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Abstract

Audio-visual speech recognition leads to significant improve-
ments compared to pure audio recognition especially when the
audio signal is corrupted by noise. This has been reproduced by
many researchers. Little research has been done on the behavior
of audio-visual recognition with additional degradations of the
video signal, however. In this article we investigate the conse-
quences of different types of image degradations, namely white
noise, a JPEG compression, and errors in the localization of the
mouth region, on the audio-visual recognition process. The first
question we address is how the noise in the video stream in-
fluences the recognition scores. Therefore we added noise to
both, the audio and video signal at different SNR levels. The
second question is how the adaptation of the fusion parameter,
controlling the contribution of the audio and video stream to
the recognition, is affected by the additional noise in the video
stream. We compare the results we obtain when we adapt the
fusion parameter to the noise in the audio and video stream to
those we get when it is only adapted to the noise in the audio
stream and hence a clean video stream is assumed. For the sec-
ond type of tests we use an automatic adaptation of the fusion
parameter based on the entropy of the a-posteriori probabilities
from the audio stream.

1. Introduction
The importance of the lips movement in human speech percep-
tion, especially in noisy conditions, is well known [1]. This
motivated the inclusion of the visual information in Automatic
Speech Recognition (ASR) systems. In most of these systems
the impact of additional noise in the audio stream is consid-
ered but the video stream is assumed to be of constant quality
[2, 3, 4]. In [5] and [6] the effects of a degradation of the video
stream on a video only recognition are investigated but the con-
sequences it has on the audio-visual recognition are not taken
into account. In this article we want to evaluate both, the influ-
ence of degradations in the video stream on a video only and
on an audio-visual recognition process. Due to the fact that
for clean audio the contribution of the audio stream dominates
in audio-visual recognition and only small improvements com-
pared to an audio only recognition can be observed we combine

the video data with audio data corrupted by noise.
A key aspect of the fusion of audio and video data is the

control of the fusion parameter which determines the contribu-
tion of either of the two streams to the recognition. Therefore
it is an important question how the additional noise in the video
stream affects the correct setting of the fusion parameter. To
assess this influence, in a first experiment the fusion parameter
was adapted to the noise in the audio and the video stream. In a
second experiment we adapted the fusion parameter only to the
noise in the audio stream and assumed that the video stream was
undistorted. By comparing the results we are able to judge if it
is necessary to adapt the fusion parameter to the degradations
in both streams or if an adaptation only to the audio stream is
sufficient.

2. The recognition system
2.1. System structure

The recognition tests aiming to assess the impact of degrada-
tions in the audio and video stream on the audio-visual speech
recognition are carried out with an ANN/HMM hybrid model
for continuous numbers recognition. For the implementation
of the system the tool STRUT from TCTS lab Mons, Belgium,
was used [7]. The identification of the phonemes is performed
independently for the audio and the video path (compare Fig. 1)
and thus follows a Separate Identification (SI) or multi-stream
approach [8]. The ANNs are trained to produce estimates of
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Figure 1: Separate Identification (SI) audio-visual speech
recognition system

the a-posteriori probabilities P (Hi|xA) and P (Hi|xV ) for the



occurrence of the phoneme Hi when the acoustic feature vector
xA and the visual feature vector xV are observed, respectively.

Noise present in the audio or video stream affects the reli-
ability of the estimated a-posteriori probabilities. This is taken
into account by putting different weights on the audio and video
stream during the fusion process. The fusion process follows a
Geometric Weighting [9]:

P̂GW (Hi|xA, xV ) =
P̂ α(Hi|xA)P̂ β(Hi|xV )

P̂ α+β−1(Hi)
· ε(α, β) (1)

The weighting parameters α and β both depend on a third pa-
rameter c according to:

α =




0 c < −1
1 + c −1 ≤ c ≤ 0 ,

1 c > 0
β =




1 c < 0
1 − c 0 ≤ c ≤ 1

0 c > 1

(2)
The contribution of the audio and video data is controlled by
the parameter c. When c � −1, only the video signal con-
tributes to the recognition, whereas for c � 1 the recognition
relies completely on the audio signal. ε(α, β) is a normaliza-
tion parameter independent on the actual phoneme determined
by evaluating the condition

∑N
i=1 P̂GW (Hi|xA,xV ) = 1.

2.2. Adaptive fusion

For a realistic scenario, the setting of the weights has to be per-
formed automatically depending on the noise level in the input
streams. A prerequisite to this is the estimation of the reliabil-
ity of these streams during the fusion. The distributions of the
a-posteriori probabilities at the output of each of the two ANNs
carries information on the reliability of the corresponding input
streams. If one distinct phoneme class shows a very high prob-
ability and all other classes have a low probability, this signifies
a reliable input. Whereas, when all classes have almost equal
probability, the input is very unreliable. This information is
captured in the entropy of the estimated a-posteriori probabili-
ties P̂ (Hi,k|xA,k) for the occurrence of the phoneme Hi, given
the acoustic feature vector xA,k at time frame k [10, 11, 2].
The entropy can be calculated for both, the audio and the video
stream, but for now we will only take the audio stream into ac-
count. The entropy of the a-posteriori probabilities in frame k
is

H(k) = −
N∑

i=1

P̂ (Hi,k|xA,k) log2 P̂ (Hi,k|xA,k) (3)

where N is the number of phonemes. In order to reduce the
effects of large variations of the entropy value from one frame
to the other a smoothing with a first order recursive filter was
introduced

H̃(k + 1) = (1 − a) · H̃(k) + a · H(k) . (4)

For a the value 0.0025 was chosen corresponding to a time con-
stant of 0.6 Hz.

We want to control the fusion process based on the entropy.
Therefore a mapping between the value of the entropy and the
fusion parameter c has to be established. In order not to make
the reliability measure depend only on one noise type we used
five different noise types to establish the mapping. The noise
types were white noise, noise recorded in a car at 120 km/h
and, from the NOISEX database, babble noise and two types

of factory noise [12]. These five different types of noise were
mixed to the audio signal at 12 SNR levels each ranging from
−15 dB to clean speech. Next the best mapping, in a mini-
mum error sense, between the entropy value for each of these 60
noise scenarios and the corresponding setting of the fusion pa-
rameter c with minimal Word Error Rate (WER) was determined
[9]. The underlying settings of the parameter c with minimum
WER were determined manually. To approximate the mapping,
a second order polynomial function was used. The free param-
eters of this polynomial function were determined with a LMS
algorithm. Based on this mapping, the fusion process can be
controlled adaptively in a wide range of noise scenarios. Hence
for a given value of the entropy of the a-posteriori probabilities
the setting of the fusion parameter close to the optimum value
can be determined.

2.3. The audio-visual database

To train the ANNs and to perform the recognition tests we used
a single-speaker audio-visual database recorded at the Institut
de la Communication Parlée (ICP) in Grenoble, France. This
database is a repetition of a set of utterances selected from
the Numbers95 corpus [13]. The database comprises 1543 ut-
terances spoken by a native English-speaking female subject.
Each of these utterances consists of several continuously uttered
numbers yielding to a total of 4651 words. The database was di-
vided into a set of 851 utterances for training and a set of 692
utterances for testing. During the recordings of the database a
lamp positioned in front of the speaker ensured constant illu-
mination conditions and high contrast images. The mouth re-
gion was tracked by means of markers positioned in the speak-
ers face. To further facilitate the tracking of the mouth region,
the movements of the speakers head were restricted during the
recordings by a helmet. The recordings were made on BETA-
CAM video with 50 half-frames of size 768 × 288 pixels per
second. Instead of combining two half-frames to a full-frame
we preferred to do without the additional spatial resolution and
keep a higher temporal resolution. Full-frames were generated
via a linear interpolation of the missing lines from the neigh-
boring lines in each half-frame. After localization of the mouth
region based on the markers positioned in the speakers face, the
corresponding region was extracted and the images were down-
sampled by a factor 4. This yields images of 78 × 64 pixels at
50 frames per second of the Region Of Interest (ROI), which are
stored in the RGB format. Tracking of the ROI was performed
via a correlation. The localization error in the final image is low
( approx. 1 pixel).

2.4. Audio and video features

Video features are generated using the Discrete Cosine Trans-
form (DCT). The DCT has shown superior performance com-
pared to other pixel based and geometric lip features [5]. To
reduce the number of coefficients we have selected the 20 co-
efficients with the highest energy. This includes also the first
coefficient representing the mean energy of the image. The se-
lection of the coefficients is based on an evaluation of the train-
ing set.

The audio feature extraction is performed with RASTA-
PLP using 13 cepstral coefficients and the log energy.

In order to take the context of a frame into account a time
window of 13 frames set up by the current frame and the 6 pre-
ceding and succeeding frames was presented to the ANN. Each
frame is 12 ms long and consecutive frames have a 50% over-
lap. Additionally to the pure DCT and RASTA-PLP coefficients



also their first and second order derivatives were used.

3. Distortions in the video stream

In general noise in the audio signal plays a more important
role than video degradations. Nevertheless the video signal can
also be corrupted and as a consequence impair the recognition
scores.

3.1. Sources of degradations

Possible sources of degradations of the video signal are additive
noise in the capturing or the transmission device, a mismatch of
illumination conditions between the training conditions and the
application of the system, lossy compression of the images on
the transmission from the capturing device to the recognition
system, and the incorrect localization of the ROI in the images
(compare Fig. 2).

Compression

Illumination Localization
errors

Noise

Transmission Recognition

Figure 2: Possible sources of degradations to the video signal.

A change of the illumination conditions can not easily be
simulated. For this purpose either the same sequences have
to be recorded with different illumination conditions or 3-D
recordings of the scene are necessary. Based on 3-D recordings
the illumination can also be changed afterwards. Both these
methods were too costly for the simulations performed here.
Hence we limit our investigations in this article to the effects of
additive white noise, a compression of the images with a JPEG
algorithm and a translation of the mouth region in respect to its
normal position.

3.1.1. White noise

In Fig. 3 an image from the database is shown a) before noise
was added and b) with additional white noise at an SNR level of
0dB. To each image a different realization of a simulated noise
process was added. Effects of the noise on the tracking of the
mouth region were not investigated.

a) b)
Figure 3: In a) an image taken from the audio-visual database
is shown. The same image is shown in b) when white noise at
an SNR of 0 dB was added.

3.1.2. JPEG compression

The most widespread used algorithms for moving image com-
pression are the MPEG algorithms [14]. They are based on the
still image compression standard JPEG [15]. For this reason
the artifacts generated by both algorithms are very similar in
nature. As the JPEG algorithm is much easier to implement we
used this algorithm only to simulate compression artifacts in the
video signal. Figure 4 shows the same image as in Fig. 3.a) af-
ter JPEG compression with a quality factor of 40 (a) and 10 (b).
At a quality factor of 40 the degradations are still small but at a
quality factor of 10 the impairments are clearly visible.

a) b)
Figure 4: The same image as in Fig. 3 a) is shown here after
JPEG compression with a quality factor of 40 a) and 10 b).

3.1.3. Localization errors

The DCT used for the extraction of the video features is not
shift-invariant. Hence a change of the position of the ROI in
the image affects the values of the extracted features. Due to
the fact that the database used for the experiments consists only
of images of the mouth region, such localization errors of the
ROI are difficult to simulate. For this purpose it was necessary
to perform the extraction of the mouth region from the original
analog video images with a different position of the ROI. This
process is very time consuming and hence was only performed
for one deviating position and only on a subset of the database.
This subset contains 73 sequences with a total of 279 numbers.
An image from this subset in its original position and after a

a) b)
Figure 5: An image from the reduced subset with the ROI in its
original position (a) and after a shift (b).

shift of the ROI of 6 pixels to the left and 11 pixels to the bottom
is shown in Fig. 5. This shift was kept constant for all images
of the sequence. In the resulting image the upper bound of the
upper lip is close to the border of the image but is in all images
completely inside the image.



3.2. Recognition scores

For each of the presented image distortions we performed video
only and audio visual recognition tests. The tests were carried
out in two steps: First we investigated the impact of the image
degradations on the recognition itself. Therefore we performed
video only and audio-visual tests for which we adapted the fu-
sion parameter manually to give the best possible results in each
noise scenario. Second we determined the loss of performance
of the presented adaptive weighting algorithm due to the addi-
tional image distortions. This algorithm to control the weights
on the audio and video stream assumes that the video stream is
of constant quality and only adapts to noise in the audio stream.
With our tests we wanted to answer the question if the control
of the weighting based on the audio stream is sufficient in a re-
alistic scenario where degradations occur in the audio and video
stream or if it is rather necessary to develop a weighting algo-
rithm which takes both streams into account.

For the audio-visual tests we added babble noise at SNR
levels ranging from −3 to 12 dB to the audio stream. The recog-
nition system was in all cases trained on clean audio and video.

3.2.1. White noise

In Fig. 6 the recognition results in Word Error Rates (WERs) are
displayed when white noise was added to the video stream. In
the very left column the results for the pure video recognition
are plotted. As can be seen from the plot, small amounts of addi-
tive noise have almost no effect on the recognition performance,
whereas when the image is severely degraded performance de-
creases significantly.
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Figure 6: Fusion results when white noise was added to the
video stream and babble noise to the audio stream. In the most
left column the results for a video only recognition are dis-
played.

Figure 6 also shows the audio-visual results when the fu-
sion parameter c was adapted manually so as to give minimum
WERs. The numbers on the x-axis correspond to the SNR lev-
els in the audio stream and the different curves represent the
noise level in the video stream. Similar to the video only results
almost no impairments of the recognition for SNR levels above
0 dB can be seen. Lower SNR levels in the video stream result
in severe degradations of the recognition scores though. With an
increase of the SNR in the audio stream the effects of the noise
in the video stream on the audio-visual recognition decrease.
This is due to the fact that in these situations the audio stream
dominates the recognition. The results also show that even for
very high distortions in the video stream the joint audio-visual
recognition is still better than the audio only recognition.

In Fig. 7 the results of the second step of the recognition
tests are displayed. Here the difference between the best possi-
ble recognition scores when the fusion parameter was set man-
ually and those resulting from the adaptive evaluation of the
fusion parameter based on the entropy of the a-posteriori prob-
abilities is visualized. As can be expected from the previous
results, the effects of disregarding the additional noise in the
video stream during the adaptive setting of the fusion parame-
ter are very small for video SNR levels below 0 dB. However
for lower video SNR levels the loss of performance compared
to the best possible values gets significant. Only for these val-
ues an additional evaluation of the quality of the video stream
for the adaptive setting of the weights is necessary. The re-
sults of the adaptive audio-visual recognition at very low SNR
in the video stream are even inferior to the audio only results.
Such high noise levels in the video stream are quite unrealistic
though.
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Figure 7: Difference of WERs if the fusion parameter was either
adapted to both, the noise in the audio and video stream, or only
to the audio stream. White noise was added to the video stream.

When looking at Fig. 7 it can be seen that the difference be-
tween adaptive and optimal setting of the weights at an SNR
of −12 dB in the video stream initially increases with increas-
ing SNR in the audio stream and then decreases again. This is
at first sight a strange behavior. It originates from the chang-
ing influence of the video stream on the recognition with the
changing noise in the audio stream. For very low SNR in the
audio stream the influence of the video stream is high due to the
adaptive weighting. The difference of the recognition results for
both streams in this case is only small though. They both lead
to WERs of about 90%. Hence also the degradation resulting
form the adaptive weighting can only be small. With increas-
ing SNR in the audio stream the recognition scores in the audio
stream get better, but the adaptively determined influence of the
video stream is still high. Due to the increasing difference be-
tween the recognition results of the audio and video stream the
difference between optimal and adaptive weighting increases,
too. When the SNR in the audio stream increases further, the
influence of the video stream gets smaller and consequently the
results for optimal and adaptive weighting approach each other
again.

3.2.2. Compressed images

The tests for the JPEG compressed images were performed in
a similar way as for the additive white noise. From Fig. 8 it
can be seen that the effects of the compression are also rather
small for low compression ratios. Correspondingly, for highly



compressed images there is still a significant gain at the audio-
visual recognition compared to the audio alone recognition.
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Figure 8: Fusion results when the images where compressed
with a JPEG algorithm at a variable quality factor (from 40 to 2).
In the most left column the results for a video only recognition
are displayed.

In Fig. 9 the difference in performance between the optimal
manual setting and the adaptive setting of the fusion parameter
based only on the noise in the audio stream are given. In line
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Figure 9: Difference of WERs if the fusion parameter was either
adapted to both, the noise in the audio and video stream, or
only to the audio stream. The images were compressed with the
JPEG algorithm.

with the previous tests the loss of performance from neglecting
the video noise is small and only plays a significant role when
the image quality is very poor.

3.2.3. Localization errors

As can be seen from Fig. 10 a translation of the mouth region out
of its standard position impairs the recognition much more than
the distortions considered so far. The video only recognition re-
sults for the reduced test set, but with the mouth region in its cor-
rect position, gives a WER of 35.5%. This is significantly worse
than the 28.9% obtained on the whole test set. The reason for
this is most likely a tilt and a rotation of the head in the underly-
ing images (compare Fig. 3.a and Fig. 5.a). As a consequence of
the additionally introduced translation of the mouth region the
WER increases dramatically to 92.5%. Thus the video stream
conveys hardly any useful information. This can also be seen
when looking at the audio-visual results in Fig. 10. The differ-
ence between the audio only and the audio-visual recognition
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Figure 10: Fusion results on the reduced test set with the mouth
region in its original position and after a translation. In the
most left column the results for a video only recognition are
displayed.

with the translated mouth region is very small. Due to the very
poor results it is unnecessary to consider the results of the adap-
tive fusion.

4. Conclusion
We investigated the impact of distortions in both, the audio and
the video stream, on the performance of an audio-visual recog-
nition system. As image distortions we considered white noise,
a compression of the images according to the JPEG standard
at different compression ratios, and a translation of the mouth
region from its original position in the image. For the audio-
visual recognition tests we added babble noise at different SNR
levels to the audio stream. In the first step of the recognition
tests we performed video only and audio visual recognition tests
for which the fusion parameter was adapted manually so as to
give the best possible recognition results for each noise sce-
nario. The results for additive white noise and degradations in-
troduced by the compression are very similar in nature. In both
cases only small effects can be observed for moderate degra-
dations and even with severe degradations in the video stream
the combined audio-visual recognition still showed significant
improvements compared to the audio alone recognition. These
results are in accordance with those obtained in [5]. Here the
images were also degraded in a similar way but the recognition
results were only based on the video stream. Despite these pos-
itive results the translation of the mouth region out of its orig-
inal position severely deteriorates the recognition results. De-
viations from the standard position lead to very high error rates
in the video stream. Similar results are reported in [6]. Conse-
quently the benefit from the additional use of the video stream
for the recognition is negligible. To avoid these problems a pre-
cise localization of the mouth region during the feature extrac-
tion process is necessary. Algorithms capable of doing this are
reported in [16], [17], and [18], for example. Small translations
can be handled if they are present during the training phase of
the recognition system. In this case the ANNs are able to adapt
to these translations.

An important aspect of our investigations was to consider
the impact of degradations in the video stream on the audio-
visual recognition and especially the necessary changes of the
setting of the fusion parameter. We elaborated a mapping be-
tween a measure for the noise level in the audio stream, namely
the entropy of the a-posteriori probabilities, and the fusion pa-



rameter which controls the contribution of the audio and video
stream during the recognition. This mapping enables an adap-
tive setting of the fusion parameter with optimal recognition re-
sults in a wide range of noise levels in the audio stream. In
a second step of our recognition tests we investigated how the
additional noise in the video stream, which is not taken into ac-
count for the evaluation of the entropy, affects the performance
of the algorithm. The results showed that for small to medium
degradations disregarding the noise in the video stream in the
setting of the weights has only a small impact on the recogni-
tion performance. It follows from this that it is sufficient in an
audio-visual recognition system to adaptively control the set-
ting of the fusion parameter based on the audio stream. Only
in situations where the image quality is extremely poor, an ad-
ditional evaluation of the video stream could lead to significant
improvements. However, these situations are not very realistic
and also show a very low overall performance. In general the
SNR in the video stream can be expected to be significantly bet-
ter than 20 dB and for the quality factor in JPEG compression
a common value is 70. A value of 40 already leads to clearly
visible degradations.
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