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Motivation – surveillance of hydro equipement
face to intermitent use of hydro electicity
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Source: www.andritz.com

Transient regimes – very 

frequent BUT the systems are 

generally not designed for this 

AI can help surveying and ensuring 

everything is all right!

http://www.andritz.com/
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Continuous TRANSIENT 

monitoring

Current trend in hydro surveillance – Analysis 

of Transient phenomena!!!

In a context of sparse sensing…How to predict 

parameters everywhere?



Introduction (3)
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NEED to classify these transients, knowing that they depend on the physical 

phenomena but on the state of circuits (aging, fatigue, corrosion,…). 

Transitory states – affect  the pipe characteristics this is why is 

crucial to supervise them
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Introduction (4)
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Courtesy of https://www.slideshare.net/fredverheul/machine-learning-101-dkom-2017

Key point: how to design the appropriate 

feature extraction method? 

https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a
https://www.slideshare.net/fredverheul/machine-learning-101-dkom-2017
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State of the Art (1) – Studied on a fully controlled

reduced scale experimental facility

88



State of the Art (2)
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Courtesy of https://www.slideshare.net/fredverheul/machine-learning-101-dkom-2017

1. Spectral analysis-based feature 

extraction

https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a
https://www.slideshare.net/fredverheul/machine-learning-101-dkom-2017


State of the Art (3) – Spectral analysis

10

Fourier 

Transform

Spectral 

estimation/ 

Filtering

HUMAN 

intervention/setting 

required!



State of the Art (4)
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Courtesy of https://www.slideshare.net/fredverheul/machine-learning-101-dkom-2017

2. Model matching-based feature extraction

https://hackernoon.com/a-brief-overview-of-automatic-machine-learning-solutions-automl-2826c7807a2a
https://www.slideshare.net/fredverheul/machine-learning-101-dkom-2017


State of the Art (5)
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Key element – modelisation using simulation software: Cosmos, Comsol, Fluent, 

Simsen…



State of the Art (5)
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Model = pressure distribution for each possible real situation



State of the Art (6)
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Matching

process

Models

Test 

signals 

Projection

NOT always realistic

NOT always available

NOT 

discriminant

!
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Physical inference (1)
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First, need for a data driven representation space

PHASE DIAGRAM ANALYSIS 
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Physical inference (2)

17

Second, infere physical parameter extraction
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Physical inference (3)
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Adaptive analysis to any context, no a priori knowledges required 
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Illustration (1) – Hydrosurge© software

Open conversion 

module, easy to 

adapt to different 

sensing units, in 

order to monitor

TRANSIENTS

Machine 
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Supervise

d
Predict/Asses an 
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Illustration (2)

For ex. : Valve and bypass opening For ex.:  Instability, resonance

(related to physical problems)

For ex.: Loading and Stop 

(related to machine control)

Long Term
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Illustration (3)
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Conclusions
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• High interest for physical inference in machine learning process: three 

POC in progress

• Motrhys is partner with GE Hydro and won the 1st price at the 

Innovation contest (GE, 2018), in the theme Machine Learning 

• This is just the beginning, partnerships highly suitable


