative solution for local stabilization only.

• In some applications (Sawodny et al., 2002), the connection
point of the last link is not located at the payload’s center of
mass. Hence a kind of triple-pendulum effect may appear in the
system. However, mathematical modeling and control of triple-
pendulum systems have never been addressed in the literature
corresponding to cranes. A systematic modeling procedure has
been presented in Appendix A to address the modeling of a
pendulum-like system with an arbitrary number of links, which
may help addressing this research gap.

• This study is only dedicated to OCs in their very basic form illus-
trated in Fig. 1. However, there are still other kinds of overhead
cranes with different structures. For instance, according to the
field investigations, the overhead cranes implemented in steel
production companies usually have an extra degree of freedom,
e.g., cart skew rotation. More clearly, in such applications, the
trolley can rotate around the vertical axis to handle the steel
bars in the warehouse. Moreover, the overhead cranes with two
independently controlled carts have also been studied in the
literature (Wen, Fang, & Lu, 2022). Another specific structure is
the spider crane where the cart can also move vertically (Romero,
Gandarilla, Santibáñez, & Yi, 2022). Moreover, several hoisting
mechanisms may be implemented on the large-scale carts that
modify the dynamic equations (Zhu & Xu, 2023). Such specific
structures and their control have not yet received much attention
in the Automatic Control literature.

A fundamental question which involves both modeling and control,
is how detailed the model should be for control design. Clearly adding
more degrees of freedom in a multibody lumped-mass model, quickly
yields complex dynamics (see the appendix for examples) which may
not be easily tractable for control design. As far as open questions
on control design are concerned, some possible future research lines
follow:

• As it was seen, the controllers are only designed based on the
single or double-pendulum systems, and their stability is ensured
only based on such models. For instance, LaSalle’s invariance
principle along with the Lyapunov stability theorem (see Re-
mark 6) has been used to show the stability of the control systems
on the single and double-pendulum systems. However, it is still
not clear whether the stability will remain valid for a larger
number of links (like the used 20-link simulation-oriented model)
or not, in spite of the fact that the global structure for partial
feedback linearization (à la Spong) can still be applied for the 𝑁-

link pendulum OC, see Appendix G. Hence, the stability analysis
for pendulum-like systems with an arbitrary number of links
should be considered in the future. The developments presented
in Appendix A may be useful (starting with 𝑁 = 3, for instance).

• In a real crane, several cables are usually used to suspend the
payload and manipulate it in 3D space. According to Table 8,
while the kinematics has been addressed for such a scenario, the
control design based on the derived kinematics remains largely
unaddressed (as pointed out above, the only reference we could
find where a dynamic model has been developed for the multi-
cable case is Cartmell et al. (1998). However, the obtained model
is very complex and has not yet been used for control design
purpose). Designing a feedback controller based on the derived
kinematics would allow the manipulation of the payload more
effectively by controlling the 3D payload motions. To this end,
the control methods developed for cable-driven robotic systems
can be potentially extended to this topic, see, e.g., Picard, Caro,
Claveau, and Plestan (2018), Picard, Caro, Plestan, and Claveau
(2018), Zake, Chaumette, Pedemonte, and Caro (2019, 2021) and
references therein. Usually, massless rods with varying length are
used for such manipulation tasks (Gueners et al., 2021).

• In this study, the so-called intelligent control schemes, e.g., data-
driven machine learning (Shih, 2022), fuzzy control (Smoczek,
Szpytko, & Hyla, 2012; Sun & Xie, 2020; Zhang, Zhao, & Ding,
2022), are excluded from the comparisons because of the lack of
solid stability analysis (that do exist in classical control methods
analyses). However, such methods can potentially provide advan-
tages over the classic ones and are worth considering in future
research. Indeed, as an alternative solution to the physics-based
modeling approach, e.g., the Euler–Lagrange framework used in
this study to obtain the dynamic equations, data-driven modeling
schemes can also be employed. Since such methods are obtained
based on real system measurements, they can potentially lead to
more realistic models (though, limited to the subspace spanned by
the measurements) and are worth considering in future studies.
For instance, an adaptive neuro-fuzzy inference system has been
trained by a genetic algorithm in Zhu and Wang (2022) to realize
such a data-driven model. Alternatively, a neural network with
online parameter tuning has been developed in Kim, Yoon, Jeon,
and Hong (2022) for this purpose. Estimating cable’s dynamics
(even multi-cable systems) using data-driven machine learning,
seems to be largely open in the OC literature.

• The design or modification of the reference velocity and its effect
on the sway reduction has not been considered in this work.
Such methods, e.g., using notch filters, smoothing the reference
trajectory, delayed feedback (Vazquez & Collado, 2009), path
planning (Sun & Fang, 2014a; Sun, Fang, Zhang, & Ma, 2012),
and flatness theory can be integrated with the majority of the con-
trollers developed in this work to achieve a better sway reduction.
Such integration remains for future works.

• In a real crane, a kind of path planning has to be considered in
order to avoid collisions. In Section 3, we identified two control
methods, i.e., MPC and optimal control, that can be used directly
to avoid the collision. For the other methods, a dedicated path-
planning algorithm should be designed to generate a collision-free
trajectory. This issue has not been deeply considered in this
work and the study of the controllers for collision avoidance is
necessary in future works.

• The conclusions drawn in this review, are mainly based on the
simulation-oriented model developed in this work. Hence, exper-
imental validations of the results are mandatory doing in future
works. In particular, the results compiled in Fig. 6 should be
validated on laboratory setups (since it may be difficult to lead
such experiments in an industrial context).
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Appendix A. Ingredients of the 𝑵-link Lagrange multibody model
with lumped masses

The well-known single-pendulum and double-pendulum multibody
models in 2D and 3D operational spaces are recalled in Sections 2.1 and
2.2. Though this may be sufficient in many industrial cases, some tasks
may require cables’ models with more degrees of freedom (think also of
tasks involving payload-free OC, so that cables can hardly be considered
as being always tight). In view of Sections 5 and 7, it is of interest to
provide some details on the 𝑁-pendulum Lagrange dynamics. In this

ork we consider an 𝑁-link pendulum as in Fig. 4, with massless links,
ll masses are lumped at the joints, in 2D operational space.

.1. The mass matrix

In this appendix we make the choice of pendulum angles 𝜃𝑖, such
that 𝜃𝑖 =

∑𝑖
𝑗=1 𝛼𝑗 . The mass matrix of the system in Fig. 4 (2D

operational space with variable length cable) is denoted as:

𝑀(𝑞) =
(

𝑀𝑥𝜃(𝑞) 𝑀𝑥𝜃𝑙(𝑞)
𝑀𝑙𝑥𝜃(𝑞) 𝑀𝑙𝑙(𝑞)

)

∈ R(1+2𝑁)×(1+2𝑁), (A.1)

ith 𝑀𝑥𝜃(𝑞) ∈ R(1+𝑁)×(1+𝑁), 𝑀𝑙𝑙(𝑞) ∈ R𝑁×𝑁 , and 𝑀𝑥𝜃𝑙(𝑞) = 𝑀⊤
𝑙𝑥𝜃(𝑞) ∈

(1+𝑁)×𝑁 . It is also possible to go a step further with:

𝑥𝜃(𝑞) =
(

𝑀𝑥𝑥(𝑞) 𝑀̄𝑥𝜃(𝑞)
𝑀̄⊤

𝑥𝜃(𝑞) 𝑀𝜃𝜃(𝑞)

)

(A.2)

ith 𝑀𝑥𝑥(𝑞) ∈ R, 𝑀̄𝑥𝜃(𝑞) ∈ R1×𝑁 , 𝑀𝜃𝜃(𝑞) ∈ R𝑁×𝑁 . This expres-
ion of the mass matrix corresponds to the choice of the generalized
oordinates as 𝑞 = (𝑥, 𝜃1,… , 𝜃𝑁 , 𝑙1,… , 𝑙𝑁 )⊤ ∈ R2𝑁+1. Other choices
an be made, like those splitting the coordinates into actuated 𝑞𝑎 and
onactuated ones 𝑞𝑛𝑎, which is a classical way of doing in the Control
iterature (Reyhanoglu et al., 1999).

roposition 1. Let 𝑞 = (𝑥, 𝜃1,… , 𝜃𝑁 , 𝑙1,… , 𝑙𝑁 )⊤, and constant masses 𝑚
nd 𝑚𝑖, 1 ≤ 𝑖 ≤ 𝑁 . The mass matrix entries are calculated as follows:

• 𝑀𝑥𝑥(𝑞) = 𝑚11(𝑞) = 𝑚 +
∑𝑁

𝑖=1 𝑚𝑖

• The components of 𝑀𝑙𝑙(𝑞) are 𝑚(𝑁+1+𝑛)(𝑁+𝑗+1)(𝑞) = 𝑚(𝑁+𝑗+1)(𝑁+1+𝑛)

(𝑞) =
(

∑𝑁
𝑖=max(𝑗,𝑛) 𝑚𝑖

)

cos(𝜃𝑛 − 𝜃𝑗 ), 1 ≤ 𝑗 ≤ 𝑁 , 1 ≤ 𝑛 ≤ 𝑁 .

• The components of 𝑀𝜃𝜃(𝑞) are 𝑚(𝑛+1)(𝑗+1)(𝑞) =
(

∑𝑁
𝑖=max(𝑗,𝑛) 𝑚𝑖

)

𝑙𝑛𝑙𝑗
cos(𝜃𝑛 − 𝜃𝑗 ) = 𝑚(𝑗+1)(𝑛+1)(𝑞), 1 ≤ 𝑗 ≤ 𝑁 , 1 ≤ 𝑛 ≤ 𝑁 .

• The components of 𝑀̄𝑥𝜃(𝑞) are: for all 2 ≤ 𝑘 ≤ 𝑁 + 1 (components
which multiply 𝜃̈𝑘): 𝑚1𝑘(𝑞) = 𝑚𝑘1(𝑞) =

(

∑𝑁
𝑖=𝑘−1 𝑚𝑖

)

𝑙𝑘−1 cos(𝜃𝑘−1).

• The components of 𝑀𝑥𝛼𝑙 are: for all 𝑁 + 2 ≤ 𝑘 ≤ 2𝑁 + 1, 𝑚1𝑘(𝑧) =
𝑚𝑘1(𝑞) =

(

∑𝑁
𝑖=𝑘−3 𝑚𝑖

)

sin(𝜃𝑘−3); and for 1 ≤ 𝑛 ≤ 𝑁 , 1 ≤ 𝑗 ≤ 𝑁 :

𝑚(𝑛+1)(𝑁+𝑗+1)(𝑧) =
(

∑𝑁
𝑖=max(𝑛,𝑗) 𝑚𝑖

)

𝑙𝑛 sin(𝜃𝑗 − 𝜃𝑛).

Details of the calculation can be found in Brogliato (2022). Some

roperties of the mass matrix can be deduced. L
emma 1. Let 𝑁 ≥ 1 and 𝑞 = (𝑥, 𝜃1, 𝜃2,… , 𝜃𝑁 , 𝑙1, 𝑙2,… , 𝑙𝑁 )⊤. Consider
he mass matrix in (A.1) and (A.2).

1. The diagonal components of 𝑀(𝑞) are always all constant positive.
2. The components of 𝑀𝑥𝜃𝑙 are small for small angles (neighborhood of

the cable’s vertical posture) with sin(𝜃𝑘) ≈ 𝜃𝑘. Hence the mass matrix
possesses an almost-diagonal structure for small angles, in the limit:

𝑀(𝑞) =
(

𝑀𝑥𝜃(𝑞) 0
0 𝑀𝑙𝑙(𝑞)

)

∈ R(1+2𝑁)×(1+2𝑁). When the links are

aligned (equal angles 𝜃𝑖) the inertial couplings between the angles
and the lengths vanish, with sin(𝜃𝑗 − 𝜃𝑛) ≈ 𝜃𝑗 − 𝜃𝑛.

3. The components of 𝑀𝜃𝜃(𝑞) and of 𝑀𝑙𝑙(𝑞) are constant positive for
small angles.

4. Assume that 𝑀(𝑞) = 𝑀(𝑞)⊤ ≻ 0 for all 𝑞. Then it follows that
𝑀𝜃𝜃(𝑞) ≻ 0 and 𝑀𝑙𝑙(𝑞) ≻ 0 for all 𝑞.

5. In case of large payload mass (i.e., 𝑚𝑁 ≫ 𝑚𝑖 for all 1 ≤ 𝑖 ≤ 𝑁 −1),
the mass matrix becomes ill-conditioned, since 𝑀𝑙𝑙(𝑞) loses its rank
around the vertical position when 𝑚𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑁 − 1, and has
low rank when in addition the zero order approximation for small
angles is made.

Item 4 is a consequence of the Schur Complement Lemma (Brogliato
t al., 2020a, Theorem A.65) (Bernstein, 2018, Proposition 10.2.5).
he proof of item 5 is as follows. The components of 𝑀𝑙𝑙(𝑞) are
(𝑁+1+𝑛)(𝑁+𝑗+1)(𝑞) =

(

∑𝑁
𝑖=max(𝑗,𝑛) 𝑚𝑖

)

cos(𝜃𝑛 − 𝜃𝑗 ), 1 ≤ 𝑗 ≤ 𝑁 , 1 ≤
≤ 𝑁 . The zero-order approximation implies cos(𝜃𝑛 − 𝜃𝑗 ) ≈ 1, hence

𝑚(𝑁+1+𝑛)(𝑁+𝑗+1)(𝑞) =
∑𝑁

𝑖=max(𝑗,𝑛) 𝑚𝑖. In the limit where 𝑚𝑖 = 0 for all
1 ≤ 𝑖 ≤ 𝑁 − 1, then all components are equal to 𝑚𝑁 and 𝑀𝑙𝑙 has rank
1.

Let us define 𝜃 = (𝜃1,… , 𝜃𝑁 )⊤ and 𝛼 = (𝛼1,… , 𝛼𝑁 )⊤, and 𝑧 =
(𝑥, 𝛼⊤, 𝑙⊤)⊤. Then 𝜃 = 𝐽𝛼 where 𝐽 is an invertible Toeplitz matrix. Thus

𝑞 = 𝐿𝑧, with 𝐿 =
⎛

⎜

⎜

⎝

1 01×𝑁 01×𝑁
0𝑁×1 𝐽 0𝑁×𝑁
0𝑁×1 0𝑁×𝑁 𝐼𝑁

⎞

⎟

⎟

⎠

, 𝐼𝑁 is the identity matrix of

size 𝑁 . In theory, using the kinetic energy invariance, it is systematic
to calculate 𝑀(𝑧) = 𝐿⊤𝑀(𝐿𝑧)𝐿. It is obtained:

𝑀(𝑧) =

⎛

⎜

⎜

⎜

⎜

⎝

(

𝑀𝑥𝑥 𝑀𝑥𝜃𝐽
𝐽⊤𝑀⊤

𝑥𝜃 𝐽⊤𝑀𝜃𝜃𝐽

) (

1 0
0 𝐽⊤

)

𝑀𝑥𝜃𝑙

𝑀⊤
𝑥𝜃𝑙

(

1 0
0 𝐽

)

𝑀𝑙𝑙

⎞

⎟

⎟

⎟

⎟

⎠

(A.3)

Therefore the above conclusions still hold with the mass matrix 𝑀(𝑧)
partitioned similarly as (A.1) and (A.2).

A.2. Nonlinear inertial forces

The Coriolis/centrifugal forces 𝐶(𝑞, 𝑞̇)𝑞̇ in (1) can be deduced from
it using the classical Christoffel’s symbols as 𝐶(𝑞, 𝑞̇) =

(
∑𝑛

𝑘=1 𝛤𝑖𝑗𝑘𝑞̇𝑘
)

𝑖𝑗 ,

where 𝛤𝑖𝑗𝑘 = 1
2

(

𝜕𝑚𝑖𝑗
𝜕𝑞𝑘

+ 𝜕𝑚𝑖𝑘
𝜕𝑞𝑗

− 𝜕𝑚𝑘𝑗
𝜕𝑞𝑖

)

(Brogliato et al., 2020a, Lemma
6.16), 𝑛 being the generalized coordinate dimension. In spite of the
fact that such calculations may not be straightforward in general using
Proposition 1, they are doable, see Appendices B and C. Such devel-
opments are mandatory doing to extend passivity-based approaches to
the 𝑁-link pendulum case.

A.3. Varying masses

If the links’ lengths vary only because of longitudinal flexibility,
the masses remain constant. In case of a winding mechanism mounted
at the attachment point, the cable’s total mass varies with its length,
i.e., 𝑚1 = 𝑚1(𝑙1). In all rigor, this has to be taken into account when
eriving the Lagrange dynamics. If 𝑙1 varies little then this may be
eglected (Quan & Chang, 2020). In some applications cables’ lengths
ary a lot and this dependence becomes mandatory modeling (Kamman
Huston, 2001; Khalilpour et al., 2021; Quan & Chang, 2020). The

agrange dynamics as in (1) cannot be applied directly in this case: it is
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necessary to add a corrective term in the dynamics (Pesce, 2003; Pesce,
Tannuri, & Casetta, 2006), see also Pesce and Casetta (2007) for a short
historical summary. It is noteworthy that the mass may vary because of
the payload’s mass variations: 𝑚𝑁 = 𝑚𝑁 (𝑡), with constant lengths. Time-
varying masses should be treated differently from position-dependent
ones (Pesce, 2003): the generalized nonconservative forces have to
incorporate a corrective term involving the rate 𝑚̇𝑁 (𝑡) times the gained
or expelled mass’ velocity (in a Galilean frame of reference). See
Appendix D for computations in case of the 2D single-pendulum with
position-dependent mass.

A more general multibody model of rigid links modeled as rigid
slender rods may be considered, instead of the lumped-mass model.
Rotational kinetic energies 1

2𝐽𝑖𝛼̇
2
𝑖 , 1 ≤ 𝑖 ≤ 𝑁 , 𝐽𝑖 the inertia momentum

of body 𝑖, add terms 𝐽𝑖𝛼̈𝑖 in the Lagrange dynamics. They modify the
matrix 𝑀𝛼𝛼(𝑞) and the nonlinear terms. If this approach is chosen
instead of the lumped-mass approach, and if lengths and masses are
varying, then the bodies have to be considered as deformable: one
can rely on continuum Mechanics or on the finite-element method.
These approaches are briefly reviewed in this article. In general, if
the moment of inertia can be calculated as 𝐽𝑖(𝑡) in a reference frame
attached to the body 𝑖 at its center of gravity, then the fundamental
principle of dynamics applies which makes 𝐽̇𝑖(𝑡)𝛼̇𝑖(𝑡) appear in the
ynamics (Acary & Brogliato, 2008, section 3.2).

.4. Potential energies

They may have several sources: gravity, longitudinal elastic energy
f the links (modeling cables extension), rotational elasticity at the
oints (modeling cables bending elastic energy). If no elastic torsional
oint stiffness and no longitudinal deformation is modeled, this reduces
o the gravity potential energy of each link, that of the trolley being
onstant chosen equal to zero:

𝑔(𝜃, 𝑙) = −
𝑁
∑

𝑖=1
𝑚𝑖𝑔

𝑖
∑

𝑘=1
𝑙𝑘 cos(

𝑘
∑

𝑗=1
𝛼𝑗 ) = −

𝑁
∑

𝑖=1
𝑚𝑖𝑔

𝑖
∑

𝑘=1
𝑙𝑘 cos(𝜃𝑘) (A.4)

Thus for 1 ≤ 𝑛 ≤ 𝑁 :
𝜕𝑈𝑔
𝜕𝜃𝑛

= −𝑔 𝜕
𝜕𝜃𝑛

∑𝑁
𝑘=1 𝑙𝑘 cos(𝜃𝑘)

∑𝑁
𝑖=𝑘 𝑚𝑖 = 𝑔𝑙𝑛 sin(𝜃𝑛)

∑𝑁
𝑖=𝑛 𝑚𝑖 (A.5)

𝜕𝑈𝑔
𝜕𝑙𝑛

= −𝑔 𝜕
𝜕𝑙𝑛

∑𝑁
𝑘=1 𝑙𝑘 cos(𝜃𝑘)

∑𝑁
𝑖=𝑘 𝑚𝑖 = −𝑔 cos(𝜃𝑛)

∑𝑁
𝑖=𝑛 𝑚𝑖 (A.6)

he corresponding generalized forces satisfy 𝐹𝑔(𝑞) = − 𝜕𝑈𝑔
𝜕𝑞 . If joint

flexibility is added at joints 𝐴𝑖, 1 ≤ 𝑖 ≤ 𝑁 (corresponding to the masses
𝑚𝑖 in Fig. 4), in order to model some bending stiffness for the cable,
then the additional potential energy is 𝑈𝑓𝑙𝑒𝑥(𝛼) = 1

2
∑𝑁−1

𝑗=0 𝜅𝑗𝛼2𝑗+1 =
1
2𝛼

⊤𝛼, where 𝜅𝑗 ≥ 0 is the angular stiffness at joint 𝐴𝑗 and  =
diag(𝜅𝑖), 0 ≤ 𝑖 ≤ 𝑁 − 1. Thus:

𝜕𝑈𝑓𝑙𝑒𝑥(𝛼)
𝜕𝛼𝑖

= 𝜅𝑖−1𝛼𝑖, 1 ≤ 𝑖 ≤ 𝑁. (A.7)

This introduces no couplings between the coordinates, contrarily to
what occurs in flexible joint manipulators (Brogliato et al., 1995;
Lozano & Brogliato, 1992; Tomei, 1991). In the coordinate angles
𝜃𝑖 =

∑𝑖
𝑗=1 𝛼𝑗 , 1 ≤ 𝑖 ≤ 𝑁 , 𝜃 = 𝐽𝛼, 𝛼 = 𝐽−1𝜃, hence 𝑈𝑓𝑙𝑒𝑥(𝜃) =

1
2𝛼

⊤𝛼 = 1
2 𝜃

⊤𝐽−⊤𝐽−1𝜃. Here 𝐽 is full-rank Toeplitz (Bernstein, 2009,
Definition 3.1.3), and its inverse is calculated using Bernstein (2009,

Fact 3.18.11). This yields 𝐽−1𝜃 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜃1
𝜃2 − 𝜃1

⋮
𝜃𝑁 − 𝜃𝑁−1

⎞

⎟

⎟

⎟

⎟

⎠

, hence 𝑈𝑓𝑙𝑒𝑥(𝜃) =
1
2𝜅0𝜃

2
1+

∑𝑁−1
𝑖=1 𝜅𝑖(𝜃𝑖+1 − 𝜃𝑖)2. It is inferred that

𝜕𝑈𝑓𝑙𝑒𝑥(𝜃) = 𝜅0𝜃1 − 𝜅1(𝜃2 − 𝜃1) = (𝜅0 + 𝜅1)𝜃1 − 𝜅1𝜃2, (A.8)

𝜕𝜃1
for 2 ≤ 𝑗 ≤ 𝑁 − 1:

𝜕𝑈𝑓𝑙𝑒𝑥(𝜃)
𝜕𝜃𝑗

= 𝜅𝑗−1(𝜃𝑗−𝜃𝑗−1)−𝜅𝑗 (𝜃𝑗+1−𝜃𝑗 ) = (𝜅𝑗−1+𝜅𝑗 )𝜃𝑗−𝜅𝑗𝜃𝑗+1−𝜅𝑗−1𝜃𝑗−1,

(A.9)

and
𝜕𝑈𝑓𝑙𝑒𝑥(𝜃)

𝜕𝜃𝑁
= 𝜅𝑁−1(𝜃𝑁 − 𝜃𝑁−1), (A.10)

o that
𝜕𝑈𝑓𝑙𝑒𝑥(𝜃)

𝜕𝜃
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

𝜅0 + 𝜅1 −𝜅1 0 … 0
−𝜅1 𝜅1 + 𝜅2 −𝜅2 0 … 0
0 −𝜅2 𝜅2 + 𝜅3 −𝜅3 0 … 0
⋮ ⋮
⋮ ⋮
0 … 0 −𝜅𝑁−2 𝜅𝑁−2 + 𝜅𝑁−1 −𝜅𝑁−1

0 … 0 −𝜅𝑁−1 𝜅𝑁−1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(A.11)

he joint flexibility introduces a triangular structure in the torques
hat derive from the elasticity potential, since the row 1 + 𝑛 of the
agrange dynamics, 1 ≤ 𝑛 ≤ 𝑁 , corresponding to 𝑀(1+𝑛)∙(𝑞) and 𝜃̈𝑛,
ontains the flexibility torque (−𝜅𝑛−1𝜃𝑛−1 + (𝜅𝑛−1 + 𝜅𝑛)𝜃𝑛) − 𝜅𝑛𝜃𝑛+1. One
an think of using a backstepping-like control design using the fictitious
nput 𝜃𝑛+1. However, as seen in Lemma 1, the vis-à-vis terms in the
ubmatrix 𝑀𝜃𝜃(𝑞) always contain strong inertial couplings between 𝜃̈𝑛
nd the other angular accelerations. Therefore the global triangular
tructure of Spong’s model for flexible-joint manipulators (Brogliato
t al., 1995; Lozano & Brogliato, 1992) does not exist in such overhead
rane systems.

The same system is considered with elastic links to approximate ex-
ensible cables. In this case the generalized coordinate is 𝑞 = (𝑥, 𝜃1,… ,
𝑁 , 𝑙1,… , 𝑙𝑁 )⊤. Each link has a longitudinal linear elasticity with stiff-
ess 𝑘𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑁 . Damping can also be modeled, see Gueners et al.
2021) for details on Kelvin–Voigt model parameters estimation. The
ame framework as in the foregoing sections is adopted, but the poten-
ial energy is augmented with terms 1

2𝑘𝑖(𝑙𝑖−𝑙𝑖,𝑟)2 (assuming that springs
re at rest for 𝑙𝑖 = 𝑙𝑖,𝑟). This model is close in spirit to the lumped-mass

models developed in Caverly, Forbes, and Mohammadshahi (2014),
Khalilpour et al. (2021), but nonlinearities are considered here. It is
also easy to add some viscous friction (linear spring–dashpot or Kelvin–
Voigt model) 𝑐𝑖 𝑙̇𝑖, which is some kind of Rayleigh dissipation (Brogliato
et al., 2020a, Definition 6.12). Reminding that 𝑙 = (𝑙1, 𝑙2,… , 𝑙𝑁 )⊤, we
ave:
𝜕𝑈𝑒𝑙𝑎𝑠
𝜕𝑙

= (𝑘1(𝑙1 − 𝑙1,𝑟),… , 𝑘𝑁 (𝑙𝑁 − 𝑙𝑁,𝑟))⊤ (A.12)

.5. Cable’s slack behavior

As alluded to above, cables can pull but cannot push (they work
nly in traction). This is translated into a set of complementarity
onstraints between the cable’s internal tension 𝑇𝑐𝑎𝑏(𝑞) at its edges, and
ts length 𝐿𝑐𝑎𝑏(𝑞) as: 0 ≤ 𝑇𝑐𝑎𝑏(𝑞) ⟂ 𝐿max − 𝐿𝑐𝑎𝑏(𝑞) ≥ 0, where 𝐿max is
he cable’s maximum length when it is stretched. If 𝐿𝑐𝑎𝑏(𝑞) = 𝐿max,

then nonnegative tension is possible. If 𝐿𝑐𝑎𝑏 < 𝐿max, then the tension
vanishes, this is the slack mode. If 𝑇𝑐𝑎𝑏(𝑞) > 0, then necessarily 𝐿𝑐𝑎𝑏(𝑞) =
𝐿max. Such a model implies that an impact can occur at times when
the cable attains its maximum length (Brogliato, 2016, Example 1.6).
The complementarity-slackness behavior remains true if longitudinal
elasticity is modeled. The lumped-mass multibody model is unable to
model such complementary-slackness behavior. In particular, no impact
can be modeled this way, showing the limitation of the multibody
modeling approach. A detailed analysis can be found in Mojallizadeh
et al. (2022, Section 3.7).
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A.6. Change of generalized coordinates

It is worth studying the dynamics using various sets of generalized
coordinates, like 𝑧 = (𝑥, 𝛼⊤, 𝑙⊤)⊤ or 𝑞 = (𝑥, 𝜃⊤, 𝑙⊤)⊤. As seen above,
𝜃 = 𝐽𝛼 with 𝐽 full-rank Toeplitz can be used. In the same vein 𝐿 = 𝐽𝑙
can be chosen, where 𝐿𝑖 represents an approximation of the curvilinear
coordinate of node 𝑖 (see Fig. 4). The nodes Cartesian coordinates can
also be used (Lv, Liu, & Jia, 2021). As shown in Mojallizadeh et al.
(2022, section 3.1.3) this yields Lagrange dynamics as:

𝑀𝑞(𝑡) +𝐾𝑒𝑙𝑎𝑠(𝑞(𝑡))𝑞(𝑡) +𝐾𝑓𝑙𝑒𝑥(𝑞(𝑡))𝑞(𝑡) = 𝑄(𝑡). (A.13)

This form of the Lagrange dynamics shares common features with the
FEM dynamics studied in Bertrand et al. (2020) and Gattulli (2007)
(constant matrix and nonlinear stiffness). Horizontal positions of the
nodes 𝑥𝑖 = 𝑥+

∑𝑖
𝑗=1 𝑙𝑗 sin(

∑𝑗
𝑘=1 𝛼𝑘) can also be chosen. With small angles

assumption we obtain linear Lagrange dynamics 𝑀𝑞(𝑡) + 𝐾𝑓𝑙𝑒𝑥𝑞(𝑡) =
𝑄(𝑡). However, the mass matrix stemming from the lumped-mass model
is diagonal and nonconsistent (while that obtained from FEM is tridiag-
onal and consistent (Egeland & Gravdahl, 2002)). We infer that if the
objective is to control the OC in a neighborhood of the vertical position
using a finite-degrees-of-freedom model, then the consistent FEM model
should be chosen instead of the tangent linearization of the multibody
model.

Appendix B. Lagrange dynamics of the 2D double-pendulum with
varying lengths and constant masses

Let us first provide the 5 × 5 mass matrix 𝑀(𝑞) (the angles as in
Fig. 4, with 𝑞 = (𝑥, 𝜃1, 𝜃2, 𝑙1, 𝑙2)⊤). Detailed calculations are in Brogliato
(2022). The system’s kinetic energy is given by the sum of the kinetic
energies of the cart, mass 𝑚1 and mass 𝑚2:

𝑇 (𝑞, 𝑞̇) = 1
2𝑚𝑥̇

2 + 1
2𝑚1[𝑥̇ + 𝑙1𝜃̇1 cos(𝜃1) + 𝑙̇1 sin(𝜃1)]2

+ 1
2𝑚1[𝑙1𝜃̇1 sin(𝜃1) − 𝑙̇1 cos(𝜃1)]2

+ 1
2𝑚2[𝑥̇ + 𝑙1𝜃̇1 cos(𝜃1) + 𝑙̇1 sin(𝜃1) + 𝑙2𝜃̇2 cos(𝜃2)

+ 𝑙̇2 sin(𝜃2)]2

+ 1
2𝑚2[𝑙1𝜃̇1 sin(𝜃1) − 𝑙̇1 cos(𝜃1) + 𝑙2𝜃̇2 sin(𝜃2) − 𝑙̇2 cos(𝜃2)]2

(B.1)

The mass matrix’ components are obtained from the expression of 𝑑
𝑑𝑡

𝜕𝑇
𝜕𝑞̇

and they are given by (from row 1 to row 5):

𝑚11(𝑞) = 𝑚 + 𝑚1 + 𝑚2, 𝑚12(𝑞) = (𝑚1 + 𝑚2)𝑙1 cos(𝜃1)
𝑚13(𝑞) = 𝑚2𝑙2 cos(𝜃2), 𝑚14(𝑞) = (𝑚1 + 𝑚2) sin(𝜃1), 𝑚15(𝑞) = 𝑚2 sin(𝜃2)

𝑚21(𝑞) = (𝑚1 + 𝑚2)𝑙1 cos(𝜃1) = 𝑚12(𝑞), 𝑚22(𝑞) = (𝑚1 + 𝑚2)𝑙21
𝑚23(𝑞) = 𝑚2𝑙1𝑙2 cos(𝜃2 − 𝜃1), 𝑚24(𝑞) = 0, 𝑚25(𝑞) = 𝑚2𝑙1 sin(𝜃2 − 𝜃1)

𝑚31(𝑞) = 𝑚2𝑙2 cos(𝜃2) = 𝑚13(𝑞), 𝑚32(𝑞) = 𝑚2𝑙1𝑙2 cos(𝜃2 − 𝜃1) = 𝑚23(𝑞)
𝑚33(𝑞) = 𝑚2𝑙22 , 𝑚34(𝑞) = −𝑚2𝑙2 sin(𝜃2 − 𝜃1), 𝑚35(𝑞) = 0

𝑚41(𝑞) = (𝑚1 + 𝑚2) sin(𝜃1) = 𝑚14(𝑞), 𝑚42(𝑞) = 0 = 𝑚24(𝑞)
𝑚43(𝑞) = −𝑚2𝑙2 sin(𝜃2 − 𝜃1) = 𝑚34(𝑞), 𝑚44(𝑞) = 𝑚1 + 𝑚2,
𝑚45(𝑞) = 𝑚2 cos(𝜃2 − 𝜃1)

𝑚51(𝑞) = 𝑚2 sin(𝜃2) = 𝑚15(𝑞), 𝑚52(𝑞) = 𝑚2𝑙1 sin(𝜃2 − 𝜃1) = 𝑚25(𝑞)
𝑚53(𝑞) = 0 = 𝑚35(𝑞), 𝑚54(𝑞) = 𝑚2 cos(𝜃2 − 𝜃1) = 𝑚45(𝑞), 𝑚55(𝑞) = 𝑚2

(B.2)

The mass matrix 𝑀(𝑧), with 𝑧 = (𝑥, 𝛼⊤, 𝑙⊤)⊤, is also derived in Brogliato
(2022). The potential energy in (A.4) is given by:

𝑈𝑔(𝜃1, 𝜃2, 𝑙1, 𝑙2) = −𝑚1𝑔𝑙1 cos(𝜃1) − 𝑚2𝑔(𝑙1 cos(𝜃1) + 𝑙2 cos(𝜃2)). (B.3)

The Lagrange dynamics are given as: 𝑑
𝑑𝑡

𝜕𝐿
𝜕𝑞̇ − 𝜕𝐿

𝜕𝑞 = 𝑄, where 𝐿(𝑞, 𝑞̇) is
he Lagrangian function, 𝐿(𝑞, 𝑞̇) = 𝑇 (𝑞, 𝑞̇) − 𝑈 (𝑞), 𝑇 (𝑞, 𝑞̇) = 1 𝑞̇⊤𝑀(𝑞)𝑞̇
2
s the system’s kinetic energy, 𝑈 (𝑞) is its potential energy, 𝑄 is the
ector of generalized forces. It is deduced that the inertial nonlinear
orces/torques are given by 𝐶(𝑞, 𝑞̇)𝑞̇ = ( 𝑑

𝑑𝑡𝑀(𝑞))𝑞̇ − 1
2

𝜕
𝜕𝑞 𝑞̇

⊤𝑀(𝑞)𝑞̇, while
he forces that derive from the potential are 𝐺(𝑞) = 𝜕𝑈

𝜕𝑞 . The first row
of 𝐶(𝑞, 𝑞̇) is

𝐶1∙(𝑞, 𝑞̇) = (0,−(𝑚1 + 𝑚2)𝑙1 sin(𝜃1)𝜃̇1 + (𝑚1 + 𝑚2) cos(𝜃1)𝑙̇1,
−𝑚2𝑙2 sin(𝜃2)𝜃̇2 + 𝑚2 cos(𝜃2)𝑙̇2,
(𝑚1 + 𝑚2) cos(𝜃1)𝜃̇1, 𝑚2 cos(𝜃2)𝜃̇2),

(B.4)

the second row of 𝐶(𝑞, 𝑞̇) can be chosen as

𝐶2∙(𝑞, 𝑞̇) = (0, (𝑚1 + 𝑚2)𝑙1 𝑙̇1,

𝑚2𝑙1𝑙2 sin(𝜃1 − 𝜃2)𝜃̇2 + 𝑚2𝑙1 cos(𝜃2 − 𝜃1)𝑙̇2, (𝑚1 + 𝑚2)𝑙1𝜃̇1,

𝑚2𝑙1 cos(𝜃2 − 𝜃1)𝜃̇2),

(B.5)

the third row of 𝐶(𝑞, 𝑞̇) can be chosen as

𝐶3∙(𝑞, 𝑞̇) = (0,−𝑚2𝑙1𝑙2 sin(𝜃1 − 𝜃2)𝜃̇1 + 𝑚2 𝑙̇1𝑙2 cos(𝜃1 − 𝜃2), 𝑚2𝑙2 𝑙̇2,
+𝑚2𝜃̇1𝑙2 cos(𝜃1 − 𝜃2), 𝑚2𝑙2𝜃̇2),

(B.6)

the fourth row of 𝐶(𝑞, 𝑞̇) can be chosen as

𝐶4∙(𝑞, 𝑞̇) = (0,−𝜃̇1(𝑚1 + 𝑚2)𝑙1,−𝑚2𝑙2 cos(𝜃1 − 𝜃2)𝜃̇2
+𝑚2 𝑙̇2 sin(𝜃1 − 𝜃2), 0, 𝑚2𝜃̇2 sin(𝜃1 − 𝜃2)),

(B.7)

so the fifth row of 𝐶(𝑞, 𝑞̇) can be chosen as

𝐶5∙(𝑞, 𝑞̇) = (0,−𝑚2𝑙1 cos(𝜃2 − 𝜃1)𝜃̇1 + 𝑚2 sin(𝜃2 − 𝜃1)𝑙̇1,−𝜃̇2𝑚2𝑙2,
−𝑚2 sin(𝜃1 − 𝜃2)𝜃̇1, 0).

(B.8)

⇝ It is noteworthy that the above choice for 𝐶(𝑞, 𝑞̇) corresponds to the
Christoffel’s symbols with 𝑑

𝑑𝑡 (𝑀(𝑞)) = 𝐶(𝑞, 𝑞̇) + 𝐶⊤(𝑞, 𝑞̇) (Brogliato et al.,
020a, Lemma 6.17). This choice is important because this form of the ma-
rix 𝐶(𝑞, 𝑞̇) is useful in passivity-based controllers requiring the well-known
kew-symmetry property (Brogliato et al., 2020a, Chapter 7).

It remains to calculate the generalized forces which derive from the
ravity potential energy. They are given by:

𝜕𝑈𝑔
𝜕𝑥 = 0, 𝜕𝑈𝑔

𝜕𝜃1
= (𝑚1 + 𝑚2)𝑔𝑙1 sin(𝜃1),

𝜕𝑈𝑔
𝜕𝜃2

= 𝑚2𝑔 sin(𝜃2),
𝜕𝑈𝑔
𝜕𝑙1

= −(𝑚1 + 𝑚2)𝑔 cos(𝜃1),
𝜕𝑈𝑔
𝜕𝑙2

= −𝑚2𝑔 cos(𝜃2)

(B.9)

he corresponding generalized forces satisfy 𝐹𝑔(𝑧) = − 𝜕𝑈𝑔
𝜕𝑞 . Thus once

the torque inputs have been defined, the Lagrange dynamics with
varying lengths and constant masses is complete for 𝑁 = 2.

Remark 12. When 𝑙2 does not vary (the whole cable’s length variation
is modeled with varying 𝑙1, which is realistic if a winch mechanism is
mounted at the cable’s attachment point and the cable is inextensible,
while the total mass is assumed constant), then the dynamics take the
following form (Lu et al., 2017a; Shi et al., 2019; Shi, Yao, Yuan, Tong,
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et al., 2022), as a reduced form of the above:

(𝑎) (𝑚 + 𝑚1 + 𝑚2)𝑥̈ + (𝑚1 + 𝑚2) cos(𝜃1)𝑙1𝜃̈1 + 𝑚2𝑙2 cos(𝜃2)𝜃̈2
+(𝑚1 + 𝑚2) sin(𝜃1)𝑙1
−(𝑚1 + 𝑚2)𝑙1 sin(𝜃1)𝜃̇21 − 𝑚2𝑙2 sin(𝜃2)𝜃̇22 + 2(𝑚1 + 𝑚2) cos(𝜃1)𝜃̇1 𝑙̇1 = 𝐹𝑥

(𝑏) (𝑚1 + 𝑚2)𝑙1 cos(𝜃1)𝑥̈ + (𝑚1 + 𝑚2)𝑙21 𝜃̈1 + 𝑚2𝑙1𝑙2 cos(𝜃1 − 𝜃2)𝜃̈2
+𝑚2𝑙1𝑙2 sin(𝜃1 − 𝜃2)𝜃̇22
+2(𝑚1 + 𝑚2)𝑙1𝜃̇1 𝑙̇1 + 𝑔𝑙1 sin(𝜃1)(𝑚1 + 𝑚2) = 0

(𝑐) 𝑚2𝑙2 cos(𝜃2)𝑥̈ + 𝑚2𝑙2𝑙1 cos(𝜃1 − 𝜃2)𝜃̈1 + 𝑚2𝑙22 𝜃̈2 + 𝑚2𝑙2 sin(𝜃1 − 𝜃2)𝑙1
−𝑚2𝑙2𝑙1 sin(𝜃1 − 𝜃2)𝜃̇21 + 2𝑚2𝑙2 cos(𝜃1 − 𝜃2)𝜃̇1 𝑙̇1 + 𝑚2𝑙2𝑔 sin(𝜃2) = 0

(𝑑) (𝑚1 + 𝑚2) sin(𝜃1)𝑥̈ + 𝑚2𝑙2 sin(𝜃1 − 𝜃2)𝜃̈2 + (𝑚1 + 𝑚2)𝑙1
−(𝑚1 + 𝑚2)𝑙1𝜃̇21
−𝑚2𝑙2 cos(𝜃1 − 𝜃2)𝜃̇22 − (𝑚1 + 𝑚2)𝑔 cos(𝜃1) = 𝐹𝑙

(B.10)

where it is still assumed that the cable’s total mass variation is negligi-
ble, and 𝑞 = (𝑥, 𝜃1, 𝜃2, 𝑙1)⊤.

Appendix C. 3D single-pendulum with varying link’s length: Cori-
olis/centrifugal matrix

Let us first provide the system’s kinetic energy, from which 𝑀(𝑞) in
(5) is derived (Brogliato, 2022):

𝑇 (𝑞, 𝑞̇) = 1
2𝑚𝑥̇

2 + 1
2𝑚𝑦̇

2 + 1
2𝑚1[𝑦̇ + 𝑙̇1 sin(𝜃𝑦) + 𝑙1𝜃̇𝑦 cos(𝜃𝑦)]2

+ 1
2𝑚1[𝑥̇ + 𝑙̇1 sin(𝜃𝑥) cos(𝜃𝑦) + 𝑙1𝜃̇𝑥 cos(𝜃𝑥) cos(𝜃𝑦)

−𝑙1 sin(𝜃𝑥) sin(𝜃𝑦)𝜃̇𝑦]2

+ 1
2𝑚1[ − 𝑙̇1 cos(𝜃𝑥) cos(𝜃𝑦) + 𝑙1𝜃̇𝑥 sin(𝜃𝑥) cos(𝜃𝑦)

+𝑙1𝜃̇𝑦 cos(𝜃𝑥) sin(𝜃𝑦)]2

(C.1)

The nonlinear inertial forces matrix in (5) which satisfies the skew-
ymmetry property 𝑑

𝑑𝑡 (𝑀(𝑞)) = 𝐶(𝑞, 𝑞̇) + 𝐶⊤(𝑞, 𝑞̇) is given by (row by
row):

𝐶1∙(𝑞, 𝑞̇) = (0, 0,−𝑚1𝑙1 sin(𝜃𝑥) cos(𝜃𝑦)𝜃̇𝑥 − 𝑚1𝑙1 cos(𝜃𝑥) sin(𝜃𝑦)𝜃̇𝑦
+𝑚1 cos(𝜃𝑥) cos(𝜃𝑦)𝑙̇1,
−𝑚1𝑙1 sin(𝜃𝑥) cos(𝜃𝑦)𝜃̇𝑦 − 𝑚1𝑙1 sin(𝜃𝑥) sin(𝜃𝑦)𝑙̇1
−𝑚1𝑙1 cos(𝜃𝑥) sin(𝜃𝑦)𝜃̇𝑥,
−𝑚1 sin(𝜃𝑥) sin(𝜃𝑦)𝜃̇𝑦 + 𝑚1 cos(𝜃𝑥) cos(𝜃𝑦)𝜃̇𝑥)

(C.2)

𝐶2∙(𝑞, 𝑞̇) = (0, 0, 0,−𝑚1𝑙1 sin(𝜃𝑦)𝜃̇𝑦 + 𝑚1 cos(𝜃𝑦)𝑙̇1, 𝑚1 cos(𝜃𝑦)𝜃̇𝑦) (C.3)

𝐶3∙(𝑞, 𝑞̇) = (0, 0, 𝑚1𝑙1 cos2(𝜃𝑦)𝑙̇1 − 𝑚1𝑙21 cos(𝜃𝑦) sin(𝜃𝑦)𝜃̇𝑦,
−𝑚1𝑙21 sin(𝜃𝑦) cos(𝜃𝑦)𝜃̇𝑥, 𝑚1𝑙1 cos2(𝜃𝑦)𝜃̇𝑥) (C.4)

𝐶4∙(𝑞, 𝑞̇) = (0, 0, 𝑚1𝑙
2
1 cos(𝜃𝑦) sin(𝜃𝑦)𝜃̇𝑥, 𝑚1𝑙1 𝑙̇1, 𝑚1𝑙1𝜃̇𝑦) (C.5)

𝐶5∙(𝑞, 𝑞̇) = (0, 0,−𝑚1𝑙1 cos2(𝜃𝑦)𝜃̇𝑥,−𝑚1𝑙1𝜃̇𝑦, 0) (C.6)

As above the coefficients can be obtained from the Christoffel’s
symbols (see Appendix A.2) or by computing 𝐶(𝑞, 𝑞̇)𝑞̇ = ( 𝑑

𝑑𝑡𝑀(𝑞))𝑞̇ −
1
2

𝜕
𝜕𝑞 𝑞̇

⊤𝑀(𝑞)𝑞̇ and rearranging the terms in a suitable way so that 𝑚̇𝑖𝑗 =
𝑖𝑗 + 𝑐𝑗𝑖 for all 1 ≤ 𝑖, 𝑗 ≤ 5.

ppendix D. Dynamics of 2D single-pendulum with varying mass
nd link’s length

Lagrangian dynamics for multibody systems with varying masses de-
erve special attention (Pesce, 2003; Pesce & Casetta, 2007; Pesce et al.,
006). As alluded to above, the mass variation can be neglected if the
ength variation remains small (or if the cable’s mass is much smaller
han the hook’s and payload’s masses). However in some applications it
ay happen that the cable mass’ variation is no longer negligible (Kam-
an & Huston, 2001; d’Andréa Novel & Coron, 2002; Quan & Chang,
020). In this case the 2D (or the 3D) single-pendulum or double-
endulum model should reflect this mass variation, by allowing for
1 = 𝑚1(𝑙1). In other words, the cable’s mass is lumped at the first

oint, and its variation implies a varying 𝑚1. If a winding mechanism
s mounted at the first joint, then 𝑚2 = 𝑚2(𝑙2). Let us provide now the
xtension of (3) with 𝑚1(𝑙1), relying on the theoretical results in Pesce
2003), Pesce and Casetta (2007), Pesce et al. (2006). Such a modeling
pproach belongs to a multibody system model and is obviously quite
ifferent from the one in d’Andréa Novel and Coron (2002) which is
ased on a coupled ODE-PDE (see Section 2.3).

Let us recall the modified Lagrange equations derived in Pesce
2003), Pesce and Casetta (2007), Pesce et al. (2006):
𝑑
𝑑𝑡

𝜕(𝑇 − 𝑈 )
𝜕𝑞̇

−
𝜕(𝑇 − 𝑈 )

𝜕𝑞
= 𝑄 + 𝑄̂, (D.1)

where the corrective term is with varying masses 𝑚𝑖(𝑞, 𝑞̇, 𝑡):

𝑄̂𝑗 =
∑

𝑖
𝑚̇𝑖𝐯⊤0𝑖

𝜕𝑃𝑖
𝜕𝑞𝑗

+
∑

𝑖

{

−1
2
𝜕𝑚𝑖
𝜕𝑞𝑗

𝐯⊤𝑖 𝐯𝑖 +
1
2
𝑑
𝑑𝑡

(

𝜕𝑚𝑖
𝜕𝑞̇𝑗

𝐯⊤𝑖 𝐯𝑖
)}

(D.2)

here the sum is made over the particles with varying mass, 𝐯0𝑖 are
he velocities of expelled or gained masses, 𝑃𝑖 are their position in the
alilean frame of reference. In our case only particle with mass 𝑚1(𝑙1)
aries, hence the corrective terms become (1 ≤ 𝑗 ≤ 3):

̂ 𝑗 = −1
2
𝜕𝑚1
𝜕𝑞𝑗

𝐯⊤1 𝐯1 (D.3)

here 𝐯1 ∈ R2 is the velocity of the mass 𝑚1 in Fig. 2(a): 𝐯1 =
(

𝑥̇ + 𝑙1 cos(𝜃1)𝜃̇1 + 𝑙̇1 sin(𝜃1)
𝑙1 sin(𝜃1)𝜃̇1 − 𝑙̇1 cos(𝜃1)

)

. Therefore:

𝑄̂ =

⎛

⎜

⎜

⎜

⎝

0
− 1

2
𝜕𝑚1
𝜕𝑙1

[𝑥̇2 + 𝑙̇21 + 𝑙21 𝜃̇
2
1 + 2𝑥̇(𝑙1𝜃̇1 cos(𝜃1) + 𝑙̇1 sin(𝜃1))]

0

⎞

⎟

⎟

⎟

⎠

(D.4)

This term has to be added in the right-hand side of (3). The above
derivations assume that the system’s total mass varies, which is untrue
if the winch mechanism is mounted on the cart. In all rigor one also has
to consider the dynamics of the reel from which the cable is deployed,
augmenting the generalized position vector 𝑞, and the input 𝐹𝑙 is the
orque which acts on the reel (pulley). In fact several options and as-
umptions are possible, depending on the different masses distribution
nd on the control objective, and also on whether or not the winch
echanism is mounted on the cart or is fixed with respect to the
alilean reference frame (Hong & Shah, 2019, Figures 2.4 and 2.5).
imilar modifications can be made in (B.10) for the double-pendulum
ith varying 𝑙1 and 𝑚1(𝑙1).

ppendix E. Dynamics of 3D double-pendulum with constant
inks’ lengths and masses

The system is depicted in Fig. 3(b). The dynamics of this OC have
een derived in Ouyang et al. (2021, Equations (1)-(6)) and Guo et al.
2023, Equations(1)–(6)). The system’s kinetic energy is given by:

𝑇 (𝑞, 𝑞̇) = 1
2𝑚𝑥̇

2 + 1
2𝑚𝑦̇

2 + 1
2𝑚1[𝑦̇ + 𝑙1𝜃̇1𝑦 cos(𝜃1𝑦)]2

+ 1
2𝑚1[𝑥̇ + 𝑙1𝜃̇1𝑥 cos(𝜃1𝑥) cos(𝜃1𝑦) − 𝑙1 sin(𝜃1𝑥) sin(𝜃1𝑦)𝜃̇1𝑦]2

+ 1
2𝑚1[𝑙1𝜃̇1𝑥 sin(𝜃1𝑥) cos(𝜃1𝑦) + 𝑙1𝜃̇1𝑦 cos(𝜃1𝑥) sin(𝜃1𝑦)]2

+ 1
2𝑚2[𝑥̇ + 𝑙1𝜃̇1𝑥 cos(𝜃1𝑥) cos(𝜃1𝑦) − 𝑙1𝜃̇1𝑦 sin(𝜃1𝑥) sin(𝜃1𝑦)

+ 𝑙2𝜃̇2𝑥 cos(𝜃2𝑥) cos(𝜃2𝑦)

− 𝑙2𝜃̇2𝑦 sin(𝜃2𝑥) sin(𝜃2𝑦)]2

+ 1
2𝑚2[𝑦̇ + 𝑙1𝜃̇1𝑦 cos(𝜃1𝑦) + 𝑙2𝜃̇2𝑦 cos(𝜃2𝑦)]2

+ 1
2𝑚2[𝑙1𝜃̇1𝑥 sin(𝜃1𝑥) cos(𝜃1𝑦) + 𝑙1𝜃̇1𝑦 cos(𝜃1𝑥) sin(𝜃1𝑦)

+ 𝑙2𝜃̇2𝑥 sin(𝜃2𝑥) cos(𝜃2𝑦)

+𝑙2𝜃̇2𝑦 cos(𝜃2𝑥) sin(𝜃2𝑦)]2
(E.1)
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From the expression of 𝑑
𝑑𝑡

𝜕𝑇
𝜕𝑞̇ , it is deduced the mass matrix 𝑀(𝑞) ∈

6×6, 𝑞 = (𝑥, 𝑦, 𝜃1𝑥, 𝜃1𝑦, 𝜃2𝑥, 𝜃2𝑦)⊤, given row by row:

𝑚11(𝑞) = 𝑚 + 𝑚1 + 𝑚2, 𝑚12(𝑞) = 0, 𝑚13(𝑞) = (𝑚1 + 𝑚2)𝑙1 cos(𝜃1𝑥) cos(𝜃1𝑦),
𝑚14(𝑞) = −(𝑚1 + 𝑚2)𝑙1 sin(𝜃1𝑥) sin(𝜃1𝑦), 𝑚15(𝑞) = 𝑚2𝑙2 cos(𝜃1𝑥) cos(𝜃2𝑦),
𝑚16(𝑞) = −𝑚2𝑙2 sin(𝜃2𝑥) sin(𝜃2𝑦)

(E.2)

𝑚21(𝑞) = 𝑚12(𝑞), 𝑚22(𝑞) = 𝑚 + 𝑚1 + 𝑚2, 𝑚23(𝑞) = 0, 𝑚24(𝑞)
= (𝑚1 + 𝑚2)𝑙1 cos(𝜃1𝑦),
𝑚25(𝑞) = 0, 𝑚26(𝑞) = 𝑚2𝑙2 cos(𝜃2𝑦)

(E.3)

𝑚31(𝑞) = 𝑚13(𝑞), 𝑚32(𝑞) = 𝑚23(𝑞), 𝑚33(𝑞) = (𝑚1 + 𝑚2)𝑙21 cos
2(𝜃1𝑦),

𝑚34(𝑞) = 0, 𝑚35(𝑞) = 𝑚2𝑙1𝑙2 cos(𝜃2𝑦) cos(𝜃1𝑦) cos(𝜃2𝑥 − 𝜃1𝑥),
𝑚36(𝑞) = 𝑚2𝑙1𝑙2 sin(𝜃2𝑦) cos(𝜃2𝑥) sin(𝜃1𝑥 − 𝜃2𝑥)

(E.4)

𝑚41(𝑞) = 𝑚14(𝑞), 𝑚42(𝑞) = 𝑚24(𝑞), 𝑚43(𝑞) = 𝑚34(𝑞), 𝑚44(𝑞) = (𝑚1 + 𝑚2)𝑙21
𝑚45(𝑞) = 𝑚2𝑙1𝑙2 cos(𝜃2𝑦) sin(𝜃2𝑥) sin(𝜃1𝑦 − 𝜃1𝑥),

𝑚46(𝑞) = 𝑚2𝑙1𝑙2(sin(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥) + cos(𝜃2𝑦) cos(𝜃1𝑦))

(E.5)

𝑚51(𝑞) = 𝑚15(𝑞), 𝑚52(𝑞) = 𝑚25(𝑞), 𝑚53(𝑞) = 𝑚35(𝑞), 𝑚54(𝑞) = 𝑚45(𝑞)
𝑚55(𝑞) = 𝑚2𝑙22 cos

2(𝜃2𝑦),
𝑚56(𝑞) = 0

(E.6)

𝑚61(𝑞) = 𝑚16(𝑞), 𝑚62(𝑞) = 𝑚26(𝑞),
𝑚63(𝑞) = 𝑚36(𝑞), 𝑚64(𝑞) = 𝑚46(𝑞), 𝑚65(𝑞) = 𝑚56(𝑞),
𝑚66(𝑞) = 𝑚2𝑙22

(E.7)

Using the Christoffel’s symbols (see Appendix A.2) allows us to calcu-
late the matrix 𝐶(𝑞, 𝑞̇) possessing the useful property that 𝑚̇𝑖𝑗 (𝑞, 𝑞̇) =
𝑐𝑖𝑗 (𝑞, 𝑞̇) + 𝑐𝑗𝑖(𝑞, 𝑞̇), 1 ≤ 𝑖, 𝑗 ≤ 6 (the argument (𝑞, 𝑞̇) is dropped):

𝐶1∙ = (0, 0, −(𝑚1 + 𝑚2)𝑙1(sin(𝜃1𝑥) cos(𝜃1𝑦)𝜃̇1𝑥 + cos(𝜃1𝑥) sin(𝜃1𝑦)𝜃̇1𝑦),

−(𝑚1 + 𝑚2)𝑙1(cos(𝜃1𝑥) sin(𝜃1𝑦)𝜃̇1𝑥 + sin(𝜃1𝑥) cos(𝜃1𝑦)𝜃̇1𝑦),

−𝑚2𝑙2(sin(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑥 + cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑦),

−𝑚2𝑙2(cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑥 + sin(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑦))

(E.8)

𝐶2∙ = (0, 0, 0, −(𝑚1 + 𝑚2)𝑙1 sin(𝜃1𝑦)𝜃̇1𝑦, 0, −𝑚2𝑙2 sin(𝜃2𝑦)𝜃̇2𝑦) (E.9)

𝐶3∙ = (0, 0, −(𝑚1 + 𝑚2)𝑙21 sin(𝜃1𝑦) cos(𝜃1𝑦)𝜃̇1𝑦,

−(𝑚1 + 𝑚2)𝑙21 sin(𝜃1𝑦) cos(𝜃1𝑦)𝜃̇1𝑥,

𝑚2𝑙1𝑙2 sin(𝜃1𝑥 − 𝜃2𝑥)[cos(𝜃1𝑦) cos(𝜃2𝑦)𝜃̇2𝑥 + sin(𝜃1𝑦) sin(𝜃2𝑦)𝜃̇2𝑦],

−𝑚2𝑙1𝑙2 cos(𝜃1𝑦)[ cos(𝜃1𝑥) cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑥+
sin(𝜃1𝑥) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑥
+cos(𝜃1𝑥) cos(𝜃2𝑦) sin(𝜃1𝑥)𝜃̇2𝑦 − sin(𝜃1𝑥) cos(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑦])

(E.10)

𝐶4∙ = (0, 0, (𝑚1 + 𝑚2)𝑙21 sin(𝜃1𝑦) cos(𝜃1𝑦)𝜃̇1𝑥, 0,

𝑚2𝑙1𝑙2 sin(𝜃1𝑦)[ cos(𝜃1𝑥) cos(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑥
+ sin(𝜃1𝑥) sin(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑥 − cos(𝜃1𝑥) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑦
+ sin(𝜃1𝑥) sin(𝜃2𝑦) cos(𝜃2𝑥)𝜃̇2𝑦],
𝑚2𝑙1𝑙2[ cos(𝜃1𝑥) cos(𝜃2𝑥) cos(𝜃2𝑦) sin(𝜃1𝑦)𝜃̇2𝑦
+ sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑦
−cos(𝜃1𝑦) sin(𝜃2𝑦)𝜃̇2𝑦 − cos(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑥

̇

(E.11)
+ sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃2𝑥)𝜃2𝑥])
𝐶5∙ = (0, 0, −𝑚2𝑙2 cos(𝜃2𝑦)[ cos(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃1𝑥)𝜃̇1𝑥
−cos(𝜃1𝑥) cos(𝜃1𝑦) sin(𝜃2𝑥)𝜃̇1𝑥
+cos(𝜃1𝑥) cos(𝜃1𝑦) sin(𝜃1𝑦)𝜃̇1𝑦 + sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥)𝜃̇1𝑦],
−𝑚2𝑙1𝑙2 cos(𝜃2𝑦)[ cos(𝜃1𝑥) cos(𝜃2𝑥) sin(𝜃1𝑦)𝜃̇1𝑥
+ sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥)𝜃̇1𝑥
−cos(𝜃1𝑥) cos(𝜃1𝑦) sin(𝜃2𝑥)𝜃̇1𝑦 + cos(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃1𝑥)𝜃̇1𝑦],
−𝑚2𝑙22 sin(𝜃2𝑦) cos(𝜃2𝑦)𝜃̇2𝑦,

−𝑚2𝑙22 sin(𝜃2𝑦) cos(𝜃2𝑦)𝜃̇2𝑥)

(E.12)

𝐶6∙ = (0, 0, 𝑚2𝑙1𝑙2 sin(𝜃2𝑦)[ cos(𝜃1𝑥) cos(𝜃1𝑦) cos(𝜃2𝑥)𝜃̇1𝑥
+ sin(𝜃1𝑥) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑥
+cos(𝜃1𝑥) cos(𝜃1𝑦) sin(𝜃2𝑥)𝜃̇1𝑦 − sin(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥)𝜃̇1𝑦)],
𝑚2𝑙1𝑙2[ cos(𝜃1𝑥) cos(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑦
+ sin(𝜃1𝑥) sin(𝜃2𝑥) sin(𝜃2𝑦) cos(𝜃1𝑦)𝜃̇1𝑦
−cos(𝜃2𝑦) sin(𝜃1𝑦)𝜃̇1𝑦 + cos(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑥
− sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃2𝑥)𝜃̇1𝑥], 𝑚2𝑙22 sin(𝜃2𝑦) cos(𝜃2𝑦)𝜃̇2𝑥, 0

(E.13)

Notice that the expressions given in Ouyang et al. (2021, Appendix
A) also use the Christoffel’s symbols. The gravity potential energy is
given by:

𝑈𝑔(𝑞) = −𝑚1𝑔𝑙1 cos(𝜃1𝑥) cos(𝜃1𝑦) − 𝑚2𝑔[𝑙1 cos(𝜃1𝑥) cos(𝜃1𝑦)

+ 𝑙2 cos(𝜃2𝑥) cos(𝜃2𝑦)], (E.14)

so that the gravity generalized force is equal to:

−
𝜕𝑈𝑔

𝜕𝑞
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

−(𝑚1 + 𝑚2)𝑔𝑙1 sin(𝜃1𝑥) cos(𝜃1𝑦)
−(𝑚1 + 𝑚2)𝑔𝑙1 cos(𝜃1𝑥) sin(𝜃1𝑦)

𝑚2𝑔𝑙2 sin(𝜃2𝑥) cos(𝜃2𝑦)
𝑚2𝑔𝑙2 cos(𝜃2𝑥) sin(𝜃2𝑦)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(E.15)

Appendix F. Dynamics of 3D double-pendulum with varying links’
lengths and constant masses

The system is depicted in Fig. 3(b). The system’s kinetic energy is
given by:

𝑇 (𝑞, 𝑞̇) = 1
2𝑚𝑥̇

2 + 1
2𝑚𝑦̇

2 + 1
2𝑚1[𝑦̇ + 𝑙̇1 sin(𝜃1𝑦) + 𝑙1𝜃̇1𝑦 cos(𝜃1𝑦)]2

+ 1
2𝑚1[𝑥̇ + 𝑙̇1 sin(𝜃1𝑥) cos(𝜃1𝑦) + 𝑙1𝜃̇1𝑥 cos(𝜃1𝑥) cos(𝜃1𝑦)

−𝑙1 sin(𝜃1𝑥) sin(𝜃1𝑦)𝜃̇1𝑦]2

+ 1
2𝑚1[ − 𝑙̇1 cos(𝜃1𝑥) cos(𝜃1𝑦) + 𝑙1𝜃̇1𝑥 sin(𝜃1𝑥) cos(𝜃1𝑦)

+𝑙1𝜃̇1𝑦 cos(𝜃1𝑥) sin(𝜃1𝑦)]2

+ 1
2𝑚2[𝑥̇ + 𝑙̇1 sin(𝜃1𝑥) cos(𝜃1𝑦) + 𝑙1𝜃̇1𝑥 cos(𝜃1𝑥) cos(𝜃1𝑦)

−𝑙1𝜃̇1𝑦 sin(𝜃1𝑥) sin(𝜃1𝑦) + 𝑙̇2 sin(𝜃2𝑥) cos(𝜃2𝑦)

+𝑙2𝜃̇2𝑥 cos(𝜃2𝑥) cos(𝜃2𝑦) − 𝑙2𝜃̇2𝑦 sin(𝜃2𝑥) sin(𝜃2𝑦)]2

+ 1
2𝑚2[𝑦̇ + 𝑙̇1 sin(𝜃1𝑦) + 𝑙1𝜃̇1𝑦 cos(𝜃1𝑦) + 𝑙̇2 sin(𝜃2𝑦)

+𝑙2𝜃̇2𝑦 cos(𝜃2𝑦)]2

+ 1
2𝑚2[ − 𝑙̇1 cos(𝜃1𝑥) cos(𝜃1𝑦) + 𝑙1𝜃̇1𝑥 sin(𝜃1𝑥) cos(𝜃1𝑦)

+𝑙1𝜃̇1𝑦 cos(𝜃1𝑥) sin(𝜃1𝑦)

−𝑙̇2 cos(𝜃2𝑥) cos(𝜃2𝑦) + 𝑙2𝜃̇2𝑥 sin(𝜃2𝑥) cos(𝜃2𝑦)

+𝑙2𝜃̇2𝑦 cos(𝜃2𝑥) sin(𝜃2𝑦)]2

(F.1)
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The mass matrix 𝑀(𝑞) ∈ R8×8 is given as follows, with 𝑞 = (𝑥, 𝑦, 𝜃1𝑥, 𝜃1𝑦,
𝜃2𝑥, 𝜃2𝑦, 𝑙1, 𝑙2)⊤, row by row:

𝑚11(𝑞) = 𝑚 + 𝑚1 + 𝑚2, 𝑚12(𝑞) = 0, 𝑚13(𝑞) = (𝑚1 + 𝑚2)𝑙1 cos(𝜃1𝑥) cos(𝜃1𝑦),
𝑚14(𝑞) = −(𝑚1 + 𝑚2)𝑙1 sin(𝜃1𝑥) sin(𝜃1𝑦), 𝑚15(𝑞) = 𝑚2𝑙2 cos(𝜃2𝑥) cos(𝜃2𝑦),
𝑚16(𝑞) = −𝑚2𝑙2 sin(𝜃2𝑥) sin(𝜃2𝑦), 𝑚17(𝑞) = (𝑚1 + 𝑚2) sin(𝜃1𝑥) cos(𝜃1𝑦),
𝑚18(𝑞) = 𝑚2 sin(𝜃2𝑥) cos(𝜃2𝑦)

(F.2)

𝑚21(𝑞) = 0, 𝑚22(𝑞) = 𝑚 + 𝑚1 + 𝑚2, 𝑚23(𝑞) = 0,
𝑚24(𝑞) = (𝑚1 + 𝑚2)𝑙1 cos(𝜃1𝑦),
𝑚25(𝑞) = 0, 𝑚26(𝑞) = 𝑚2𝑙2 cos(𝜃2𝑦), 𝑚27(𝑞) = (𝑚1 + 𝑚2) sin(𝜃1𝑦),
𝑚28(𝑞) = 𝑚2 sin(𝜃2𝑦)

(F.3)

𝑚31(𝑞) = 𝑚13(𝑞), 𝑚32(𝑞) = 𝑚23(𝑞) = 0, 𝑚33(𝑞) = (𝑚1 + 𝑚2)𝑙1 cos2(𝜃1𝑦),
𝑚34(𝑞) = 0, 𝑚35(𝑞) = 𝑚2𝑙1𝑙2 cos(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥),
𝑚36(𝑞) = 𝑚2𝑙1𝑙2 sin(𝜃2𝑦) cos(𝜃1𝑦) sin(𝜃1𝑥 − 𝜃2𝑥), 𝑚37(𝑞) = 0,
𝑚38(𝑞) = 𝑚2𝑙1 cos(𝜃2𝑦) cos(𝜃1𝑦) sin(𝜃2𝑥 − 𝜃1𝑥)

(F.4)

𝑚41(𝑞) = 𝑚14(𝑞), 𝑚42(𝑞) = 𝑚24(𝑞), 𝑚43(𝑞) = 𝑚34(𝑞) = 0,

𝑚44(𝑞) = (𝑚1 + 𝑚2)𝑙21 ,

𝑚45(𝑞) = 𝑚2𝑙1𝑙2 sin(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃2𝑥 − 𝜃1𝑥),

𝑚46(𝑞) = 𝑚1𝑙1𝑙2 sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)

+𝑚2𝑙1𝑙2[cos(𝜃1𝑦) cos(𝜃2𝑦) + cos(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃2𝑦)],

𝑚47(𝑞) = 0,

𝑚48(𝑞) = 𝑚2𝑙1[cos(𝜃1𝑦) sin(𝜃2𝑦) − cos(𝜃2𝑦) sin(𝜃1𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)]

(F.5)

𝑚51(𝑞) = 𝑚15(𝑞), 𝑚52(𝑞) = 𝑚25(𝑞), 𝑚53(𝑞) = 𝑚35(𝑞), 𝑚54(𝑞) = 𝑚45(𝑞),

𝑚55(𝑞) = 𝑚2𝑙22 cos
2(𝜃2𝑦), 𝑚56(𝑞) = 0,

𝑚57(𝑞) = 𝑚2𝑙2 cos(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥),

𝑚58(𝑞) = 0

(F.6)

𝑚61(𝑞) = 𝑚16(𝑞), 𝑚62(𝑞) = 𝑚26(𝑞), 𝑚63(𝑞) = 𝑚36(𝑞),

𝑚64(𝑞) = 𝑚46(𝑞), 𝑚65(𝑞) = 𝑚56(𝑞),

𝑚66(𝑞) = 𝑚2𝑙22 , 𝑚67(𝑞) = 𝑚2𝑙2[ cos(𝜃2𝑦) sin(𝜃1𝑦)
− sin(𝜃2𝑦) cos(𝜃1𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)],
𝑚68(𝑞) = 0

(F.7)

𝑚71(𝑞) = 𝑚17(𝑞), 𝑚72(𝑞) = 𝑚27(𝑞), 𝑚73(𝑞) = 𝑚37(𝑞), 𝑚74(𝑞) = 𝑚47(𝑞),
𝑚75(𝑞) = 𝑚57(𝑞), 𝑚76(𝑞) = 𝑚67(𝑞), 𝑚77(𝑞) = 𝑚1 + 𝑚2,
𝑚78(𝑞) = 𝑚2[sin(𝜃1𝑦) sin(𝜃2𝑦) + cos(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)]

(F.8)

𝑚81(𝑞) = 𝑚18(𝑞), 𝑚82(𝑞) = 𝑚28(𝑞), 𝑚83(𝑞) = 𝑚38(𝑞),
𝑚84(𝑞) = 𝑚48(𝑞), 𝑚85(𝑞) = 𝑚58(𝑞),
𝑚86(𝑞) = 𝑚68(𝑞), 𝑚87(𝑞) = 𝑚78(𝑞), 𝑚88(𝑞) = 𝑚2

(F.9)

Notice that the conclusion in item 5 of Lemma 1 still holds for the
submatrix 𝑀𝑙𝑙(𝑞) =

(

𝑚77 𝑚78
𝑚87 𝑚88

)

, which is singular at the vertical

posture and if 𝑚1 = 0. The nonlinear inertial generalized forces are

defined from the matrix 𝐶(𝑞, 𝑞̇) of Christoffel’s symbols as (given row
by row):

𝐶1∙(𝑞, 𝑞̇) = (0, 0, 𝑐13 = (𝑚1 + 𝑚2)[ − 𝑙1 sin(𝜃1𝑥) cos(𝜃1𝑦)𝜃̇1𝑥
−𝑙1 cos(𝜃1𝑥) sin(𝜃1𝑦)𝜃̇1𝑦 + cos(𝜃1𝑥) cos(𝜃1𝑦)𝑙̇1)] ,

𝑐14 = −(𝑚1 + 𝑚2)[𝑙1 cos(𝜃1𝑥) sin(𝜃1𝑦)𝜃̇1𝑥
+ sin(𝜃1𝑥) sin(𝜃1𝑦)𝑙̇1 + 𝑙1 sin(𝜃1𝑥) cos(𝜃1𝑦)𝜃̇1𝑦] ,

𝑐15 = 𝑚2[ − 𝑙2 sin(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑥 − 𝑙2 cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑦
+cos(𝜃2𝑥) cos(𝜃2𝑦)𝑙̇2] ,

𝑐16 = −𝑚2[𝑙2 cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑥 + 𝑙2 sin(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑦
+ sin(𝜃2𝑥) sin(𝜃2𝑦)𝑙̇2] ,

𝑐17 = (𝑚1 + 𝑚2)[cos(𝜃1𝑥) cos(𝜃1𝑦)𝜃̇1𝑥 − sin(𝜃1𝑥) sin(𝜃1𝑦)𝜃̇1𝑦] ,

𝑐18 = 𝑚2[ cos(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑥
− sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑦]

(F.10)

𝐶2∙(𝑞, 𝑞̇) = (0, 0, 0 , 𝑐24 = (𝑚1 + 𝑚2)[−𝑙1 sin(𝜃1𝑦)𝜃̇1𝑦 + cos(𝜃1𝑦)𝑙̇1] ,
0, 𝑐26 = −𝑚2𝑙2 sin(𝜃2𝑦)𝜃̇2𝑦

+𝑚2 cos(𝜃2𝑦)𝑙̇2, 𝑐27 = (𝑚1 + 𝑚2) cos(𝜃1𝑦)𝜃̇1𝑦 ,
𝑐28 = 𝑚2 cos(𝜃2𝑦)𝜃̇2𝑦)

(F.11)

𝐶3∙(𝑞, 𝑞̇) = (0, 0, 𝑐33 = −(𝑚1 + 𝑚2)𝑙1 cos(𝜃1𝑦) sin(𝜃1𝑦)𝜃̇1𝑦
+ 1

2 (𝑚1 + 𝑚2) cos2(𝜃1𝑦)𝑙̇1 ,

𝑐34 = −(𝑚1 + 𝑚2)𝑙1 cos(𝜃1𝑦) sin(𝜃1𝑦)𝜃̇1𝑦 ,

𝑐35 = 𝑚2𝑙1𝑙2 cos(𝜃1𝑦) cos(𝜃1𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑥
−𝑚2𝑙1𝑙2 cos(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑦
+𝑚2𝑙1 cos(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝑙̇2 ,

𝑐36 =
1
2 (𝑚2 − 𝑚1)𝑙1𝑙2 cos(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑦

−𝑚2𝑙1𝑙2 cos(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑥
+𝑚2𝑙1𝑙2 cos(𝜃2𝑦) cos(𝜃1𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑦
+𝑚2𝑙1 sin(𝜃2𝑦) cos(𝜃1𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝑙̇2 , 𝑐37
= 1

2 (𝑚1 + 𝑚2) cos2(𝜃1𝑦)𝜃̇1𝑥 ,

𝑐38 = 𝑚2𝑙1 cos(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑥
+𝑚2𝑙1 sin(𝜃2𝑦) cos(𝜃1𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑦)

(F.12)

𝐶4∙(𝑞, 𝑞̇) = (0, 0, 𝑐43 = (𝑚1 + 𝑚2)𝑙1 cos(𝜃1𝑦) sin(𝜃1𝑦)𝜃̇1𝑦 ,

𝑐44 = 𝑚(1 + 𝑚2)𝑙1 𝑙̇1 ,

𝑐45 = 𝑚2𝑙1𝑙2 sin(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑥
−𝑚2𝑙1𝑙2 sin(𝜃1𝑦) sin(𝜃2𝑦) sin(𝜃2𝑥) cos(𝜃1𝑥)𝜃̇2𝑦
+ 𝑚1+𝑚2

2 𝑙1𝑙2 sin(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑦
+𝑚2𝑙1 sin(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃2𝑥 − 𝜃1𝑥)𝑙̇2 ,

𝑐46 =
𝑚1+𝑚2

2 𝑙1𝑙2 cos(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑥
+ 1

2𝑚1𝑙1𝑙2 sin(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑥
− 1

2𝑚2𝑙1𝑙2 sin(𝜃1𝑦) sin(𝜃2𝑦) sin(𝜃2𝑥 − 𝜃1𝑥)𝜃̇2𝑥
+𝑚1𝑙1𝑙2 sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑦
−𝑚2𝑙1𝑙2 cos(𝜃1𝑦) sin(𝜃2𝑦)𝜃̇2𝑦
+𝑚2𝑙1𝑙2 cos(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥) cos(𝜃2𝑦)𝜃̇2𝑦
+ 𝑚1−𝑚2

2 𝑙2 sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝑙̇1
+𝑚1+𝑚2 𝑙1 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) sin(𝜃2𝑥)𝑙̇2
2
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+𝑚2𝑙1 cos(𝜃1𝑦) cos(𝜃2𝑦)𝑙̇2 + 𝑚2𝑙1 cos(𝜃1𝑥) sin(𝜃1𝑦)

cos(𝜃2𝑥) sin(𝜃2𝑦)𝑙̇2 , 𝑐47 = (𝑚1 + 𝑚2)𝑙1𝜃̇1𝑦
+ 𝑚1−𝑚2

2 𝑙2 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) sin(𝜃2𝑥)𝜃̇2𝑦 ,

𝑐48 = 𝑚2𝑙1 cos(𝜃1𝑦) cos(𝜃2𝑦)𝜃̇2𝑦
+𝑚2𝑙1 sin(𝜃2𝑦) sin(𝜃1𝑦) cos(𝜃1𝑥) cos(𝜃2𝑥)𝜃̇2𝑦
+𝑚1+𝑚2

2 𝑙1 sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇2𝑦)

(F.13)

𝐶5∙(𝑞, 𝑞̇) = (0, 0, 𝑐53 = −𝑚2𝑙1𝑙2 cos(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
−𝑚2𝑙1𝑙2 sin(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑦
+𝑚2𝑙2 cos(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝑙̇1,

𝑐54 = −𝑚2𝑙1𝑙2 sin(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
+𝑚2𝑙1𝑙2 cos(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃2𝑥 − 𝜃1𝑥)𝜃̇1𝑦
+ 𝑚2−𝑚1

2 𝑙1𝑙2 sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃2𝑥)𝜃̇2𝑦
+𝑚2𝑙2 sin(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃2𝑥 − 𝜃1𝑥)𝑙̇1 ,

𝑐55 = −𝑚2𝑙22 cos(𝜃2𝑦) sin(𝜃2𝑦)𝜃̇2𝑦 + 𝑚2𝑙2 cos2(𝜃2𝑦)𝑙̇2 ,

𝑐56 =
𝑚2−𝑚1

2 𝑙1𝑙2 sin(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃2𝑥) sin(𝜃1𝑥)𝜃̇1𝑦
−𝑚2𝑙22 cos(𝜃2𝑦) sin(𝜃2𝑦)𝜃̇2𝑥 ,

𝑐57 = 𝑚2𝑙2 cos(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
−𝑚2𝑙2 sin(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑦 ,

𝑐58 = −𝑚2𝑙2 cos2(𝜃2𝑦)𝜃̇2𝑥)

(F.14)

𝐶6∙(𝑞, 𝑞̇) = (0, 0, 𝑐63 = 𝑚2𝑙1𝑙2 sin(𝜃2𝑦) cos(𝜃1𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
−𝑚2𝑙1𝑙2 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) cos(𝜃2𝑥)𝜃̇1𝑦
+ 1

2
(𝑚1 + 𝑚2)𝑙1𝑙2 cos(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑦

+𝑚2𝑙2 sin(𝜃2𝑦) cos(𝜃1𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝑙̇1 ,

𝑐64 = −𝑚2𝑙1𝑙2 sin(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃1𝑦)𝜃̇1𝑥
+ 𝑚1+𝑚2

2
𝑙1𝑙2 cos(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑥

+𝑚1𝑙1𝑙2 sin(𝜃1𝑥) cos(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑦
−𝑚2𝑙1𝑙2 sin(𝜃1𝑦) cos(𝜃2𝑦)𝜃̇1𝑦
+𝑚2𝑙1𝑙2 cos(𝜃1𝑥) cos(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑦
+ 𝑚1−𝑚2

2
𝑙1𝑙2 sin(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃2𝑥) sin(𝜃1𝑥)𝜃̇2𝑥

+𝑚2𝑙2 cos(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃2𝑦)𝑙̇1
+𝑚2𝑙2 cos(𝜃1𝑦) cos(𝜃2𝑦)𝑙̇1
+ 𝑚1+𝑚2

2
𝑙2 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) sin(𝜃2𝑥)𝑙̇1

+ 𝑚1−𝑚2

2
𝑙1 sin(𝜃1𝑥) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃2𝑦)𝑙̇2 ,

𝑐65 =
𝑚1−𝑚2

2
𝑙1𝑙2 sin(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃2𝑥) sin(𝜃1𝑥)𝜃̇1𝑦

+𝑚2𝑙22 cos(𝜃2𝑦) sin(𝜃2𝑦)𝜃̇2𝑥 ,

𝑐66 = 𝑚2𝑙2 𝑙̇2 , 𝑐67 = 𝑚2𝑙2 cos(𝜃1𝑦) sin(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
+𝑚2𝑙2 cos(𝜃2𝑦) cos(𝜃1𝑦)𝜃̇1𝑦
+𝑚2𝑙2 cos(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑦
+ 𝑚1+𝑚2

2
𝑙2 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) sin(𝜃2𝑥)𝜃̇1𝑦

𝑐67 = 𝑚2𝑙2 cos(𝜃1𝑦) sin(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
+𝑚2𝑙2 cos(𝜃2𝑦) cos(𝜃1𝑦)𝜃̇1𝑦
+𝑚2𝑙2 cos(𝜃1𝑥) sin(𝜃1𝑦) cos(𝜃2𝑥) sin(𝜃2𝑦)𝜃̇1𝑦
+ 𝑚1+𝑚2

2
𝑙2 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) sin(𝜃2𝑥)𝜃̇1𝑦 ,

𝑐68 = 𝑚2𝑙2𝜃̇2𝑦 +
𝑚1−𝑚2

2
𝑙1 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) sin(𝜃2𝑥)𝜃̇1𝑦)

(F.15)
𝐶7∙(𝑞, 𝑞̇) = (0, 0, 𝑐73 = − 1
2 (𝑚1 + 𝑚2) cos2(𝜃1𝑦)𝜃̇1𝑥,

𝑐74 = −(𝑚1 + 𝑚2)𝑙1𝜃̇1𝑦
− 𝑚1−𝑚2

2 𝑙2 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) sin(𝜃2𝑥)𝜃̇2𝑦,

𝑐75 = −𝑚2𝑙2 cos(𝜃1𝑦) cos(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑥
−𝑚2𝑙2 cos(𝜃1𝑦) sin(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑦
+𝑚2 cos(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑦)𝑙̇2 ,

𝑐76 =
𝑚2−𝑚1

2 𝑙2 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥) sin(𝜃2𝑥)𝜃̇1𝑦
−𝑚2𝑙2 cos(𝜃1𝑦) sin(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑥
−𝑚2𝑙2 sin(𝜃2𝑦) sin(𝜃1𝑦)𝜃̇2𝑦
−𝑚2𝑙2 cos(𝜃2𝑦) cos(𝜃1𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑦
+𝑚2 cos(𝜃2𝑦) sin(𝜃1𝑦)𝑙̇2
−𝑚2 sin(𝜃2𝑦) cos(𝜃1𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝑙̇2 , 𝑐77 = 0,

𝑐78 = 𝑚2 cos(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑥
−𝑚2 cos(𝜃1𝑦) sin(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇2𝑦)

(F.16)

𝐶8∙(𝑞, 𝑞̇) = (0, 0, 𝑐83 = −𝑚2𝑙1 cos(𝜃2𝑦) cos(𝜃1𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
−𝑚2𝑙1 cos(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃2𝑥 − 𝜃1𝑥)𝜃̇1𝑦
+𝑚2 cos(𝜃2𝑦) cos(𝜃1𝑦) sin(𝜃2𝑥 − 𝜃1𝑥)𝑙̇1,

𝑐84 = 𝑚2𝑙1 cos(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
−𝑚2𝑙1 sin(𝜃1𝑦) sin(𝜃2𝑦)𝜃̇1𝑦
−𝑚2𝑙1 cos(𝜃2𝑦) cos(𝜃1𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑦
+ 𝑚2−𝑚1

2
𝑙1 sin(𝜃1𝑥) sin(𝜃1𝑦)

sin(𝜃2𝑥) sin(𝜃1𝑦)𝜃̇2𝑦 + 𝑚2 cos(𝜃1𝑦) sin(𝜃2𝑦)𝑙̇1
−𝑚2 cos(𝜃2𝑦) sin(𝜃1𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝑙̇1,

𝑐85 = 𝑚2𝑙2 cos2(𝜃2𝑦)𝜃̇2𝑥 ,

𝑐86 =
𝑚2−𝑚1

2
𝑙1 sin(𝜃2𝑦) sin(𝜃1𝑦) sin(𝜃2𝑥) sin(𝜃1𝑥)𝜃̇1𝑦 − 𝑚2𝑙2𝜃̇2𝑦 ,

𝑐87 = −𝑚2 cos(𝜃1𝑦) cos(𝜃2𝑦) sin(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑥
+𝑚2 cos(𝜃1𝑦) sin(𝜃2𝑦)𝜃̇1𝑦
−𝑚2 cos(𝜃2𝑦) sin(𝜃2𝑦) cos(𝜃1𝑥 − 𝜃2𝑥)𝜃̇1𝑦 , 𝑐88 = 0)

(F.17)

The gravity potential energy is given by:

𝑈𝑔(𝑞) = −𝑚1𝑔𝑙1 cos(𝜃1𝑥) cos(𝜃1𝑦) − 𝑚2𝑔[𝑙1 cos(𝜃1𝑥) cos(𝜃1𝑦)

+ 𝑙2 cos(𝜃2𝑥) cos(𝜃2𝑦)], (F.18)

so that the gravity generalized force is equal to:

−
𝜕𝑈𝑔

𝜕𝑞
=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0
0

−(𝑚1 + 𝑚2)𝑔𝑙1 sin(𝜃1𝑥) cos(𝜃1𝑦)
−(𝑚1 + 𝑚2)𝑔𝑙1 cos(𝜃1𝑥) sin(𝜃1𝑦)

𝑚2𝑔𝑙2 sin(𝜃2𝑥) cos(𝜃2𝑦)
𝑚2𝑔𝑙2 cos(𝜃2𝑥) sin(𝜃2𝑦)

(𝑚1 + 𝑚2)𝑔 cos(𝜃1𝑥) cos(𝜃1𝑦)
𝑚2𝑔 cos(𝜃2𝑥) cos(𝜃2𝑦)

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(F.19)

The vector of torque inputs is 𝑄 = (𝐹𝑥, 𝐹𝑦, 0, 0, 0, 0, 𝐹𝑙1 , 𝐹𝑙2 )
⊤, where 𝐹𝑙1

corresponds to a winch mechanism at the attachment joint between link
1 and the cart, while 𝐹𝑙2 corresponds to a winch mechanism mounted in
joint with mass 𝑚1 (see Fig. 3(b)). As alluded to in Section 2.2, an even
more complete model incorporates the 3D dynamics of the payload
(considered as a rigid body). This adds three orientation angles (Euler
or else), yielding an 11-degree-of-freedom system. The analytical cal-
culations of the matrix 𝐶(𝑞, 𝑞̇) using Christoffel’s symbols thus involve
113 × 3 = 3993 partial derivatives 𝜕𝑚𝑖𝑗

𝜕𝑞𝑘
. Certainly the use of a formal

calculus tool becomes mandatory at this stage.
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Table G.14
Main parameters of the Hoisting toolbox.
Variable Value

file name main_run.m:running the main simulation and updating the results

Method The default value is “all” meaning that the simulations will be done for all
controllers. Alternatively, by selecting an integer value for this variable it is
possible to conduct the simulation for a single controller. The integer value
corresponds to the row of Table 11

model_select The default value is “rigid” meaning that the lumped mass model introduced
in Section 5 will be used. Alternatively, it is possible to replace this value with
“flexible” to use the built-in matlab flexible beam model for the cable (this
should be used with caution).

file name parameters.m: used to modify the parameters of the simulation

traj_type: used to select a trajectory, load_type: used to select the payload
type, matched_disurbance_flag and load_disturbance_flag: select
disturbances, initial_sway_type: select initial sway SNR_value:
SNR of feedback noise
i
l
A

Appendix G. Some technical results for control

The above calculations are not useful for numerical simulation sake,
since available multibody toolboxes allow the construction of such
dynamical systems automatically. However, they may be necessary
to extend the stability analyses relying on zero-state detectability,
LaSalle’s invariance principle, in order to extend the results obtained
for 𝑁 = 1 (in 2D and 3D)and 𝑁 = 2 (in 2D), see Section 3.3.4. Consider
Appendix A. Let us further split the matrix 𝑀𝑥𝜃𝑙(𝑞) =

(

𝑀𝑥𝑙(𝑞)
𝑀𝜃𝑙(𝑞)

)

, so that:

𝑀(𝑞) =
⎛

⎜

⎜

⎝

𝑀𝑥𝑥 𝑀̄𝑥𝜃 𝑀𝑥𝑙
𝑀̄⊤

𝑥𝜃 𝑀𝜃𝜃 𝑀𝜃𝑙
𝑀⊤

𝑥𝑙 𝑀⊤
𝜃𝑙 𝑀𝑙𝑙

⎞

⎟

⎟

⎠

(G.1)

Item 4 in Lemma 1 allows us to perform Spong’s transformation for
actuated and unactuated coordinates (Reyhanoglu et al., 1999). Indeed
𝜃̈ = 𝑀−1

𝜃𝜃 (−𝑀̄
⊤
𝑥𝜃 𝑥̈ −𝑀𝜃𝑙𝑙 −𝑁𝐿(𝑞, 𝑞̇)), where 𝑁𝐿(𝑞, 𝑞̇) stands for generic

nonlinearities. Hence:

(𝑀𝑥𝑥 − 𝑀̄𝑥𝜃𝑀
−1
𝜃𝜃 𝑀̄

⊤
𝑥𝜃)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥
=𝑥

𝑥̈ + (𝑀𝑙𝑙 − 𝑀̄𝑥𝜃𝑀
−1
𝜃𝜃 𝑀𝜃𝑙)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥
=𝑥𝑙

𝑙

− 𝑀̄𝑥𝜃𝑀
−1
𝜃𝜃 𝑁𝐿(𝑞, 𝑞̇) +𝑁𝐿(𝑞, 𝑞̇) = 𝐹𝑥 (G.2)

(𝑀⊤
𝑥𝑙 −𝑀⊤

𝜃𝑙𝑀
−1
𝜃𝜃 𝑀̄

⊤
𝑥𝜃)𝑥̈ + (𝑀𝑙𝑙 −𝑀⊤

𝜃𝑙𝑀
−1
𝜃𝜃 𝑀𝜃𝑙)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥
=𝑙

𝑙

−𝑀⊤
𝜃𝑙𝑀

−1
𝜃𝜃 𝑁𝐿(𝑞, 𝑞̇) +𝑁𝐿(𝑞, 𝑞̇) = 𝐹𝑙 (G.3)

where 𝑥 ≻ 0 and 𝑙 ≻ 0 from the Schur complement Theorem (but,
in view of Lemma 1, 𝑙 becomes singular at the vertical posture and if
the payload is much heavier than the cable and the hook). Rearranging
the matrix in (G.1) and applying again the Schur complement Theorem,
it follows that:

Lemma 2. Let us consider (G.2) (G.3), then:

(𝑞)
𝛥
=
(

𝑥(𝑞) 𝑥𝑙(𝑞)
⊤

𝑥𝑙(𝑞) 𝑙(𝑞)

)

= ⊤(𝑞) ≻ 0 (G.4)

Consequently the system in (G.2) (G.3) with state (𝑥, 𝑥̇, 𝑙⊤, 𝑙̇⊤)⊤

and input (𝐹𝑥, 𝐹𝑙)⊤ is controllable (if some basic conditions hold to
guarantee 𝑀𝑙𝑙 ≻ 0), linearizable by state feedback. Then the crucial
point concerns the integrability properties of the system of unactuated
coordinates (Reyhanoglu et al., 1999):

𝜃̈ = 𝑀−1
𝜃𝜃 (−𝑀̄

⊤
𝑥𝜃 𝑥̈ −𝑀𝜃𝑙𝑙 −𝑁𝐿(𝑞, 𝑞̇)) (G.5)

Usually such dynamics are nonintegrable and thus can be interpreted

as second-order nonholonomic constraints, which do not reduce the t
state-space dimension (Reyhanoglu et al., 1999). From Lemma 1 the
term 𝑀𝜃𝑙(𝑞) vanishes at the vertical cable’s posture and is proportional
to 𝜃𝑖 and sums of angles in a neighborhood of it. Thus around the
vertical posture only 𝑀̄⊤

𝑥𝜃 𝑥̈ remains available as a control input to this
subdynamics, and some control action may also exist through 𝑁𝐿(𝑞, 𝑞̇).
Said otherwise:

Proposition 2. Let 𝑞 = (𝑥, 𝜃1,… , 𝜃𝑁 , 𝑙1,… , 𝑙𝑁 )⊤. The only way to control
the 𝜃 dynamics (G.5) in the neighborhood of the cable’s vertical posture, is
through ẍ and/or some nonlinear velocity couplings.

It is not difficult to extend these results to the case where only
𝑙1 varies, and also to the 3D double-pendulum in Appendix F. It is
noteworthy that the nonlinear forces in (D.4) could be interesting for
control purposes, by choosing suitable 𝜕𝑚1

𝜕𝑙1
when a winch is mounted

on a fixed reference frame outside the OC’s moving structure. To the
best of the authors’ knowledge, this is an open issue.

Appendix H. Hoisting toolbox

A set of scripts and files have been developed in this work to
conduct all the necessary numerical simulations and optimizations.2
The controllers listed in Table 11 are implemented in the toolbox and
a set of optimization algorithms have been used in the toolbox in
order to optimize the parameters of the controllers. Moreover, it can
generate and compare the results using plots and tables compatible
with LATEX. The toolbox contains many functions and scripts and files.
But, for a normal usages, user only needs to consider two script files
named main_run.m and parameters.m and modify it according to
Table G.14. In addition, other parameters can be modified in the tool-
box to get customized results as explained in detail in the corresponding
files.
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