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Inverse modeling: an interdisciplinary approach

This course (mostly): Conservation laws,

Optimization/Computational mathematics, Data

assimilation/Computational fluid dynamics.
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Environment and atmospheric studies

• NASA video: progression of changing global surface

temperatures anomalies from 1880 through 2012.

http://svs.gsfc.nasa.gov/vis/a000000/a004000/a004030/

• Earth system = complex interconnected systems involving,

e.g. oceans, polar ice sheets and atmosphere.

• Numerous proxies, e.g. temperature measurements in

oceans, chemical measurements in atmosphere and

firns/ice cores, radar measurements in ice sheet.
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Classes overview (day 1)

Les. Topic

1 Introduction and basic modeling concepts (E. Witrant, 1h)

Overview of inverse problems; Conservation laws and modeling with partial

differential equations; Some computation issues.

2 The earth system: from proxies to decision making (S. Houwel-

ing, 2h)

The climate system; Atmospheric transport models and feedback mech-

anisms; Measurements and proxies; The role of Methane and Carbon

dioxyde; Assessing climate changes.

3 Optimization methods: problem formulation (E. Witrant, 1h30)

State variables, Inverse problem formulation, Performance measure, Regu-

larization.

4 Optimization methods: analytical and numerical solutions (E.

Witrant, 1h30)

Calculus of variations, Optimizing linear systems; Nonlinear programming

and gradient descent; Numerical methods.
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Classes overview (day 2)

Les. Topic

5 Chemo-hydrodynamic patterns and instabilities (Anne De Wit,

1h30)

Hydrodynamic instabilities in reactive systems; Effect of chemical reactions

on density and viscous fingering; Convective instabilities in sea ice and dur-

ing CO2 sequestration in porous media.

6 Inverse modeling from ice cores (E. Witrant, 1h30)

Modeling heterogeneous transport of trace gas in a 1-D porous medium;

Characterizing transport in ice cores using PDE optimization; Atmospheric

reconstruction of trace gas from linear optimization and sparse data.

7 Inverse modeling of atmospheric emissions (M. Krol, 2h30)

Measurements calibration and correlation; Handling uncertainties; Cost

function and regularization; Qualitative analysis and methods revision, sen-

sitivity analysis. Hands-on simulation experience.
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Classes overview (day 3)

Les. Topic

8 Optimization techniques in data assimilation for oceanography

and weather forecasting (A. Sartenaer, 1h30)

The variational approach and its 4D-Var formulation; Preconditioning tech-

niques; Derivative-free approaches; Multilevel optimization.

9 Glaciers, ice sheets and ice shelves (F. Pattyn, 2h)

Ice-sheet modelling ; Common approximations of the Stokes equations; Nu-

merical solutions; Initialization problems and boundary condition estimates

using inverse modeling..

10 Analysing and simulating large-scale systems (S. Vandewalle,

2h)

Methods from numerical analysis for complex (possibly nonlinear) systems

described by partial differential equations, multigrid approaches.
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Inverse Problems and Environment:

some new tools for atmospheric studies

Lesson 1: Introduction to inverse problems and

basic modeling concepts
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1 Inverse problems

Mappings

Solutions

Inversion scheme

Statistical methods

Approximation methods

Kalman filtering

Optimization

2 Conservation laws

Convection-diffusion

Euler and Navier-Stokes

3 Some computation issues

From distributed to lumped dynamics

Green’s function
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Inverse problems (IP)

Overview

• Introduced by Viktor Ambartsumian (Soviet-Armenian

physicist, 1908-1996) for the Sturm-Liouville pb in 1929

Wikipedia “An IP is a general framework that is used to convert

observed measurements into information about a physical

object or system”

• Widely used, e.g. in computer vision, natural language

processing, machine learning, statistics, statistical

inference, geophysics, medical imaging (such as

computed axial tomography and EEG/ERP), remote

sensing, ocean acoustic tomography, nondestructive

testing, astronomy, physics, environment. . .

• Examples:
Physical system Governing equations Physical quantity Observed data

Earth’s grav. field Newton’s law of gravity Density Gravitational field

Earth’s mag. field Maxwell’s equations Magnetic susceptibility Magnetic field

Seismic waves Wave equation Wave-speed (density) Particle velocity
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Definition

• Consider a particular (physical) model structureM
parameterized using p ∈ DM ⊂ R

np :
M∗ = {M(p) | p ∈ DM}:
• knowingM and p, we can predict the observed data ŷ

⇒ forward model, e.g. M : p 7→ ŷ and ŷ = M(p)
• knowingM and observed data y, we can estimate the

unknown parameter p̂

⇒ inverse model, e.g. M−1 : y 7→ p̂ and p̂ = M−1(y)

• e.g. inverse solution for the simplest algebraic case where

M : y = Mp where p ∈ Rnp , y ∈ Rnd and M a known

matrix ∈ Rnd×np , for np = nd , np > nd and np < nd?
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Mappings

Figure courtesy of A. Tarantola, Course on Inverse Problems 2007

→ Expressed in terms of under (e.g. np > nd ) or over (e.g.

nd > np) constrained IP
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• “Far better an approximate answer to the right question,

which is often vague,

than an exact answer to the wrong question,

which can always be made precise.”

John W. Tukey, 1962

→ Handle the under/over contrained issues in the

optimization problem formulation, expressing the

trade-offs between conflicting objectives

• Physical problems are always underconstrained:

continuous (infinite dimensional) parameter estimated

from discrete (sampled) measurements
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Solutions and well-posedness

Jacques S. Hadamard

(French mathematician

1865-1963)

For a well-posed problem [J. Hadamard]:

• a solution exists

• the solution is unique

• the solution’s behavior changes

continuously with the initial

conditions

Inverse problems are typically ill-posed:

need for extra constraints (e.g. regularity

of the solution, coherence between

model and data variability, etc.)
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A general inversion scheme
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Main inversion strategies

Statistical methods

• Uncertainties/prior information modeled as random→

statistical characterization

• Models complex uncertainties from simulation model, data

measurements and prior information

• Aim of the methods: achieve statistical description with an

acceptable computation cost

• Require a stochastic model of the data and constraints on

the possible state of the world

• Tools:

• parameters: numerical properties of state

• estimators: quantities computed from data without

knowing the state

• risk functions: quantify the expected ‘cost’ to compare

estimators
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Statistical methods (2)

• Frequentist methods:

• frequency interpretation of probability: any given

experiment can be considered as one of an infinite

sequence of possible repetitions of the same experiment,

each capable of producing statistically independent results

• parameters: fixed but unknown values, not random var.

• result = true/false, or confidence interval

• e.g. minmax estimation: minimize the maximum risk over

all states satisfying the constraints

• Bayesian inference:

• min. the expected risk when the state is drawn at random

according to the constraints

• Bayes’ rule (relates odds of event A1 to event A2 before

and after conditioning on another event B) is used to

update the probability estimate for a hypothesis as

additional evidence is acquired

• model parameters and constraints as prior probability

distribution

• result = probability distribution
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Approximation methods

• Many (thousands of) iterations of the forward model are

often necessary

• Critical for large-scale (e.g. PDE) problems→ reduce

computation cost

• Advanced linear solver and preconditioning techniques +

parallelization: often not sufficient

⇒ Replace the forward model by an inexpensive surrogate,

e.g. ց input space and improve sampling, mutligrid

approaches

• Then combined with statistical or deterministic

optimization strategies
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Kalman filtering (Rudolf Emil Kálmán, Hungarian EE

engineer 1930-)

• Ensemble Kalman filters:

• recursive filter suitable for a large number of parameters

(e.g. discretized PDEs)

• seek the solution in the space spanned by a collection of

ensembles

• compared to the classical KF (1960): replace covariance

matrix by samples covariance

• supposes Gaussian probability distributions

• Assume that the variability of the parameters can be well

approximated by a small number of nodes

• Causal: use only the data up to time t to estimate p(t)→
family of identification/estimation techniques
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Optimization

• Formulate the inverse problem as an optimization problem

• Based on (large-scale) deterministic optimization methods

• Full use of the physical knowledge of the system

• Reduce the statistical flexibility

• Design according to the model architecture

• May provide qualitative, analytical results→ new insights

on the model property
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Conservation laws

General form

• Conservation: the variation of a conserved (intensive) flow

quantity U in a given volume results from internal sources

and the quantity, the flux, crossing the boundary

• Fluxes and sources depend on space-time coordinates, +

on the fluid motion

• Not all flow quantities obey conservation laws. Fluid flows
fully described by the conservation of

1 mass

2 momentum (3-D vector)

3 energy

⇒ 5 equations

• Other quantities can be used but will not take the form of a

conservation law
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Scalar conservation law

Consider:

- a scalar quantity per unit

volume U,

- an arbitrary volume Ω fixed in

space (control volume)

bounded by

- a closed surface S (control

surface) crossed by the fluid

flow

• Total amount of U inside Ω:
∫

Ω
UdΩ with variation per unit

time ∂
∂t

∫

Ω
UdΩ

• Flux = amount of U crossing S per unit time:

FndS = ~F · d~S with d~S outward normal, and net total

contribution −
∮

S
~F · d~S (~F > 0 when entering the domain)

• Contribution of volume and surface sources:
∫

Ω
QV dΩ+

∮

S
~QS · d~S
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Scalar conservation law (2)

Provides the integral conservation form for quantity U:

∂

∂t

∫

Ω
UdΩ+

∮

S

~F · d~S =

∫

Ω
QV dΩ+

∮

S

~QS · d~S

• valid ∀ fixed S and Ω, and any point in flow domain

• internal variation of U depends only of fluxes through S ,

not inside

• no derivative/gradient of F : may be discontinuous and

admit shock waves

⇒ relate to conservative numerical scheme at the discrete

level (e.g. conserve mass)
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Differential form of a conservation law
Obtained using Gauss’ theorem

∮

S
~F · d~S =

∫

Ω
~∇ · ~FdΩ as:

∂U

∂t
+ ~∇ · ~F = QV + ~∇ · ~QS ⇔

∂U

∂t
+ ~∇ · (~F − ~QS) = QV

• the effective flux (~F − ~QS) appear exclusively under the

gradient operator⇒ way to recognize conservation laws

• more restrictive than the integral form as the flux has to be

differentiable (excludes shocks)

• fluxes and source definition provided by the quantity U

considered
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Convection-diffusion form of a convection law
Flux = convective transport + molecular agitation (even at rest)

• Convective flux:

• amount of U carried away or transported by the flow

(velocity ~v): ~FC = U~v
• for fluid density U = ρ, local flux through d~S is the local

mass flow rate: ρ~v · d~S = d ~m (kg/s)

• for U = ρu (u the quantity per unit mass),
~FC · d~S = ρu~v · d~S = ud ~m

• Diffusive flux:

• macroscopic effect of molecular thermal agitation

• from high to low concentration, in all directions,

proportional to the concentration difference

• Fick’s law: ~FD = −κρ~∇u, where κ is the diffusion coefficient

(m2/s)

• Provides the transport equation:
∂ρu

∂t
+ ~∇ · (ρ~vu) = ~∇ · (κρ~∇u) + QV + ~∇ · ~QS

⇒ Backbone of all mathematical modeling of fluid flow

phenomena
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Euler and Navier-Stokes equations

• From the conservation of mass,

momentum and energy:

∂

∂t















ρ

ρ~v

ρE















+∇·















ρ~v

ρ~vT ⊗ ~v + pI − τ

ρ~vH − τ · ~v − k∇T















=















0

0

q̇















,

with shear stress (Navier-Stokes

only)















τxx

τxy

τyy















=





















λ

µ

λ





















(∇ · ~v) + 2µ





















ux

0

vy





















and viscosity [Stokes & Sutherland]

λ = −
2

3
µ and

µ

µsl

=

(

T

Tsl

)3/2
Tsl + 110

T + 110
.

• Discrete boundary conditions

(potential numerical instabilities).
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Some computation issues

• Need for a computable (i.e. discretized) model

• Wide family of discretization strategies

• Main issues: complexity, accuracy, stability, width (number

of surrounding points), mesh definition

• E.g. using Taylor’s series:

f(x +∆x, t) = f(x , t) + ∆xf ′(x, t) +
∆x2

2
f ′′(x, t) + O(3)

implies at time jδt :

fi+1,j = fi,j + δxi+1f ′(xi , t) +
δx2

i+1

2
f ′′(xi , t) + O(3)

fi−1,j = fi,j − δxi f
′(xi , t) +

δx2
i

2
f ′′(xi , t) + O(3).

then f ′ is obtained from fi+1,j − fi−1,j and f ′′ from fi+1,j + fi−1,j

• Example: gas diffusion in a tube [handout]
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From distributed to lumped dynamics

• Consider a quantity q transported in 1D by a flux u = qv

with a source term s (t ∈ [0, T ], z ∈ [0, zf ]):

∂q

∂t
+
∂

∂z
[q v(z, t)] = s(z, t), with

{

q(0, t) = 0

q(x , 0) = q0(x)

where s(z, t) , 0 for z < z1 < zf and s = 0 for z1 < z < zf .

• Approximate ∂[qv]/∂z, i.e. on uniform mesh:

• backward difference: (uz)i =
ui−ui−1

∆z
+ ∆z

2
(uzz)i

• central difference: (uz)i =
ui+1−ui−1

2∆zi
− ∆z2

6
(uzzz)i

• other second order:

(uz)i =
ui+1+3ui−5ui−1+ui−2

4∆zi
+ ∆z2

12
(uzzz)i −

∆z3

8
(uzzzz)i

• third order: (uz)i =
2ui+1+3ui−6ui−1+ui−2

6∆zi
− ∆z3

12
(uzzzz)i

• Provides the computable lumped model: dq/dt = Aq + s

• The choice of the discretization scheme directly affects the

definition of A and its eigenvalues distribution: need to

check stability and precision!
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E.g. stability: eigenvalues of A for CH4 at NEEM with

dt ≈ 1 week
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E.g. eig(A) for CH4 at NEEM with dt ≈ 1 week, zoom
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Numerical system modeling using Green’s function

• Used to solve inhomogeneous DE with specific boundary

conditions

• For linear time-invariant (LTI) systems:

ẋ(t) = Ax(t) + Bu(t), x(t0) = x0

y(t) = Cx(t)

Green’s function is equivalent to the impulse response

(e.g. experimental)

• Provide a numerical I/O map for complex models,

supposing a dominant LTI behavior

• If invertible mapping, then the inputs can be inferred from

the measurements
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I/O mapping for LTI with piecewise continuous input

• Consider the previous LTI system

• The solution of the state-space equations writes as:

y(t) = CeA(t−t0)x(t0) + C
∫ t

t0
eA(t−τ)Bu(τ)dτ

• Considering a piecewise continuous inputs u(t) for

t ∈ [t0, tf ], the discretized version is:

y(tk ) = CeA(tk−t0)x(t0) + tsC

k
∑

i=0

eA(tk−ti)Bu(ti)

= G0(tk )x(t0) + G(tk )U(tk )

where























G0(tk ) � CeA(tk−t0) ∈ Rm×n

G(tk ) � ts[CeA(tk−t0)B , CeA(tk−t1)B , . . . ,CB]
U(tk ) � [u(t0), . . . , u(tk )]

T ∈ Rk

• Note that G(tk ) ∈ R
m×k corresponds to the Green’s

function or impulse response of the LTI system.
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Precision evaluation: Green’s function for CH4 at NEEM

with dt = 1 month

0 20 40 60 80 100 120 140 160 180
0.994

0.995

0.996

0.997

0.998

0.999

1

1.001

Depth (m)

N
or

m
 o

f G
re

en
 fc

t

 

 

0 20 40 60 80 100 120 140 160 180
0

5

10

15

20

25

Depth (m)

σ 
of

 G
re

en
 fc

t

FOU
Central
FOU + central
FOU + 2nd order
FOU + 3rd order

Introduction

and basic

modeling

E. Witrant

Inverse

problems

Mappings

Solutions

Inversion scheme

Statistical methods

Approximation

methods

Kalman filtering

Optimization

Conservation

laws

Convection-diffusion

Euler and

Navier-Stokes

Computation

issues

From distributed to

lumped dynamics

Green’s function

Conclusions

Green’s function for CH4 at NEEM with dt ≈ 1 week
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Conclusions

• Inverse problems:

• formulate the performance evaluation while handling

ill-posedness by adding constraints

• determine a variation law for the parameters

• use stochastic or deterministic approaches

• Models:

• inferred from conservation laws

• system of PDEs, possibly coupled, nonlinear, etc.

• Computation issues:

• reduce to the final dimensional case

• alternative simplified models
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Motivation

• Given a forward model, solve the inverse problem for a

particular set of parameters

• Inverse problem⇔ Optimization problem

• Main issues:

• how to formulate the optimization problem with respect to

the data set?

• how to add constraints on the parameters to select among

the infinite possible solutions (curse of ill-posedness)?

• Focus on ordinary differential equations (e.g.

discretization)

• The same principles apply to the infinite dimensional

(PDE) case, provided some extra technical issues
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Background on state variables

representation of systems

• Considering a dynamical system with input u, internal

state x and output y, we establish a general description of

the input/output map, called the state-space

representation.

• Classification of systems depenting on their nonlinearities

and time-variations:

State dynamics Output Main property

ẋ = f(x , u, t), y = g(x , u, t), NL, TV

ẋ = f(x , u), y = g(x , u), NL, TI

ẋ = A(t)x + B(t)u, y = C(t)x + D(t)u, LTV

ẋ = Ax + Bu, y = Cx + Du, LTI

Nonlinear (NL), time-varying (TV), time-invariant (TI),

linear time-varying (LTV), linear time-invariant (TI)
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Solution of the state equations for linear systems

• LTV: x(t) = φ(t , t0)x(t0) +

∫ t

t0

φ(t , τ)B(τ)u(τ)dτ

where φ(·, ·) is the state transition matrix.

• If LTI and t0 = 0, equivalent forms:

x(t) = L−1{[sI − A ]−1x0 + [sI − A ]−1BU(s)}

= L−1{Φ(s)x0 + H(s)U(s)}

= eAt x0 + eAt

∫ t

0

e−AτBu(τ)dτ

with eAt
� I + At +

1

2!
A2t2 + . . .++

1

k !
Ak tk + . . .

Hence eAt = L−1{Φ(s)} = L−1{[sI − A ]−1} � φ(t) and

eAt

∫ t

0

e−AτBu(τ)dτ = L−1{H(s)U(s)} =

L−1{[sI − A ]−1BU(s)} � φ(t)

∫ t

t0

φ(−τ)Bu(τ)dτ
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State transition matrix
Properties:

LTI LTV

φ(0) = I φ(t , t) = I

φ(t2 − t1)φ(t1 − t0) = φ(t2 − t0) φ(t2, t1)φ(t1, t0) = φ(t2, t0)
φ−1(t2 − t1) = φ(t2 − t1) φ−1(t2, t1) = φ(t2, t1)
d
dt
φ(t) = Aφ(t) d

dt
φ(t , t0) = A(t)φ(t , t0)

Determination:

• For LTI:

1 invert [sI − A ] and find L−1 of each element

2 evaluate the matrix expansion

• For LTV: numerical integration of d
dt
φ(t , t0) with φ(t0, t0) = I
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Problem formulation

In order to formulate the optimization/inversion problem, we

need to formalize:

1 a mathematical model of the system = forward model

2 the physical/statistical constraints

3 a performance criterion: which minimized quantity can

validate the optimization efficiency?
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Mathematical model

ẋ = f(x , p, u, t)

Example: simplified gas diffusion with boundary input:

∂ρ

∂t
=
∂

∂z

[

D(z)
∂ρ

∂z

]

, with






ρ(0, t) = ρin(t)

D(L)
∂ρ

∂z
(L , t) = 0

ρ(z, 0) = ρ0(z)

leads to the abstract LPV system [board]:

ẋ(t) = A(p)x(t) + B(p)u(t)

where x is the density, p the diffusion, u the boundary

concentration.

The gas density variation is determined by the boundary

density u, which diffuses at a rate set by the diffusion profile D

(remember the scalar case ẋ = −ax ⇔ x(t) = x(0)e−at ).
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Definitions
For t ∈ [t0, tf ]:

• u(t) is called the input history, or input, an exogeneous

time-varying parameter, possibly controlled

• x(t) is called the state trajectory (history)

• p is a model parameter (e.g. diffusion)

• sloppy distinction between a parameter and an input: let’s

agree that p acts in the state-space matrices and u is an

exogeneous drive

Note: function x(·) , value of the function x(t1)
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Physical constraints

Apply both on state and on inputs. E.g. diffusion example:

• state constraints: the density profile

• is initially zero (initial condition) x(t0) = [0 0]T

• can’t be negative x(t) ≥ 0∀t

• can’t exceed the maximum peak of the boundary

x(t) < maxt u(t) = M1 ∀t

• on the input: gaz density at the boundary

• 0 ≤ u(t) ≤ M1

• its rate of variation (increase or decrease) is limitted

|ü(t)| < M2.

• on the parameter: diffusion

• is positive and bounded 0 < p < M3

• can only decrease along the tube Dz ≤ 0⇒ M4D ≤ 0
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Definitions

• Admissible input = input history that satisfies the

constraints on [t0 tf ]: u ∈ U

• Admissible trajectory = state trajectory that satisfies the

state/variation constraints on [t0 tf ]: x ∈ X

• Terminal value: target state (point if xf , tf fixed)

Note: admissibility limits the range of values for both the state

and input
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Performance measure

• Optimal input = min (or max) a performance measure

(sometimes subjective)

• Ex: make the concentration reach a desired profile at final

time: J = ||x(tf ) − xref ||

• General form: J = h(x(tf ), tf )
︸      ︷︷      ︸

terminal cost

+

∫ tf

t0

g(x(t), u(t), t)dt

︸                     ︷︷                     ︸

cost to go

where tf can be specified or free

• x(t0) = x0 and u(t), t ∈ [t0 tf ] set the state trajectory

• Performance measure = unique real number for each

trajectory of the system
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The optimization problem

Find the admissible u∗(t) ∈ U such that ẋ = f(x , u, t) follows

x∗(t) ∈ X that minimizes the performance measure J. u∗(t) �
optimal input, x∗(t) � optimal state trajectory.

Note:

• the optimal input may not exist (admissible input inducing

an admissible trajectory)

• if it does, it may not be unique (choose)

• seek absolute/global min u∗ such that

J∗ = h(x∗(tf), tf) +

∫ tf

t0

g(x∗(t), u∗(t), t)dt

≤ h(x(tf ), tf) +

∫ tf

t0

g(x(t), u(t), t)dt

∀{u ∈ U s.t. x ∈ X}

• if max objective, then min −J
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Forms of the optimal input (OI)

Definitions:

• if u∗(t) = f(x(t), t) (OI ∀x ∈ X) can be found at t , then f is

the optimal law or optimal policy

i.e. if x∗(t) = Fx(t), F ∈ Rm×n, then LTI (linear time

invariant) feedback of states

• if OI is determined as a function of time for a given initial

condition: u∗(t) = e(x0, t), then open-loop form

⇒ The optimal open-loop input is optimal only for a specific

x0 while the optimal law is optimal ∀ state values
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Necessary conditions for optimality (a glimpse)

Example: minx J(x) = x2 + α(x2 − 1) for a given α

-2

0

2

-2

0

2
-5

0

5

10

xα

x2 +
α 

(x
2 -1

)

• Sufficient condition:

J(x∗) ≤ J(x),∀x

• Necessary conditions:

• first order:

∂J/∂x = 0

• second order:

∂2J/∂x2 > 0

• Depending on α the

problem is convex or

ill-posed (multiple or

−∞ solutions)
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Evaluating performance

• Performance measure:

J = h(x(tf ), tf) +

∫ tf

t0

g(x(t), u(t), t)dt

where x is the state of the forward model used to predict

the measurement, i.e. ŷ = f(x), which we want to

compare with the actual measured data y

• Defining the prediction error e = ŷ − y,

• which function of e (and possibly ŷ and y) should we wish

to minimize?

• what does it imply on the solution?

⇒ How to set the dependency of h(·) and g(·) on the error?

• Typically associated with model assessment and selection.
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Measures of length

• Norm = measure of length or size of a vector, e.g. sum of
powers n denoted by Ln:

L1 norm: ||e||1 =





∑

i

|ei |
1



 , L2 norm: ||e||2 =





∑

i

|ei |
2





1/2

,

. . .Ln norm: ||e||n =





∑

i

|ei |
n





1/n

, L∞ norm: ||e||∞ = max
i
|ei |

• The higher is n, the more weight we put on outliers from

the average trend

→ Guideline: for very accurate data, a prediction far from the

observed value is important, contrarily to scattered data.

• Weighted length: weight e with the matrix W prior to norm.

• Note: L2 (least squares) = data obeys gaussian statistics.

E.g. J = eT [cov(y)]−1e: maximum likelyhood method.
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Generalized inverses

• Consider the linear problem: y = Mp then we can find an

explicit solution expressed with the generalized inverse

M−g such that p̂ = M−gy

• Then ŷ = Mp̂ = MM−gy = Ny and N = data resolution

matrix (i.e. ideal if N = I): indicates the weight of each

observation on the predicted value and summarized by

n = diag(N) (importance of data). Depends only on the

forward model, not the data values.

• Similarly: p̂ = M−gMp = Rp and R = model resolution

matrix, if not I, p̂ = weighted average of p

• Link between the covariances of the model parameter and

of the data through the unit covariance matrix, i.e.

correlated data: [covup] = M−g[covud]M−gT

• Measure the goodness of the resolution from the spread

of off-diagonal elements (Dirichlet spread functions):

spread(N) = ||N − I||22, spread(R) = ||R − I||22
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Cross validation (see survey [Arlot and Celisse, 2010])

• Statistical method used to evaluate how the predicted

result extends to an independent data set.

• Provides a good trade-off between bias and variance.

• From the mapping between data and predicted output

ŷ = Ny, calculate the generalized cross-validation (GCV)

form for ndata data points as:

GCV =
1

ndata

(

||(I − N)y ||2
trace(I − N)/ndata

)2

• For sparse data, robust version [Lukas 2006, 2008]:

RGCV = γGCV + (1 − γ)µGCV where γ ∈ [0; 1] is the

robustness parameter (small for more robust results) and:

µ � trace(N2)/ndata for uncorrelated data

µ = [trace(N) − trace(N2)]/ndata for correlated data
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Regularization

• Needed to handle the ill-conditioning of inverse problems

• Aims to stabilize the set of possible solution and/or handle

the non-uniqueness by setting the dependency of the

performance measure on the input or parameter:

J = h(x(tf ), tf) +

∫ tf

t0

g(x(t), u(t), t)dt

• Motivated by mathematical, statistical and/or physical

constraints
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Tikhonov regularization

• Consider the general least-squares problem

J = ||y − ŷ(u)||2
2
: infinitely many solutions

• “Adequate fit” with data agreed when ||y − ŷ(u)||2 is small
enough, and we add some penalty on ||u||:

minu ||u||2
such that ||y − ŷ(u)||2 ≤ δ

⇔
minu ||y − ŷ(u)||2

such that ||u||2 ≤ ǫ

• Combined in a single criterion as (denoting ||v ||2
M
= vT Mv):

min
u
||y − ŷ(u)||22 + ||Γu||22, or min

u
||y − ŷ(u)||2Q + ||u||2R

where Γ it the Tikhonov matrix, R = ΓTΓ (e.g. whitening

filter) and Q is the inverse covariance matrix of y (e.g.

Bayesian interpretation)
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Tikhonov regularization (2)

• Can also be used to minimize the norm of u′ (total

variation - TV reg.) or u′′ (rugosity)→ first or second order

Tikhonov regularization by using Γ for numerical

discretization.

• Typically parameterized, i.e. (uncorrelated data)

min
u

J = (y − ŷ(u))T [diag(1/σ2)](y − ŷ(u)) + κ2uTΓTΓu

where Γ ≈ d2/dt2 (discretized in a matrix form) and κ is

the rugosity parameter.

• Combine with an optimal strategy to solve for κ (i.e. GCV,

see firn example).
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Barrier functions

• Used to transform an inequality contraint, e.g. u ≤ 0, into

an equality one included in the cost.

[Boyd & Vandenberghe,

Convex Optimization 2004.]

• Consider the indicator function

I− : R→ R for nonpositive reals:

I−(u) =

{

0 u ≤ 0

∞ u > 0

• Substituted by a logarithmic

barrier function (C1 and convex):

I−(u) = −
1
M

log(−u) in J to

ensure the inequality contraint.

• The precision of the approximation increases with M but a

solution is harder to find→ increase M iteratively (e.g.

external loop on the “u-finding” loop).
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Maximum entropy regularization

• Use a regularization function of the form (wi > 0 weights):

n∑

i=1

ui ln(wiui)

• “Max entropy” from Bayesian approach to select prior

probability distribution P, i.e. (discrete case)

max {J = −
∑n

i=1 Pi ln(Pi)} (entropy in statistical physics)

subject to
∑n

i=1Pi = 1

• Can be combined with LS as:

min
u≥0

J(u) = ||y − ŷ(u)||22 + α
2

n∑

i=1

ui ln(wiui)

strictly convex for linear systems (unique solution) for

α ≥ 0 but may become badly conditionned when α→ 0.
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Comparison
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u ln(u)   (max entropy)
u ln(u/5) (max entropy)
u ln(5u)  (max entropy)
-1/2 ln(u) (barrier)

• More penalty on large values with Tikhonov

• Increase of barrier close to 0

• Max entropy: min at u = 1/ew and penalizes parameters

with smaller or especially larger values
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Lagrange multipliers

• Used to move equality constraints into the cost function, i.e.

minu f(x, u)
subject to g(x, u) = c

⇔ minu f(x, u) + λ(g(x, u) − c)

• For dynamical systems

minu J = h(x(tf ), tf) +
∫ tf

t0
g(x(t), u(t), t)dt

subject to ẋ = f(x, u)

⇔ minu J +
∫ tf

t0
λT (ẋ − f(x, u))dt = Ja

where λ is the adjoint state or costate and Ja the

augmented cost function (augmented Lagrangian

method).

• Generalized by the Karush-Kuhn-Tucker conditions to

include inequality constraints
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Conclusions

• Starting from an “abstract” inversion desire, we get a

mathematical formulation of the problem

• Depending on the data (deterministic or stochastic,

importance of outliers) and on the model (general trust?),

several possibilities for performance evaluation

• Regularization issues on the parameters, to add aditional

(equality/inequality/norm) constraints

• Everything is now packed in a single function J that has to

be minimized
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Calculus of variations

Some definitions

• Function x assigns to each element t ∈ D (domain) a

unique element in R (range)

• Functional J assigns to each function x in a class Ω
(domain) a unique real number (range). Linear if and only

if it satisfies the principle of homogeneity J(αx) = αJ(x)

• Increment:

• ∆x � x(t +∆t) − x(t), noted as x(t ,∆t)
• ∆J � J(x + δx) − J(x), noted as J(x, δx) where δx is a

variation. Example:

J(x) =

∫ tf

t0

x(t)2dt → ∆J =

∫ tf

t0

2x(t)δx(t) + δx(t)2dt
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Variation
Used to find extremes of functionals, like differentiation for

functions, i.e.

• Increment of a function f of n variables q:

∆f(q,∆q) = df(q,∆q)
︸      ︷︷      ︸

linear in ∆q

+ g(q,∆q)||∆q||

If lim||∆q||→0{g(q,∆q)} = 0 then f is

differentiable at q and df is the

differential form of f at q.
E.g. single variable→ derivative, n variables→

df = ∂f
∂q1

∆q1 + . . .+
∂f
∂qn

∆qn

• For a functional ∆J(x , δx) = δJ(x , δx) + g(x , δx)||∆x ||.

δJ is the variation of J evaluated for x. Previous example:

∆J =

∫ tf

t0

2x(t)δx(t)
︸       ︷︷       ︸

linear in δx

+ δx(t)2

︸ ︷︷ ︸

→0 as ||δx ||→0

dt
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Fundamental theorem of the calculus of variations (FTCV)

If x∗ is an extremal, the variation of J must vanish at x∗:

δJ(x∗, δx) = 0 ∀δx

Proof: by contradiction.
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Functionals of a single variable

• Simplest variational problem J(x) =
∫ T

0
g(x, ẋ , t)dt with

g ∈ C2, T fixed, x0 and xf specified,

• FTCV provides the necessary conditions for optimality

[board]:

∂g

∂x
(x∗, ẋ∗, t) −

d

dt

[

∂g

∂ẋ
(x∗, ẋ∗, t)

]

= 0

called the Euler equation.

Functionals with more variables
LPV example [handout]
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Optimality for non-autonomous dynamics

• Problem: find u∗ such that ẋ = f(x(t), u(t), t) follows x∗

that min:

J(u) = h(x(tf ), tf ) +

∫ tf

t0

g(x(t), u(t), t)dt

⇒ Define the Hamiltonian

H(x, u, λ, t) � g(x , u, t) + λT f(x, u, t). The set of NC is:

ẋ∗ =
∂H

∂λ

T

, λ̇∗ = −
∂H

∂x

T

,
∂H

∂u
= 0, at x∗, λ∗, u∗,∀t ∈ [t0, tf [

[

∂h

∂x

T

− λ

]T

δxf +

[

H +
∂h

∂t

]

δtf = 0, at tf

• I.e. LQR ẋ = Ax + Bu, x(0) = 0, J =
∫ tf

0
xT Qx + uT Ru dt ,

tf known⇒ Differential Riccati Equation [board].
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Optimizing linear systems

• Solution for linear maps: ŷ = Mp̂ minimizing e.g. the least

squares error (Q,R > 0)

p̂∗ = arg min
p̂

{

J =
1

2
(y − ŷ)T Q(y − ŷ) +

1

2
p̂T Rp̂

}

gives the necessary conditions (∂J/∂p̂ = 0, ∂2J/∂p̂2 > 0)

[board]:

p̂∗ = (MT QM + R)−1MT Qy and MT QM + R > 0

• Solution for linear dynamics: LQR→ optimum = feedback

effect

• The LPV case [handout]

• Linearize, solve and update the linearization point or use

nonlinear programming?
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Nonlinear Programming

E.g. Parameters estimation with Gauss-Newton gradient

descent⇒ A possible solution to determine the optimal

parameters of each layer.

Problem description

Consider no system outputs y ∈ Rnm×no , with nm measurements

for each output, and a model output ŷ ∈ Rnm×no (predicted by

the forward model).

Objective: determine the optimal set of model parameters p̂

which minimizes the quadratic cost function

J(p̂) �
1

nm

nm∑

i=1

||y(i) − ŷ(p̂, i)||22

Output error variance is minimized for p̂∗ = arg minp̂ J(p̂).
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Stochastic descent algorithm

Based on the sensitivity of ŷ(p̂, i) with respect to p̂

S(p̂, i) �
∂ŷ

∂p̂
=

[

∂ŷ

∂p̂1

, . . . ,
∂ŷ

∂p̂nv

]

,

the gradient of the cost function writes as

∇p̂J(p̂) = −
2

nm

nm∑

i=1

(y(i) − ŷ(p̂, i))T S(p̂, i)
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Stochastic descent algorithm (2)

p̂∗ obtained by moving along the steepest slope −∇p̂J(p̂) with a

step η, which has to ensure that

p̂l+1 = p̂l − ηl∇p̂J(p̂l)

converges to p̂∗, where l � algorithm iteration index. ηl chosen

according to Gauss-Newton’s method as

ηl
� (Ψp̂J(p̂l) + υI)−1,

where υ > 0 is a constant introduced to ensure strict

positiveness and Ψp̂J(p̂l) is the pseudo-Hessian, obtained

using Gauss-Newton approximation

Ψp̂J(p̂l) =
2

nm

nm∑

i=1

S(p̂l , i)T S(p̂l , i)
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Stochastic descent algorithm (3)

Consider dynamical systems modeled as (t ∈ [0,T ])






dxm

dt
= fm(xm(t), p̂, u(t)), xm(t0) = xm0

ŷ(t) = gm(xm(t), p̂, u(t))

with known inputs u(t), xm the predicted state and fm(·) ∈ C
1,

then

S(p̂, t) =
∂ŷ

∂p̂
=
∂gm

∂xm

∂xm

∂p̂
+
∂gm

∂p̂

The state sensitivity
∂xm

∂p̂
is obtained by solving the ODE

d

dt

[

∂xm

∂p̂

]

=
∂fm

∂xm

∂xm

∂p̂
+
∂fm

∂p̂
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Assumptions

• ni independent system inputs u =
{

u1, . . . , uni

}

∈ Rnm×ni ,

available during the optimal parameter search process.

• The set {y , u} corresponds to historic data and J is the

data variance.

• The set of nm measurements is large enough and well

chosen (sufficiently rich input) to be considered as

generators of persistent excitation to ensure that the

resulting model represents the physical phenomenon

accurately within the bounds of u.
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For black-box models
Consider the nonlinear black-box structure

ŷ = g(φ, p̂) =
n∑

k=1

αkκ(βk (φ − γk ))

with p̂ = {αk , βk , γk }. To find the gradient ∇p̂J(p̂) we just need

to compute

∂

∂α
[ακ(β(φ − γ))] = κ(β(φ − γ))

∂

∂β
[ακ(β(φ − γ))] = α

∂

∂β
[κ(β(φ − γ))]φ

∂

∂γ
[ακ(β(φ − γ))] = −α

∂

∂γ
[κ(β(φ − γ))]
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Example: sigmoid functions family

κj =
1

1 + e−βj(x−γj)

The sensibility function is set with

∂ŷ

∂αj

=
1

1 + e−βj(x−γj)
,
∂ŷ

∂βj

=
αje
−βj(x−γj)(x − γj)

(1 + e−βj(x−γj))2
,

∂ŷ

∂γj
= −

αje
−βj(x−γj)βj

(1 + e−βj(x−γj))2
.

Notes:

• any continuous function can be arbitrarily well

approximated using a superposition of sigmoid functions

[Cybenko, 1989]

• nonlinear function⇒ nonlinear optimization problem

Example 2: LPV dynamics [handout]
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Optimizing and Solving Nonlinear

Equations with SCILAB

Minimization problem

min
x

f(x),

where f ∈ R maps vector variable x. Note: max f(x) = min(−f).

Constraints

• bound, or box: x in specific intervals, i.e. 3D 2 ≤ x(1) ≤ 5,

−1 ≤ x(3) ≤ 1;

• linear equality bT x − c = 0, b, x column vectors or linear

inequality bT x − c ≤ 0;
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Constraints (2)

• more general g(x) = 0 not solved in Scilab but

minx f(x),

g(x) = 0,

with f , g ∈ C1 has solution x∗ satisfying the NC (cf.

Lagrangian)

fx(x) + λ
T gx(x) = 0,

g(x) = 0,

where gx is the Jacobian of g, may be solved using

fsolve.

Main issues: f differentiable and gradient computation→

iterative methods, search direction, how far to move, for how

long, computational cost, local vs. global minima

(“dart-throwing algorithm”)...
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Nonlinear equation solving

f(x) = 0

for m equations with n unknowns (simplest case)→ key role of
the Jacobian

J(x) =





∂f1

∂x1

. . .
∂f1

∂xn
...
. . .

...
∂fm

∂x1

. . .
∂fm

∂xn





.

Invertible if m = n: simplest

iterative method (Newton’s)

xj+1 = xj − J(xj)
−1f(xj).

Actual solvers: ր region of

convergence and estimate

J.
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General Optimization

optim

• Accepts bound constraint, needs the gradient: if not,

numerical differentiation (finite difference) of the cost

NDcost.

• [fopt,xopt]=optim(costf,x0):

• x0: initial guess;

• [f,g,ind]=costf(x,ind): provides the minimized

function f, its gradient g and a variable used by the

optimization routine: ind indicates wether f can be

evaluated at x or an interruption;

• fopt: optimum value;

• xopt: where this optimum value occurs.

• [fopt,xopt]=optim(list(NDcost,myf),x0): if the

gradient is not provided, initial guess must be a column

vector.
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Example

• Minimize the cost function

f(x , y, z) = (x − z)2 + 3(x + y + z − 1)2 + (x − z + 1)2

Its gradient is

∇f =

[

∂f

∂x
,
∂f

∂y
,
∂f

∂z

]

= [2(x − z) + 6(x + y + z − 1) + 2(x − z + 1),

6(x + y + z − 1),

−2(x − z) + 6(x + y + z − 1) − 2(x − z + 1)],

and we take an initial guess of x0 = [0, 0, 0].
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Example (2): algorithm

function z= myf(x)

z=(x(l)-x(3))ˆ2+3*(x(l)+x(2)+x(3)-1)ˆ2+(x(l)-x(3)+1)ˆ2

endfunction

function z=myg(x)

xs=x(l)+x(2)+x(3)-l;

z=[2*(x(l)-x(3))+6*xs+2*(x(l)-x(3)+1), 6*xs,...

-2*(x(l)-x(3))+6*xs-2*(x(l)-x(3)+1)]

endfunction

function [f,g,ind]=costf(x,ind)

f=myf(x);g=myg(x);

endfunction

x0=[0 0 0]; % initial condition

[fopt,xopt]=optim(costf,x0); % x0 a row vector

[fopt,xopt]=optim(costf,x0’); % x0 a column vector

[fopt,xopt,gopt]=optim(list(NDcost,myf),x0’); % x0 column
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Example (3): Running the algorithm

-> x0= [0 0 0];

-> [fopt,xopt]=optim(costf,x0)

xopt = ! 0.0833333 0.3333333 0.5833333 !

fopt = 0.5

-> [fopt,xopt]=optim(costf,x0’)

xopt =

! 0.0833333 !

! 0.3333333 !

! 0.5833333 !

fopt = 0.5

-> [fopt,xopt,gopt]=optim(list(NDcost,myf),x0’)

gopt =

! 0. !

! 0. !

! 1.833D-11 !

xopt =

! 0.0833333 !

! 0.3333333 !

! 0.5833333 !

fopt = 0.5
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Full call
To set limits on number of iterations (local optimum→ ∇J < ǫ)

or constrain the optimization problem:

[f,[xopt,[gradopt,[work]]]]=optim(costf,[contr],x0,[’algo’],...

[df0,[mem]],[work],[stop],[’in’],[imp=iflag])

• contr: include constraints bT x − c = 0 or xinf ≤ x ≤ xsup

• algo: specify the optimization algorithm, e.g.

quasi-Newton, conjugate gradient or nondifferentiable

• mem: nb of variables for Hessian approx.

• stop: controls the algorithm convergence with max.

number of calls/iterations, threshold on gradient

norm/defrease of f/variation of x

• work: working array for hot restart (quasi-Newton)
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Solving Nonlinear Equations

• For nonlinear system

f(x) = 0

uses the Powell hybrid method (bi-directional search along

each search vector) and is based on the package

MINPACK

• [x [,v [,info]]]=fsolve(x0,fct [,fjac] [,tol])

where info indicates why termination occurred.

• Example:

min f(x , y , z) = (x − z)2 + 3(x + y + z − 1)2 + (x − z + 1)2,

where g(x , y , z) = 1 − x − 3y − z2 = 0. The solution

satisfies:

∇f + λ∇g = 0

g = 0
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Solved with the script:

function z=fct(x)

xs = x(1)+x(2)+x(3)-1;

wl = [2*(x(1)-x(3))+6*xs+2*(x(1)-x(3)+1),6*xs, ...

-2*(x(1)-x(3))+6*xs-2*(x(1)-x(3)+1)];

w2 = [-l -3 -2*x(3)];

z = [w1’+x(4)*w2’;l-x(1)-3*x(2)-x(3)ˆ2];

endfunction

x0 = [0 0 0 0];

[x,v] = fsolve(x0,fct);

We get:

-> v % value of function at x

ans = 1.OD-16 * ! 0.00167 0.00502 0.00233 -1.6653345 !

-> x

ans = ! 0.19722 0.10555 0.69722 -1.675D-19 !

and have found a solution since v ≈ 0.
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Nonlinear Least Squares

Problem description

min
x

f(x)⇒ min
x
||f(x)||2 = f(x)T f(x) =

m∑

i=1

fi(x)
2

Note: this allows for m > n (more equations than unknowns).

leastsq

• Same as optim except that costf replaced by f

• Short call:

[f,xopt]=leastsq([imp,] fun [,Dfun],x0)

• Long call:

[f,[xopt,[gradopt]]]=leastsq(fun [,Dfun],[contr],x0,...

[’algo’],[df0,[mem]],[stop],[’in’])

Optimization:

solutions

E. Witrant

Calculus of

variations

Fundamental

concepts

Single variable

Non-autonomous

dynamics

Optimizing

linear systems

Nonlinear

Programming

Stochastic descent

Assumptions

For black-box models

Solving

Nonlinear

Equations

General Optimization

Solving Nonlinear

Equations

Nonlinear Least

Squares

Parameter Fitting

Linear and Quadratic

Programming

Differentiation Utilities

Conclusions

• Example: we want to fit the data points

{(0, 0), (0, 1), (1, 1), (2, 1.5), (2, 2)}

with parameters p = (a, b , c) such that y = aebt + c

→ 5 equations (points) for 3 param.: yi − p1ep2ti − p3 = 0
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lsqrsolve

• Minimizes the sum of squares using Levenberg-Marquardt

algorithm (≈ gradient + Gauss-Newton, numerical).

• Script:

[x [,v [,info]]]=lsqrsolve(x0,fct,m [,stop [,diag]])

[x [,v [,info]]]=lsqrsolve(x0,fct,m, fjac [,stop [,diag]])

where diag contains multiplicative scale factors for the

variables

• Example: same as before, results in a different solution

vector with close ||f(x)||2

⇒ Problems can have several

solutions, even with same IC,

depending on numerical method!
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Parameter Fitting

• Dedicated Scilab function datafit based on optim: for

given function G(p, y), find the best p for G(p, yi) = 0 in

the set of measurement vectors yi .

• p∗ from min
∑n

i=1 G(p, yi)
T WG(p, yi) : weighted LS.

• [p, err] =datafit(G,Y,p0), e.g.:

Y= [0 0 1 2 2; 0 1 1 1.5 2]

function e=G(p,y)

e=y(2)-p(1)*exp(p(2)*y(1))-p(3)

endfunction

p0=[0 0 0]’;

[p,err]=datafit(G,Y,p0);

• long call:
[p,err]=datafit([imp,] G [,DG],Y [,W],[contr],p0,[algo],

[df0,[mem]],[work],[stop],[’in’])
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Linear and Quadratic

Programming

Linear programs

• Minimize pT x subject to linear constraints:

minxpT x,

C1x ≤ b1,

cl ≤ x ≤ cl , (IneqC)

C2x = b2.
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• Calling sequence depends on how many types of

constraints:

[x,lagr,f]=linpro(p,C,b [,x0])

[x,lagr,f]=linpro(p,C,b,cl,cu [,x0])

[x,lagr,f]=linpro(p,C,b,cl,cu,me [,x0])

[x,lagr,f]=linpro(p,C,b,cl,cu,me,x0 [,imp])

where

• C: LH constraints matrix in Cx ≤ b , if (IneqC)→ C = [],

equality const. listed first;

• b: RH constraint vector, if (IneqC)→ b = [];

• cl/cu: lower/upper bounds in cl ≤ x ≤ cu;

• me: number of equality constraints;

• x0: initial guess or property (vertex) of the calculated initial

feasible point.
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Quadratic Programs

• Cost function replaced by the quadratic expression

1

2
xT Qx + pT x

• quapro:

[x,lagr,f]=quapro(Q,p,C,b [,x0])

[x,lagr,f]=quapro(Q,P,C,b,ci,cs [,x0])

[x,lagr,f]=quapro(Q,p,C,b,ci,cs,me [,x0])

[x,lagr,f]=quapro(Q,p,C,b,ci,cs,me,x0 [,imp])

Semidefinite Programs (i.e. LMIs)

[x,Z,ul,info]=semidef(x0,Z0,F,blck-szs,c,options):

cf. Scilab help. Alternative SeDuMi, YALMIP. . .
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Differentiation Utilities
→ To get numerical estimates of derivatives and Jacobians

directly: numdiff and derivative.

numdiff

• Numerical estimate using finite difference method.

• g=numdiff(fun,x [,dx]), where

• fun: differentiated function,

• x: vector argument,

• dx: discretization step,

• g: estimated gradient (Jacobian).

• Example: Compute the Jacobian of

f(x1, x2, x3) =

(

x1 + 2x2
2
x3

sin(x1x2x3)

)

, at x =





1

2

3





using numdiff and compare with the true Jacobian.
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• Scilab script:

function z = myf(x)

z = [x(1)+2*x(2)-x(2)ˆ2*x(3);

sin(x(1)*x(2)*x(3))]

endfunction

x = [l;2;3];

J = numdiff(myf,x)

TrueJ = [1,2-2*x(2)*x(3), -x(2)ˆ2];

a = cos(x(l)*x(2)*x(3));

TrueJ = [TrueJ;a*[x(3)*x(2),x(l)*x(3),x(l)*x(2)]];

Difference = J-TrueJ;

• Solution:

-> J = ! 1.0000000 - 10. - 4. !

! 5.7610218 2.8805109 1.9203406 !

-> TrueJ = ! 1. - 10. - 4. !

! 5.7610217 2.8805109 1.9203406 !

-> Difference = ! 1.286D-08 - 4.045D-08 3.518D-08 !

! 1.157D-07 5.69OD-08 - 1.100D-08 !
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Higher order derivatives

• Numerical differentiation→ ill conditioning and error,

especially for higher order derivatives.

• Alternative: symbolic differentiation (Maple or ADOL-C:

arbitrary order forward/reverse) but may be very slow for

complex problems→ prefer automatic differentiation.

• If first and second order, derivative can be useful.

• Suppose m values of x ∈ Rn, then at a (Taylor):

f(x) =





f1(x)
...

fm(x)





= f(a)+J(a)(x−a)+





(x − a)T H1(a)(x − a)
...

(x − a)T Hm(a)(x − a)





+. . .

First derivative J ∈ Rm×n and m second derivatives

Hi ∈ R
n×n.
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Higher order derivatives (2)

[J [,H]] = derivative(f, x[, h, order, H-form, Q])

• h: step size (better free);

• order: of the finite difference used to approximate the

derivatives;

• H-form: form in which the Hessian will be returned;

• Q: real orthogonal matrix.

Example (same as before):

function z=myf(x)

z=[x(l)+2*x(2)-x(2)ˆ2*x(3); sin(x(l)*x(2)*x(3))]

endfunction

x=[l; 2; 3];

[J,H]=derivative(myf,x,H_form=’hypermat’)
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Higher order derivatives (3)

H =

(:,:,l)

! 0. 0. 0. !

! 0. - 6. - 4. !

! 0. - 4. 0. !

(:,:,2)

! 10.058956 7.9099883 5.2733256 !

! 7.9099883 2.5147394 2.6366631 !

! 5.2733256 2.6366631 1.117662 !

J =

! 1. 10. 4. !

! 5.7610217 2.8805109 1.9203406 !

-> TrueJ = ! 1. - 10. - 4. !

! 5.7610217 2.8805109 1.9203406 !
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Conclusions

• Identify the appropriate tools for your class of problems

• Include as much preliminary analytical work as possible

(e.g. Jacobian, bounds, . . . )

• Do not hesitate to try different resolution schemes and

compare

• Can also use imbricated schemes to “approach” the

solution successively
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Motivation

Trace gas measurements in interstitial air

from polar firn

• allow to reconstruct their atmospheric

concentration time trends over the last

50 to 100 years

• provides a unique way to reconstruct

the recent anthropogenic impact on

atmospheric composition

Converting depth-concentration profiles in

firn into atmospheric concentration histories

requires models of trace gas transport in firn
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Challenges

Firn air analysis is a complex problem involving :

• Physical modelling & Fluid mechanics

• Transport description with distributed (PDE) equations

• Optimization in a large-scale (i.e. 400×9 ODE) framework

• Close connection with instrumental issues

• Sparse measurements

⇒ Need for a pluridisciplinary approach
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Firn trace gas modeling

From measurements in interstitial air

• Gases with known history (“atmospheric scenario”) :

• direct model can be used to compute the space

distribution when ice core is drilled (“final time”)

• matching measurement and final modeled distribution by

adjusting D(z) = inverse diffusivity model

• use of several gases to constrain D = multiple gases diff.

model

⇒ characterize the physical transport properties of each site

• Gas with unknown history :

• use firn properties and final measurements to reconstruct

history = inverse scenario model

• refined by considering optimization over multiple sites

⇒ Atmospheric concentration reconstruction
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Direct model

I.e. CH4 transport at NEEM (Greenland)

⇒ Constrain the dynamics by conservation laws
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Poromechanics : three interconnected networks in firns

Ice lattice, gas connected to the
surface (open pores) and gas
trapped in bubbles (closed pores) :

∂[ρice(1 − ǫ)]

∂t
+ ∇[ρice(1 − ǫ)~v ] = 0

∂[ρo
gasf ]

∂t
+ ∇[ρo

gas f(~v + ~wgas)] = −~r
o→c

∂[ρc
gas(ǫ − f)]

∂t
+ ∇[ρc

gas(ǫ − f)~v] = ~ro→c

Scheme adapted from [Sowers

et al.’92, Lourantou’08].
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Trace gas conservation in open pores [Rommelaere & al.’97,

Witrant et. al ACP’12]

• Flux driven by advection with air and firn sinking

• Flux driven by mol. diff. due to concentration gradients

• Flux driven by external forces : gravity included with

Darcy-like flux

• Sink = particles trapped in bubbles & radioactive decay

• Boundary input : surface concentration

• Results in transport PDE :

∂

∂t
[ρo
αf ] +

∂

∂z
[ρo
αf(v + wair )] + ρ

o
α(τ+ λ) −

∂

∂z

[

Dα

(

∂ρo
α

∂z
− ρo

α

∂ρair/∂z

ρair

+Ass

)]

= 0

ρo
α(0, t) = ρ

atm
α (t),

RT

Mf

∂ρo
α

∂z
(zf) − ρ

o
α(zf) = 0

with Ass such that ∂[ρo
α,ssf ]/∂t = 0 at steady state, i.e.

Ass = −
ρo
α,ss f

Dα
(wα − wair) −

(
∂ρo
α,ss

∂z
− ρo

α,ss

∂ρair/∂z

ρair

)

⇒ Need to identify the firn diffusivity D !
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CO2 transport at 3 polar sites (ց accumulation)
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Advection
Molec. diffu.
Eddy diffu.
Peclet

• Molecular fluxes (ρo
gas f(~v + ~wgas)) due to :

• Air and firn sinking v + wair

• Molecular diffusion ∆~wα
• Surface “eddy” flows” ∆~wF

• Péclet number (advection/diffusion)
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Inverse diffusivity model

Problem formulation

• Least squares minimization (single gas) :

D∗α = arg min
Dα

1

zf

∫ zf

0

1

σ2
α

(

mα −
ρo
α(Dα)

ρo
air

)2

δαdz

with the constraints on ∂ρo
α/∂t , D(z) > 0 and dD/dz < 0

• For N gas :

D∗CO2
= arg min

DCO2

N∑

i=1

1

zf

∫ zf

0

1

σ2
αi

(

mαi
−
ρo
αi
(DCO2

)

ρo
air

)2

δαi
dz

• Nonlinear optimization problem (at least with implicit

schemes)
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Optimal diffusivity identification [IEEE Med’10]

Final-cost optimization problem with dynamics and inequality
constraints

min
D
J(D) = Jmeas +Jreg , under the constraints

{

C(ρ,D) = 0

I(D) < 0

Considering N gas and including the constraints in the cost
(Lagrange param.) :

min
D
J(D) �

N∑

i=1

[Jmeas (ρi , ρmeas) +Jtrans(C(ρi ,D))] +Jineq(D) +Jreg(D)

with :





Jmeas =
1

2

∫ zf

0

ri(ρmeas − ρi |t=tf )
2δz dz Measurement cost

Jtrans =

∫ tf

0

∫ zf

0

λiC(ρi ,D) dzdt Transport constraint

Jreg =
1

2

∫ zf

0

s(z)D2 dz Regularization function
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Theorem 1 - Transport and linearized dynamics

Consider the general transport equation






∂ty + f1(z, t)y + f2(z, t)∂zy = ∂z [g(y , ∂zy , u)]

y(0, t) = y0(t), k1∂zy(L , t) + k2y(L , t) = 0

y(z, 0) = yI(z)

Its linearized dynamics along the reference trajectory (ȳ , ū, ȳI)
with perturbations (ỹ , ũ, ỹI) is given by






∂t ỹ + f1(z, t)ỹ + f2(z, t)∂z ỹ

= ∂z

[

∂y ḡ ỹ + ∂∂zy ḡ ∂z ỹ + ∂uḡ ũ
]

ỹ(0, t) = 0, k1∂z ỹ(L , t) + k2ỹ(L , t) = 0

ỹ(z, 0) = ỹI(z)

where ḡ � g(ȳ , ∂z ȳ, ū).
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Theorem 2 - Adjoint state

Consider the linearized transport equation without input :

{

∂t ỹ = ∂z [f1(z, t)∂z ỹ + f2(z, t)ỹ] + f3(z, t)ỹ
ỹ(0, t) = 0, k1∂z ỹ(L , t) + k2ỹ(L , t) = 0, ỹ(z, 0) = 0

The corresponding adjoint state is given as :

{

∂tλ = −f3λ+ (f2 − ∂z f1) ∂zλ − f1∂zzλ

λ(0, t) = 0, f1 ∂zλ+ [f1k2/k1 − f2]λ |z=L = 0, λ(z,T) = 0

Adjoint state with λ(z, tf) = 1 :
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Inequality constraint

• Applies on D > 0 and ∂zD < 0

• Change of variables

∂zyIC = u, yIC(zf ) = 0

D = yIC

and where u is the new optimization variable

• Introducing Lagrange parameters λIC(z, t) and a barrier

function R(u) s.t. u < 0 :

Jineq =

∫ L

0

λIC(∂zyIC − u) + R(u) dz

=

∫ L

0

−yIC∂zλIC − uλIC + R(u) dz + λICyIC |
zf

0
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Theorem 3 - Adjoint-based gradient

The gradients of J with respect to the decision variables u and

yIi along the reference trajectory (ū, y(ū)) are given by :

∇uJ = R′(ū) −

∫ T

0

λIC dt , ∇yi
J = −λi(z, 0)

where λi are the solutions of (P � meas. cost) :






∂tλi = −f3λi + (f2 − ∂z f1) ∂zλi − f1∂zzλi

λi(0, t) = 0, k1f1 ∂zλi + [k2f1 − k1f2]λi |z=L = 0

λi(z,T) = −P
′(ȳi(T))

and λIC is obtained from :

{

∂zλIC =
∑N

i=1 f4∂zλi

λIC(0, t) = 0,
i.e. applies with

P =
1

2
ri(qmeas − qi |t=tf )

2δz , R = −
1

M
log(−∂zD) +

1

2
s(z)∂zD2
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Gradient steepest descent algorithm

Require : D̄ = Dinit s.t. ∂zD̄ < 0, ȳIi = yIi,init , M > 0,

ǫineq, grad > 0, ∆M > 0

while
∣
∣
∣Jineq/Jmeas

∣
∣
∣ > ǫineq do

while

∣
∣
∣
∣
∣
∣
∣

∇∂zDJ +
N∑

i=1

∇yIi
J

∣
∣
∣
∣
∣
∣
∣

> ǫgrad do

Solve for ȳi with D̄ and ȳIi

Compute λi and λIC

Compute ∂zD̃ = −∇∂zDJ and ỹIi = −∇yIi
J ,

then D̃ =
∫ z

0
∂ηD̃dη

Update D̄ � D̄ + δDD̃ s.t. ∂zD̄ < 0 and

ȳIi � ȳIi + δyIi
ỹIi, with δD , yIi

∈ (0, 1)
end while

M � M ×∆M

end while
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Simulation results

Evolution of the gradient ∇∂zDJ

• smooth convergence

within ≈ 500 steps

• highly sensitive to

design weights and

constraint

⇒ model revision and

reference results from

nonlinear LS algorithm
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Single vs. multi-gas (8/9 gas) optimization
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Result = Diffusivities at 11 sites (13 holes) [ACP’12]

Arctic (dashed) : Devon Island (black), Summit (blue), NEEM-EU (purple) and NEEM-US (brown), North GRIP

(green).

Antarctic (continuous) : DE08 (orange), Berkner (purple), Siple (yellow), South Pole 1995 (dark blue), South Pole

2001 (light blue), Dronning Maud Land (black), Dome C (green) and Vostok (brown)

• Low diffusivity at Devon Island due to melt layers

• High diffusivity in upper firn related to convection

• Very consistent diff. at intermediate depths (0.1-0.3)

• High diff. in deep firn at Vostok and Dome C (low accu. and

cold), consistent with very young ages and no plateau in δ15N

• Reasonable scaling laws Deff(f ,T ,Patm, accu) for paleo studies
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Ch3CCl3 diffusion at NEEM from the 50s [Buizert et al.,

ACP’12]

[video]
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Inverse scenario model
Background : A “deconvolution” approach for trace gas
models [Rommelaere et al., JGR, 1997]

• Green function = impulse response of the firn⇒ age

probabilities ρfirn(z, tf ) = G(z, t) ∗ ρtrue
atm

(t) : “convolution”

• Deconvolution (estimate ρatm) :

ǫ(z) = G(z, t)ρatm(t) − ρfirn(z, tf)

ρ∗atm(t) = arg min
ρatm

[

ǫT (diag{1/σ2
mes(z)})ǫ + κ

2ρT
atmRρatm

]

• Under-constrained pb⇒ add extra information with

rugosity characteristic matrix R > 0 (i.e. d2/dt2) + κ.

• Model behavior controlled by κ (rugosity) and σ2
mes(z)

⇒ Extend to LTV for isotopic ratios (process tracers of

geochemical cycles [Hoefs 2009]), measured by

δminX = 1000 ×

(

[minX ]/[majX ]

Rstd
− 1

)
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Isotopic ratio models, an LTV approach [Witrant & Martinerie,

IFAC 2013]

• Specific interest for isotopic ratio with measurements in

δ(t) =
(
ρ1(t)/ρ2(t)

Rstd
− 1

)

× 1000 where ρ2(t) is known

• A direct approach (convert into ρ1) results in poor results :

need to work with a Linear Parameter-Varying system in δ.

• Considering the discretized dynamics (k = 1, . . . ,N)

ρ1,k = Ad1 ρ1,k−1 + Bd1 ρ
atm
1,k

ρ2,k = Ad2 ρ2,k−1 + Bd2 ρ
atm
2,k

we get the linear parameter-varying (LPV) system :

δk = AD ,k δk−1 + BD2,k δ
atm + 103 (AD ,k × 1 + BD2,k − 1)

with AD ,k � diag(1/ρ2,k )Ad1 diag(ρ2,k−1) and

BD2,k � diag(ρatm
2,k
/ρ2,k )Bd1
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Problem Formulation

• Consider SIMO LTV systems (k = 1, . . . ,Nt ) :

xk = AD ,k xk−1 + BD ,kuk + wk , xk=0 = x0 ∈ R
N

yNt
= CxNt

∈ RM

• Multi-process case (i = 1 . . .Nproc) :

xi,k = ADi,k xi,k−1 + BDi,k uk + wi,k

xi,0 ≈ (I − ADi,0)
−1(BDi,0u0 + wi,0)

yi,Nti
= Cixi,Nti

∈ RMi

⇒ Find the optimal input history that min (e.g. L2) the

modeling error ǫ � ym − yNt
(u)

• Underconstrained : use regularization term and stochastic

information on the measurements.
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Cost function and optimal design

• Optimization problem :

u∗(t) = arg min
u






J(u) =
1

2

Nproc∑

i=1

||yi,Nti
(u) − ym,i ||

2
Qi
+

1

2

∫ tf ,max

t0

||u′′(t)||2R dt






discretized to consider :

J(U) =
1

2

Nsites∑

i=1

||GiU − ȳi ||
2
Qi

+
κ

2
||FU||2R dt

where Qi = diag
(

1/σ2
i
(j)

)

≥ 0 and R > 0.

→ Provides the measurement to model mapping :

Y = Ḡ




κFT RF +

Nsites∑

i=1

GT
i WiGi





−1

ḠW

︸                                        ︷︷                                        ︸

�Sκ

Ȳ

• Problem : what is the “good” κ ?
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Automatic rugosity tuning

Physical approaches :

1 Effective degree of freedom dYκ ≈ trace(Sκ) and min

cross-validation curve :

CV(Y) =
1

Ndata

Ndata∑

i=1

(

Ȳi − Yi

1 − Sκ(i, i)

)2

2 Data prediction versus model resolution [Menke, 1989 ;

Rommelaere et al., 1997] :

κ∗ = min
κ

{

rmsd(Ȳ − Y) + rmsd(Ỹu)
}

where Ỹu = Ḡ
√

diag(cov(Ū∗)) reflects the model

resolution impact on the output.
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Automatic rugosity tuning (2)

Stochastic approaches : Bias vs variance [Lukas 2008, 2009]

using the generalized CV

GCV(κ) =
1

Ndata

(

||(I − S(κ))Ȳ ||

tr(I − S(κ))/Ndata

)2

robustified (sparse measurements) as

RGCV(κ) = γGCV(κ) + (1 − γ)µ(κ)GCV(κ)

⇒ κ∗ which min RGCV with

1 µ(κ) � tr(S(κ)2)/Ndata (RGCV)

2 µ(κ) = [tr(S(κ)) − tr(S(κ)2)]/[Ndataκ] (R1GCV)
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Inverse scenario for δ13C of CFC-12 at NEEM EU 2009

(data from [Zuiderweg et al. 2013])

First test with the effective

degree of freedom : large

variability !
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Inverse scenario for δ13C of CFC-12 at NEEM (2)

More tractable results obtained with RGCV :
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Methods : Weighted RMSD - norm 1, Weighted RMSD - norm 2,

Generalized cross-Validation (GCV), Robust GCV, Robust 1 GCV.

Polynomial approximation + Monte-Carlo ([Zuiderweg et al. 2012]).
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Some results
Accelerating growth of HFC-227ea in the atmosphere

[Laube et. al’10]

• HFC-227ea = substitute for

ozone depleting compounds

• Firn air samples collected in

Greenland used to

reconstruct a history of

atmospheric abundance from

2000 to 2007

• ր growth rate confirmed by

upper tropospheric air

samples in 2009

• Stratospheric lifetime of 370

years from high altitude

aircraft and balloons
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The isotopic record of Northern Hemisphere atmospheric

carbon monoxide since 1950, implications for the CO

budget [Wang et. al’12]

⇒ Increase untill the 70s then drop (i.e. associated with fossil

fuel : catalytic converters and diesel engines)
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Newly detected ozone depleting substances 1 in the
atmosphere [Laube et al., Nature Geosciences, 9/03/14]

Figure: Atmospheric history and global emissions of CFC-112,

CFC-112a, CFC-113a, and HCFC-133a from NEEM firn air (dashed),

Cape Grim (diamonds), Known emissions (red), model response to

emissions (black cont.).

[video from Wall Street Journal]
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Other results

• Atmospheric impacts and ice core imprints of a methane pulse

from clathrates [Bock et. al, EPSL’12]

• Reconstruction of the carbon isotopic composition of methane

over the last 50 yr based on firn air measurements at 11 polar

sites [Sapart et. al, ACPD’12]

• Natural and anthropogenic variations in methane sources over

the last 2 millennia [Sapart et. al, Nature’12]

• Extreme 13C depletion of CCl2F2 in firn air samples from

NEEM, Greenland [Zuiderweg et. al, ACP’13]

• Emissions halted of the potent greenhouse gas SF5CF3

[Sturges et. al, ACP’12]

• Distributions, long term trends and emissions of four

perfluorocarbons in remote parts of the atmosphere and firn air

[Laube et. al, ACP’12]

• A 60-yr record of atmospheric CO reconstructed from

Greenland firn air [Petrenko et. al, ACPD’12]

• Eemian interglacial reconstructed from a Greenland folded ice

core, [NEEM community members, Nature’13]
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Simulation and continuity in closed pores

The gas trapped in bubbles

(closed pores) continues into the

ice.
Air transport is driven by :

∂[ρice(1 − ǫ)]

∂t
+ ∇[ρice(1 − ǫ)~v ] = 0

∂[ρo
gasf ]

∂t
+ ∇[ρo

gas f(~v + ~wgas)] = −~r
o→c

∂[ρc
gas(ǫ − f)]

∂t
+ ∇[ρc

gas(ǫ − f)~v] = ~ro→c

with ~ro→c
, 0 for z ∈ [0, zco] and

~ro→c = 0 for z ∈]zco , zf ].
(Numerical example seen in

Lesson 1.)
Scheme adapted from [Sowers

et al.’92, Lourantou’08].
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Conclusions

• Forward model obtained from conservation laws + fluxes

description.

• Initial linear ill-conditionned model transformed into a

nonlinear robust model→ mitigated approach to assign an

LPV approximation to the nonlinear problem ?

• 2 inverse problems = 2 completely different strategies.

• Importance of normalization and sufficiently robust

problem formulation.

• Also used as a tool to adjust intercallibration between the

different labs.
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I. LESSON 1: MODELING

Discretization example.

Consider the gas diffusion in a porous tube with boundary input and trapping:

∂ρ

∂t
=

∂

∂z

[

D(z)
∂ρ

∂z

]

− τ(z)ρ, with







ρ(0, t) = ρin(t)

D(L)
∂ρ

∂z
(L, t) = 0

ρ(z, 0) = ρ0(z)

which we wish to discretize at z0 = 0, z1 = ∆z, . . ., zi = i∆z, . . ., zN = L.

For example, apply central difference over half steps, i.e. fz ≈
fi+1/2−fi−1/2

∆z
:

F (z, t) = D(z)
∂ρ

∂z
≈

Di+1/2 +Di−1/2

2

ρi+1/2 − ρi−1/2

∆z
= Fi

∂

∂z

[

D(z)
∂ρ

∂z

]

=
∂F

∂z
≈

Fi+1/2 − Fi−1/2

∆z

=
1

∆z

(
Di+1 +Di

2

ρi+1 − ρi
∆z

−
Di +Di−1

2

ρi − ρi−1

∆z

)

=
1

2∆z2
[Di +Di−1 − (Di+1 + 2Di +Di−1) Di+1 +Di]





ρi−1

ρi
ρi+1





This works for i = 2, . . . , N − 1. For the extremal values, we need the boundary conditions:

ρ(0, t) = ρin(t) ⇒ ρ0 = ρin

D(L)
∂ρ

∂z
(L, t) = 0 ⇒ DN

ρN+1 − ρN
∆z

= 0 forward scheme ⇔ ρN+1 = ρN

We also need some extra constraints on D(z) for the “fictitious values” outside of the domain, e.g.
(Neumann): Dz(0) = Dz(L) = 0. Thus:

∂

∂z

[

D
∂ρ

∂z

]

− τρ ≈







1

2∆z2 [−(D2 + 3D1)− τ1 D2 +D1]

[
ρ1
ρ2

]

+ 1

∆z2D1ρin for i = 1

1

2∆z2 [Di +Di−1 − (Di+1 + 2Di +Di−1)− τi Di+1 +Di]





ρi−1

ρi
ρi+1



 for i = 2, . . . , N − 1

1

2∆z2 [DN +DN−1 − (3DN +DN−1) + 2DN − τN ]

[
ρN−1

ρN

]

for i = N

and defining the system state as X = [ρ1 . . . ρN ]
T ∈ R

N , we obtain the state-space dynamics:

Ẋ(t) = A(D, τ,∆z)X(t) + B(D1,∆z)ρin(t)
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II. LESSON 3: FORMULATING THE OPTIMIZATION PROBLEM

Consider the inverse diffusivity problem with known boundary input and trapping rate. It can be

associated with the class of systems (LPV) that write as:

ẋ =

(

A0 +

Np∑

j=1

Ajaj

)

x+

(

B0 +

Np∑

j=1

Bjaj

)

u

︸ ︷︷ ︸

f(x,a,u)

, (1)

y = Cx (2)

where x ∈ R
N is the state, u ∈ R

1 a known input, a ∈ R
Np the unknown parameters, y ∈ R

Nm the

measured output, and Ai, Bi and C the state-space matrices of appropriate dimensions. We suppose that

the initial state is known, i.e. x(t0) = x0.

The optimization problem is formulated as a least squares problem with the cost function with terminal

constraints and a regularization term:

J =
1

2
||y(tf)− ym||

2
Q + Reg(a) (3)

where ||ǫ||2Q
.
= ǫTQǫ denotes the weighted quadratic norm and Reg(a) is an arbitrary regularization term

(e.g. quadratic or imposing positivity). The measurements ym are obtained at the final time tf .

We take the regularization function:

Reg(a) =
1

2Np
aTRa−

M

Nx
1
1×Nx log(D0 +Maa) (4)

where M ≥ 0 is a scalar and 1
1×Nx is a vector of ones of dimension 1 × Nx. For example, choosing a

as being the diffusivity profile (ai = D(xi)), R is used to impose a second order Tikhonov regularization

(parameterized in terms of a rugosity coefficient) and the log function (with Ma = I) is a positivity

constraint.

III. LESSON 4: SOLVING THE OPTIMIZATION PROBLEM

A. The variations

Including the dynamics constraint (1) in the cost (3) with the Lagrange parameter λ, we obtain the

augmented cost function:

Ja =
1

2
||y(tf)− ym||

2
Q + Reg(a) +

∫ tf

t0

λT [f(x, a, u)− ẋ] dt (5)

The first order variation of Ja is obtained from the variations on x, xf , ẋ, a and λ as:

δJa = (Cx(tf )− ym)
TQδxf +

∂

∂a
Reg(a) δa+

∫ tf

t0

[f(x, a, u)− ẋ]T δλ+ λTfaδadt

+

∫ tf

t0

(λTfx + λ̇T )δx dt+ λ(tf )
T δxf (6)

where we used the identity:

[λT δx]t = λT δẋ+ δxT λ̇ = λT δẋ+ λ̇T δx (7)
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and:

fx
.
= A0 +

Np∑

j=1

Ajaj (8)

fa
.
=

[
A1x+B1u . . . ANpx+BNpu

]
(9)

∂

∂a
Reg(a) =

1

2Np
aT (R +RT )−

M

Nx
1
1×Nxdiag

(
1

D0 +Maa

)

Ma (10)

=
1

2Np

aT (R +RT )−
M

Nx

(
1

D0 +Maa

)T

Ma (11)

∂2

∂a2
Reg(a) =

1

2Np

(R +RT ) +
M

Nx

MT
a diag

(
1

D0 +Maa

)2

Ma (12)

B. The optimality conditions

Defining the adjoint state as:

λ̇ = −fT
x λ (13)

λ(tf ) = Q(Cx(tf )− ym) (14)

and along the state trajectories described by (1), the cost variation (6) becomes:

δJa =

[
∂

∂a
Reg(a) +

∫ tf

t0

λTfa dt

]

δa (15)

Thus, choosing:

δa = −τ

[
∂

∂a
Reg(a) +

∫ tf

t0

λTfa dt

]T

(16)

with τ > 0 ensures that δJa ≤ 0.

Starting from an initial a0 satisfying the inequality constraints possibly expressed in the regularization

term, the gradient descent algorithm is obtained as follows.

Require: ā = a0 s.t. Reg(a) exists

while |δJa| > ǫgrad do

Solve for x̄ with ā using (1)

Compute λi from (13)-(14)

Compute δa from (16)

Update ā
.
= ā + δa

Compute δJa from (15)

end while

Note that ǫgrad is chosen to obtain the desired precision and τ is the tunning parameter for the convergence

speed (typically reduced when the solution is approached). The simulation results, for a diffusive equation

discretized in 10 spatial steps, are presented in Fig. 1(a) and Fig. 1(b) for two different choices of the

regularization function.

Choosing τ such that the variation evolves as a percent q of the cost, i.e.:

τ =
q

100
|J |

∣
∣
∣

∣
∣
∣
∂
∂a

Reg(a) +
∫ tf
t0

λTfa dt
∣
∣
∣

∣
∣
∣

2 (17)

we obtain the results presented on Fig. 1(c) (without regularization).
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(a) Quadratic regulation
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(b) Rugosity regularization that vanishes
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(c) No Reg. τ such that the δJ ≈ 2J
(q = 200)

Fig. 1. Diffusivity estimation example (8 states) with the gradient descent method. The peaks on the cost function are due to attempts to

increase τ that are cancelled due to a gradient increase.

C. Gradient descent approach with the sensitivity computation

Another approach consists in using the state sensitivity to the estimated parameter in order to compute

the gradient and evolution law. The gradient can be computed from (3) as:

∇J = (y(tf)− ym)
TQ

∂y

∂a
(tf ) +

∂

∂a
Reg(a) (18)

where ∂y/∂a is the sensitivity of the model output with respect to a. From the fact that the system

(1)-(2) is continuously differentiable, this sensitivity can be evaluated using the so-called “ODE-method”

by computing the dynamics:

ẋ = f(x, a, u) (19)

d

dt

[
∂x

∂a

]

= fx(a)
∂x

∂a
+ fa(x, u) (20)

∂y

∂a
= C

∂x

∂a
(21)

with the initial sensitivity estimated as ∂x/∂a(0) = f−1
x fa(x(0), u(0)).

The optimal parameter a∗ is obtained by moving along the steepest slope −∇J(a) with a step α, which

as to be small enough to ensure that

ȧ = −α∇J(a) (22)

converges to a∗. This step is chosen according to the damped Newton’s method [Madsen et al., 1999] and

writes as

α
.
= (ΨJ(a) + υI)−1

where υ is a positive constant introduced to ensure strict positiveness and ΨJ(a) is the pseudo-Hessian,

derived using the Gauss-Newton approximation as

ΨJ =
∂y

∂a
(tf)

TQ
∂y

∂a
(tf) +

∂2

∂a2
Reg(a) (23)
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Remark 1: The convergence of the previous algorithm, commonly used in least square problems, is

ensured from the fact that ΨJ(a) ≥ 0 and the use of the positive constant υ to compensate the singularity

point ΨJ(·) = 0.

The simulation results for the diffusion example are presented in Fig. 2(a) and Fig. 2(b), without any

use of a regularization function (to check the robustness while maximizing the convergence speed). The

regularization becomes necessary when we have more parameters to identify than state measurements.

Using a rugosity-based approach, we obtain the results presented in Fig. 2(c) and Fig. 2(d). Note that

the rugosity coefficient has to be increased when the number of measurements is reduced. Also, reducing

the rugosity when we get closer to the solution decreases the cost function but does not reduced the

difference between the estimated and true parameters (sequences where the cost function becomes flat

and then decreases again on the figures, which corresponds to iterations where R is divided by 100).



6

1 2 3 4 5 6 7 8 9 10 11
10

−20

10
−15

10
−10

10
−5

10
0

10
5

C
os

t f
un

ct
io

n

0 2 4 6 8 10 12
0

0.5

1

1.5

2

E
st

im
at

ed
 p

ar
am

et
er

s

Algorithm iteration

1 2 3 4 5 6 7 8

1.4

1.6

1.8

2

2.2

i

x i: t
ru

e 
(g

) 
an

d 
es

tim
at

e 
(b

)

(a) 8 states, no regularization
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(b) 98 states, no regularization
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(c) 18 states, nmeas = nparam/2, ց rugosity
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(d) 18 states, nmeas = nparam/3, ց rugosity

Fig. 2. Diffusivity estimation example (8 states) with the gradient computed based on the sensitivity of the state with respect to the

parameter.


