
Modeling and Estimation for Control

Lessons Handout

Lesson Topic

1 Introduction to Modeling

Systems and models, examples of models, models for systems and signals.

PHYSICAL MODELING

2 Principles of Physical Modeling

The phases of modeling, the mining ventilation problem example, structuring the problem, setting up 
the basic equations, forming the state-space models, simplified models.

3 Some Basic Relationships in Physics

Electrical circuits, mechanical translation, mechanical rotation, flow systems, thermal systems, some 
observations.

4 Bond Graphs:

Physical domains and power conjugate variables, physical model structure and bond graphs, energy 
storage and physical state, free energy dissipation, ideal transformations and gyrations, ideal sources, 
Kirchhoff’s laws, junctions and the network structure, bond graph modeling of electrical networks, bond 
graph modeling of mechanical systems, examples.

SIMULATION

5 Computer-Aided Modeling

Computer algebra and its applications to modeling, analytical solutions, algebraic modeling, automatic 
translation of bond graphs to equations, numerical methods - a short glance.

6 Modeling and Simulation in Scilab

Types of models and simulation tools for: ordinary differential equations, boundary value problems, 
difference equations, differential algebraic equations, hybrid systems.

SYSTEM IDENTIFICATION

7 Experiment Design for System Identification:

Basics of system identification, from continuous dynamics to sampled signals, disturbance modeling, 
signal spectra, choice of sampling interval and presampling filters.

8 Non-parametric Identification:

Transient-response and correlation analysis, frequency-response/Fourier/spectral analysis, estimating 
the disturbance spectrum.

9 Parameter Estimation in Linear Models:

Linear models, basic principle of parameter estimation, minimizing prediction errors, linear regressions 
and least squares, properties of prediction error minimization estimates.

10 System Identification Principles and Model Validation

Experiments and data collection, informative experiments, input design for open-loop experiments, 
identification in closed-loop, choice of the model structure, model validation, residual analysis.

11 Nonlinear Black-box Identification

Nonlinear state-space models, nonlinear black-box models: basic principles, parameters estimation with 
Gauss-Newton stochastic gradient algorithm, temperature profile identification in tokamak plasmas

TOWARDS PROCESS SUPERVISION

12 Recursive Estimation Methods

Recursive least-squares algorithm, IV method, prediction-error methods and pseudolinear regressions, 
Choice of updating step
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Course goal

To teach systematic methods for building mathematical models

of dynamical systems based on physical principles and

measured data.

Main objectives:

• build mathematical models of technical systems from first

principles

• use the most powerful tools for modeling and simulation

• construct mathematical models from measured data
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Class overview

1 Introduction to modeling

Physical Modeling

2 Principles of physical modeling

3 Some basic relationships in physics

4 Bond graphs

Simulation

5 Computer-aided modeling

6 Modeling and simulation in Scilab

System Identification

7 Experiment design for system identification

8 Non-parametric identification

9 Parameter estimation in linear models

10 System identification principles and model validation

11 Nonlinear black-box identification

Towards process supervision

12 Recursive estimation methods
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Grading policy

• Homeworks: 30 %, each due at the beginning of the next

class. You can interact to find the solution but each

homework has to be unique! otherwise, 0 FOR BOTH

identical copies

• Final Exam: 70 %
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Material

• Lecture notes from 2E1282 Modeling of Dynamical

Systems, Automatic Control, School of Electrical

Engineering, KTH, Sweden.

• L. Ljung and T. Glad, Modeling of Dynamic Systems,

Prentice Hall Information and System Sciences Series,

1994.

• S. Campbell, J-P. Chancelier and R. Nikoukhah, Modeling

and Simulation in Scilab/Scicos, Springer, 2005.

• S. Stramigioli, Modeling and IPC Control of Interactive

Mechanical Systems: A Coordinate-free Approach,

Springer, LNCIS 266, 2001.

• L. Ljung, System Identification: Theory for the User, 2nd

Edition, Information and System Sciences, (Upper Saddle

River, NJ: PTR Prentice Hall), 1999.
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Class website

• Go to:

http://www.gipsa-lab.fr/MiSCIT/courses/courses_MME.php

or Google “MiSCIT” then go to “Courses”, “Modeling” and

“Modeling and system identification”

• at the bottom of the page, click “Restricted access area”
and enter with:

• login: MiSCIT student

• password: ******
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What is a model?

How to build models?

How to verify models?

Mathematical models

Examples
Inverted pendulum

Tore Supra

Conclusions

Models for
systems and
signals
Differential equations

State-space models

Stationary, stability
and linearization

Conclusions

Homework

Modeling and estimation for
control

Lecture 1: Introduction to modeling

Emmanuel WITRANT
emmanuel.witrant@ujf-grenoble.fr
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Systems and Models

Systems and experiments

• System: object or collection of objects we want to study.
• Experiment: investigate the system properties / verify

theoretical results, BUT
• too expensive, i.e. one day operation on Tore Supra;
• too dangerous, i.e. nuclear plant;
• system does not exist, i.e. wings in airplane design.

⇒ Need for models
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What is a model?

• Tool to answer questions about the process without
experiment / action-reaction.

• Different classes:
1 Mental models: intuition and experience (i.e. car driving,

industrial process in operator’s mind);
2 Verbal models: behavior in different conditions described

by words (e.g. If . . . then . . . );
3 Physical models: try to imitate the system (i.e. house

esthetic or boat hydrodynamics);
4 Mathematical models: relationship between observed

quantities described as mathematical relationships (i.e.
most law in nature).
Generally described by differential algebraic equations:

ẋ(t) = f(x(t), u(t), d(t))

0 = g(x(t), u(t), d(t))
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Models and simulation

• models→ used to calculate or decide how the system
would have reacted (analytically);

• Simulation: numerical experiment = inexpensive and safe
way to experiment with the system;

• simulation value depends completely on the model quality.

How to build models?

• Two sources of knowledge:
• collected experience: laws of nature, generations of

scientists, literature;
• from the system itself: observation.

• Two areas of knowledge:
• domain of expertise: understanding the application and

mastering the relevant facts→ mathematical model;
• knowledge engineer: practice in a usable and explicit

model→ knowledge-based model.
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• Two different principles for model construction:
• physical modeling: break the system into subsystems

described by laws of nature or generally recognized
relationships;

• identification: observation to fit the model properties to
those of the system (often used as a complement).

How to verify models?

• Need for confidence in the results and prediction, obtained
by verifying or validating the model: model vs. system.

• Domain of validity: qualitative statements (most verbal
models), quantitative predictions. Limited for all models.

⇒ Hazardous to model outside the validated area.

⇒ Models and simulations can never replace observations
and experiments - but they constitute an important and
useful complement.
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Different types of mathematical models

• Deterministic - Stochastic: exact relationships vs.
stochastic variables/processes;

• Static - Dynamic: direct, instantaneous link (algebraic
relationships) vs. depend also on earlier applied signals
(differential/difference equations);

• Continuous - Discrete time: differential equation vs.
sampled signal;

• Distributed - Lumped: events dispersed over the space
(distributed parameter model→ partial differential
equation PDE) vs. finite number of changing variables
(ordinary diff. eqn. ODE);

• Change oriented - Discrete event driven: continuous
changes (Newtonian paradigm) vs. (random) event-based
influences (i.e. manufacture, buffer. . . )
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Examples of Models

Networked control of the inverted pendulum [Springer’07]

• Objective: test control laws for control over networks.
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• Physical model and abstraction:

m2

m1

u(t)

l o
l c

θ(t)

z(t)

• Mathematical model
• from physics:

[

m1 m1l0
m1l0 J̄ + m1z2

] [

z̈
θ̈

]

+

[

0 −m1zθ̇
2m1zθ̇ 0

] [

ż
θ̇

]

+

[

−m1 sin θ
− (m1l0 + m2lc) sin θ −m1z cos θ

]

g =

[

1
0

]

u,
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• input/ouput representation (x � [z, ż, θ, θ̇]⊤):















































































ẋ1 = x2,

ẋ2 =
u

m1
− l0ẋ4 + x1x2

4 + g sin (x3),

ẋ3 = x4,

ẋ4 =
1

J0(x1) −m1l20
[g (m2lc sin (x3) + m1x1 cos (x3))

−m1 (l0x4 + 2x2) x1x4 + −l0 u] ,
J0(x1) = J̄ + m1x2

1 ,

y = {x1, x2}

• Exercise: derive this state-space representation
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• Fluid-flow model for the network [Misra et al. 2000, Hollot
and Chait 2001]: TCP with proportional active queue
management (AQM) set the window size W and queue
length q variations as

dWi(t)
dt

=
1

Ri(t)
−

Wi(t)
2

Wi(t − Ri(t))
Ri(t − Ri(t))

pi(t),

dq(t)
dt

= −Cr +
N

∑

i=1

Wi(t)
Ri(t)

, q(t0) = q0,

where Ri(t) �
q(t)
Cr

+ Tpi is the round trip time, Cr the link

capacity, pi(t) = Kpq(t − Ri(t)) the packet discard function
and Tpi the constant propagation delay. The average
time-delay is τi =

1
2 Ri(t)

Modeling and
estimation for

control

E. Witrant

Systems and
Models
What is a model?

How to build models?

How to verify models?

Mathematical models

Examples
Inverted pendulum

Tore Supra

Conclusions

Models for
systems and
signals
Differential equations

State-space models

Stationary, stability
and linearization

Conclusions

Homework

E.g. network with 2 TCP flows:

dW1,2(t)
dt

=
1

R1,2(t)
−

W1,2(t)
2

W1,2(t − R1,2(t))
R1,2(t − R1,2(t))

p1,2(t)

dq(t)
dt

= −300 +
2

∑

i=1

Wi(t)
Ri(t)

, q(0) = 5

τ(t) = R1(t)/2

Behavior of the network internal states.

q(t)W1(t)

W2(t)

time (s)

q(
t)

an
d

W
1,

2
(t
)

(p
ac

ke
ts

)

Average queue length and windows sizes
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• Compare different control laws: in simulation
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On the inverted pendulum experiment:

(a) Predictive control with fixed horizon. (b) Predictive control with time-varying
horizon.
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Thermonuclear Fusion with Tore
Supra tokamak

Physical model

∂ψ

∂t
= η∥(x, t)

[

1
µ0a2

∂2ψ

∂x2
+

1
µ0a2x

∂ψ

∂x

+R0jbs(x, t) + R0jni(x, t)]

jφ(x, t) = −
1

µ0R0a2x
∂

∂x

[

x
∂ψ

∂x

]

Mathematical model [PPCF 2007]

Abstraction

Experimental results
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Identification of temperature profiles [CDC 2011]

• Parameter-dependant first-order dynamics:































τth(t) = eϑt0 Iϑt1
p Bϑt2

φ0
n̄ϑt3

e Pϑt4
tot

dW
dt

= Ptot −
1
τth

W , W(0) = Ptot(0)τth(0)

T̂e0(t) = AW

→ “free” parameters ϑi determined from a sufficiently rich
set of experimental data.
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• Model validation:

Central temperature (keV) and power inputs (MW)

|η(x, t) − η̂(x, t)|

x

time (s)

Te0(t)

T̂e0(t)ITERL-96P(th)Plh Picrf

Comparison of the model with a shot not included in the
database.
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Conclusion: all models are approximate!

• A model captures only some aspects of a system:
• Important to know which aspects are modelled and which

are not;
• Make sure that model is valid for intended purpose;
• “If the map does not agree with reality, trust reality”.

• All-encompasing models often a bad idea:
• Large and complex hard to gain insight;
• Cumbersome and slow to manipulate.

• Good models are simple, yet capture the essentials!
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Models for Systems and Signals

Types of models

• System models (differential / difference equations) and
signal models (external signals / disturbances).

• Block diagram models: logical decomposition of the
functions and mutual influences (interactions, information
flows), not unique. Related to verbal models.

• Simulation models: related to program languages.
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Input, output and disturbance signals

• Constants (system or design parameters) vs. variables or
signals;

• Outputs: signals whose behavior is our primary interest,
typically denoted by y1(t), y2(t), . . . , yp(t).

• External signals: signals and variables that influence other
variables in the system but are not influenced by the
system:
• input or control signal: we can use it to influence the

system u1(t), u2(t), . . . , um(t);
• disturbances: we cannot influence or choose

w1(t), w2(t), . . . , wr(t).

• Internal variables: other model variables.
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Differential equations

• Either directly relate inputs u to outputs y:

g(y(n)(t), y(n−1)(t), . . . , y(t), u(m)(t), u(m−1)(t), . . . , u(t)) = 0

where y(k )(t) = dk y(t)/dtk and g(·) is an arbitrary,
vector-valued, nonlinear function.

• or introduce a number of internal variables related by first
order DE

ẋ(t) = f(x(t), u(t))

with x, f and u are vector-valued, nonlinear functions, i.e.

ẋ1(t) = f1(x1(t), . . . , xn(t), u1(t), . . . , um(t))

ẋ2(t) = f2(x1(t), . . . , xn(t), u1(t), . . . , um(t))
...

ẋn(t) = fn(x1(t), . . . , xn(t), u1(t), . . . , um(t))
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The outputs are then calculated from xi(t) and ui(t) from:

y(t) = h(x(t), u(t))

• Corresponding discrete time equations:

x(t + 1) = f(x(t), u(t))

y(t) = h(x(t), u(t))
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The concept of state and state-space models
Definitions:

• State at t0: with this information and u(t), t ≥ t0, we can
compute y(t).

• State: information that has to be stored and updated
during the simulation in order to calculate the output.

• State-space model (continuous time):

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

u(t): input, an m-dimensional column vector
y(t): output, a p-dimensional column vector
x(t): state, an n-dimensional column vector

→ nth order model, unique solution if f(x, u) continuously
differentiable, u(t) piecewise continuous and x(t0) = x0

exists.
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• State-space model (discrete time:)

x(tk+1) = f(x(tk ), u(tk )), k = 0, 1, 2, . . .

y(tk ) = h(x(tk ), u(tk ))

where u(tk ) ∈ Rm, y(tk ) ∈ Rp, x(tk ) ∈ Rn.
→ nth order model, unique solution if the initial value
x(t0) = x0 exists.

Linear models:

• if f(x, u) and h(x , u) are linear functions of x and u:

f(x , u) = Ax + Bu

h(x , u) = Cx + Du

with A : n × n, B : n ×m, C : p × n and D : p ×m.

• if the matrices are independent of time, the system is
linear and time-invariant.
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Stationary solutions, static relationships and linearization
Stationary points: Given a system

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t), u(t))

a solution (x0, u0) such that 0 = f(x0, u0) is called a stationary
point (singular point or equilibrium).
At a stationary point, the system is at rest: x(0) = x0, u(t) = u0

for t ≥ 0⇒ x(t) = x0 for all t ≥ 0.
Stability: suppose that x(t0) = x0 gives a stationary solution,
what happens for x(t0) = x1? The system is

• asymptotically stable if any solution x(t) close enough to
x0 converges to x0 as t → ∞;

• globally asymptotically stable if all solutions x(t) with
u(t) = u0 converge to x0 as t → ∞.
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Static relationships:

• for asymptotically stable stationary point (x0, u0), the
output converges to y0 = h(x0, u0). Since x0 depends
implicitly on u0,

y0 = h(x(u0), u0) = g(u0)

Here, g(u0) describes the stationary relation between u0

and y0.
• Consider a small change in the input level from u0 to

u1 = u0 + δu0, the stationary output will be

y1 = g(u1) = g(u0 + δu0) ≈ g(u0) + g′(u0)δu0 = y0 + g′(u0)δu0.

Here g′(u0) : p ×m describes how the stationary output
varies locally with the input→ static gain.
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Linearization:

• system behavior in the neighborhood of a stationary
solution (x0, u0);

• consider small deviations ∆x(t) = x(t) − x0,
∆u(t) = u(t) − u0 and ∆y(t) = y(t) − y0, then

∆̇x = A∆x + B∆u

∆y = C∆x + D∆u

where A , B , C and D are partial derivative matrices of
f(x(t), u(t)) and h(x(t), u(t)), i.e.

A =









































∂f1
∂x1

(x0, u0) . . .
∂f1
∂xn

(x0, u0)

...
...

∂fn
∂x1

(x0, u0) . . .
∂fn
∂xn

(x0, u0)









































;

• Exercise: prove it
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• important and useful tool but
• only for local properties;
• quantitative accuracy difficult to estimate→ complement

with simulations of the original nonlinear system.
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Example
From lecture notes by K.J. Åström, LTH

Model of bicycle dynamics:

d2θ

dt2
=

mgl
Jp

sin θ +
mlV2

0 cos θ

bJp

(

tan β+
a

V0 cos2 β

dβ
dt

)

where θ is the vertical tilt and β is front wheel angle (control).
⇒ Hard to gain insight from nonlinear model. . .

Linearized dynamics (around θ = β = β̇ = 0):

d2θ

dt2
=

mgl
Jp

θ +
mlV2

0

bJp

(

β+
a
V0

dβ
dt

)

has transfer function

G(s) =
mlV2

0

bJp
×

1 + a
V0

s

s2 −
mgl
Jp

.
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Gain proportional to V2
0 :

• more control authority at high speeds.

Unstable pole at
√

mgl
Jp
≈

√

g/l:

• slower when l is large;

• easier to ride a full size bike than a childrens bike.
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Conclusions

• Classes of models

• Preliminary questions according to your goal and main
process behavior

• Some background on dynamical systems
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Homework 1
Consider the inverted pendulum dynamics:



























































































ẋ1 = x2,

ẋ2 =
u

m1
− l0ẋ4 + x1x2

4 + g sin (x3),

ẋ3 = x4,

ẋ4 =
1

J0(x1) −m1l20
[g (m2lc sin (x3) + m1x1 cos (x3))

−m1 (l0x4 + 2x2) x1x4 + −l0 u] ,
J0(x1) = J̄ + m1x2

1 ,

y =

[

x1

x2

]

where

Parameter name Value Meaning
m1 0.213 kg Mass of the horizontal rod.
m2 1.785 kg Mass of the vertical rod.
l0 0.33 m Length of the vertical rod.
lc −0.029 m Vertical rod c.g. position.
g 9.807 m

s2 Gravity acceleration.
J̄ 0.055 Nm2 Nominal momentum of inertia.
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Analyze the system dynamics by:

1 defining the set of equilibrium points;

2 linearizing the proposed model at a ”zero input force”
equilibrium;

3 writing the transfer function: analytically from the initial
(second order) physical equations and numerically from
the state-space model;

4 interpreting the resulting equations.
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The Three Phases of Modeling

“Successful modeling is based as much on a good feeling for

the problem and common sense as on the formal aspects that

can be taught”

1. Structuring the problem

• divide the system into subsystems, determine causes and

effects, important variables and interactions;

• intended use of the model?

• results in block diagram or similar description;

• needs understanding and intuition;

• where complexity and degree of approximation are

determined.
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2. Setting up the Basic Equations

• “fill in” the blocks using the laws of nature and basic

physical equations;

• introduce approximations and idealizations to avoid too

complicated expressions;

• lack of basic equations→ new hypotheses and innovative

thinking.

3. Forming the State-Space Models

• formal step aiming at suitable organization of the

equations/relationships;

• provides a suitable model for analysis and simulation;

• computer algebra can be helpful;

• for simulation: state-space models for subsystems along

with interconnections.
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Example: the Mining Ventilation Problem [IJRNC’11]

Objectives:

• propose a new automation strategy to minimize the fans

energy consumption, based on distributed sensing

capabilities: wireless sensor network;

• investigate design issues and the influence of sensors

location;

• find the optimal control strategy that satisfies safety

constraints.
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Phase 1: Structuring the problem

Ask the good questions:

• What signals are of interest (outputs)?

• Which quantities are important to describe what happens

in the system?

• Of these quantities, which are exogenous and which

should be regarded as internal variables?

• What quantities are approximately time invariant and

should be regarded as constants?

• What variables affect certain other variables?

• Which relationships are static and which are dynamic?
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General tips:

• often need experimental results to assist these steps (i.e.

time constants and influences);

• the intended use determines the complexity;

• use model to get insights, and insights to correct the

model;

• work with several models in parallel, that can have different

complexity and be used to answer different questions;

• for complex systems, first divide the system into

subsystems, and the subsystems into blocs.
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Example: for the mining ventilation problem

• Inputs to the system:

• ρ: air density in vertical shaft;

• P: air pressure in vertical shaft;

• ∆H: variation of pressure produced by the fan;

• ṁj,in: incoming pollutant mass rate due to the engines;

• ṁj,chem: mass variation due to chemical reactions between

components;

• h: time-varying number of hops in WSN.

• Outputs from the system:

• cj(z, t) pollutants (COx or NOx ) volume concentration

profiles, where z ∈ [0; hroom] is the height in the extraction

room;

• uavg is the average velocity of the fluid in the tarpaulin tube;

• mj pollutant mass in the room;

• τwsn delay due to the distributed measurements and

wireless transmission between the extraction room and the

fan.
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• Division into subsystems:

• fan / tarpaulin tube / extraction room / wireless sensor

network.

• Corresponding block diagram:
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Phase 2: Setting up the Basic

Equations

Main principles:

• formulate quantitative I/O relationships;

• use knowledge of mechanics, physics, economics, . . .

• well-established laws, experimental curves (data sheets)

or crude approximations;

• Highly problem dependent!
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Two groups of relationships:

1 Conservation laws: relate quantities of the same kind, i.e.

• Pin − Pout = stored energy / unit time;

• inflow rate - outflow rate = stored volume / t;

• input mass flow rate - output mass flow rate = stored mass

/ t;

• nodes and loops from Kirchhoff’s laws.

2 Constitutive relationships: relate quantities of different
kinds (i.e. voltage - current, level - outflow, pressure drop -
flow)

• material, component or bloc in the system;

• static relationships;

• relate physical to engineering relationships;

• always approximate.
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How to proceed?

• write down the conservation laws for the block/subsystem;

• use suitable constitutive relationships to express the

conservation laws in the model variables. Calculate the

dimensions as a check.
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Mining ventilation example (i.e. extraction room):

• Conservation law - conservation of mass for chemical

species j:

ṁj(t) = ṁj,in(t) − ṁj,out(t) − ṁj,chem(t)

• Constitutive relationship - relate the mass to concentration

profile:

mj(t) = Sroom

∫ hroom

0

cj(z, t)dz

= Sroom

[∫ hdoor

0

cj(z, t)dz + αj(t)∆h

]

,

and hypothesis on the shape (e.g. sigmoid):

cj(z, t) =
αj(t)

1 + e−βj(t)(z−γj(t))
.
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Phase 3: Forming the

State-Space Models

Straightforward recipe:

1 choose a set of state variables (memory of what has

happened, i.e. storage variables);

2 express the time derivative of each state as a function of

states and inputs;

3 express the outputs as functions of the state and inputs.
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Examples of stored quantities:

• position of a mass / tank level (stored potential energy);

• velocity of a mass (stored kinetic energy);

• charge of capacitor (stored electrical field energy);

• current through inductor (stored magnetic energy);

• temperature (stored thermal energy);

• internal variables from step 2.

Make separate models

for the subsystems and diagram interconnections→ modularity

and error modeling diagnostic.

Principles of

physical

modeling

E. Witrant

The Phases of

Modeling

1: Structuring

the problem

2. Setting up

the Basic

Equations

3. Forming the

State-Space

Models

Simplified

models

Firn example

Conclusions

Homework

Extraction room model:

• Shape parameters α, β and γ chosen as the state:

x(t) = [α, β, γ]T ;

• Time derivative from mass conservation:

Ej





















α̇j(t)

β̇j(t)
γ̇j(t)





















= ṁj,in(t) − Bj ufan(t − τtarp) − Djk , with

Ej � Sroom


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0

0
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Number of state variables:

• sufficient if derivatives described by state and inputs;

• harder to determine unnecessary states;

• linear models→ rank of matrices;

• when used in simulation, the only disadvantage is related

to unnessary computations.
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Simplified models

Even if a relatively good level of precision can be achieved, the

model has to be manageable for our purpose.

Model simplification:

• reduced number of variables;

• easily computable;

• linear rather than nonlinear;

• tradeoff between complexity and accuracy;

• balance between the approximations;

• three kinds:

1 small effects are neglected - approximate relationships are

used;

2 separation of time constants;

3 aggregation of state variables.
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Small effects are neglected - approximate relationships

are used:

• i.e. compressibility, friction, air drag→ amplitude of the

resonance effects / energy losses?

• based on physical intuition and insights together with

practice;

• depends on the desired accuracy;

• linear vs. nonlinear: make experiments and tabulate the

results.
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Separation of time constants:

• May have different orders of magnitude, i.e. for Tokamaks:
Alfvén time (MHD instabilities) 10−6 s

density diffusion time 0.1 − 1 s

heat diffusion time 0.1s-1s (3.4 s for ITER)

resistive diffusion time few seconds (100 − 3000 s for ITER)

• Advices:

• concentrate on phenomena whose time constants match

the intended use;

• approximate subsystems that have considerably faster

dynamics with static relationships;

• variables of subsystems whose dynamics are appreciably

slower are approximated as constants.

• Two important advantages:

1 reduce model order by ignoring very fast and very slow

dynamics;

2 by giving the model time constants that are on the same

order of magnitude (i.e. τmax/τmin ≤ 10 − 100), we get

simpler simulations (avoid stiffness!). E.g.

A = [0, 1;−1000 − 1001]

• When different time-scales, use different models.
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Aggregation of state variables:

To merge several similar variables into one state variable: often

average or total value.

• i.e. infinite number of points in the extraction room→ 3

shape parameters, trace gas transport in firns;

• hierarchy of models with different amount of aggregation,

i.e. economics: investments / private and government /

each sector of economy / thousand state variables;

• partial differential equations (PDE) reduced to ordinary

differential equations (ODE) by difference approximation of

spatial variables.
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Example: Heat conduction in a rod

• input: power in the heat source P;

• output: temperature at the other endpoint T ;

• heat equation:
∂

∂t
x(z, t) = a

∂2

∂z2
x(z, t)

where x(z, t) is the temperature at time t at the distance z

from the left end point and a is the heat conductivity

coefficient of the metal;

• hypothesis: no losses to the environment;

• at the end points: a
∂

∂z
x(0, t) = P(t), x(L , t) = T(t)

• requires to know the whole function x(z, t1), 0 ≤ z ≤ L , to

determine T(t), t ≥ t1,→ infinite dimensional system.
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Example: Heat conduction in a rod (2)

Aggregation of state variables: approximate for simulation

• divide the rode (x(z, t), 0 ≤ z ≤ L/3, aggregated into x1(t)
etc.) and assume homogeneous temperature in each part

• conservation of energy for part 1:

d

dt
(heat stored in part 1) = (power in) − (power out to part 2)

d

dt
(C · x1(t)) = P − K(x1(t) − x2(t))

C: heat capacity of each part, K : heat transfer

• similarly:

d

dt
(C · x2(t)) = K(x1(t) − x2(t)) − K(x2(t) − x3(t))

d

dt
(C · x3(t)) = K(x2(t) − x3(t))

T(t) = x3(t)
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• Rearrange the equations to obtain the linear state-space

model:

ẋ(t) =
K

C





















−1 1 0

1 −2 1

0 1 −1





















x +
1

C





















1

0

0





















P

y(t) = (0 0 1) x(t)

• Conclusions: essentially the same as using finite

difference approximation on the space derivative

(homework), a finer division would give a more accurate

model.
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Example: solving the air continuity in polar firns and ice

cores [ACP’12]
From poromechanics, firn =

system composed of the ice

lattice, gas connected to the

surface (open pores) and gas

trapped in bubbles (closed pores).
Air transport is driven by:

∂[ρice(1 − ǫ)]

∂t
+ ∇[ρice(1 − ǫ)~v ] = 0

∂[ρo
gasf ]

∂t
+ ∇[ρo

gas f(~v + ~wgas)] = −~r
o→c

∂[ρc
gas(ǫ − f)]

∂t
+ ∇[ρc

gas(ǫ − f)~v] = ~ro→c

with appropriate boundary and

initial conditions.
Scheme adapted from [Sowers

et al.’92, Lourantou’08].
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I.e. CH4 transport at NEEM (Greenland)

⇒ Unique archive of the recent (50-100 years) anthropogenic

impact. Can go much further (i.e. > 800 000 years) in ice.
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From distributed to lumped dynamics

• Consider a quantity q transported in 1D by a flux u = qv

with a source term s (t ∈ [0, T ], z ∈ [0, zf ]):

∂q

∂t
+
∂

∂z
[q v(z, t)] = s(z, t), with

{

q(0, t) = 0

q(x , 0) = q0(x)

where s(z, t) , 0 for z < z1 < zf and s = 0 for z1 < z < zf .

• Approximate ∂[qv]/∂z, i.e. on uniform mesh [Hirsch’07]:

• backward difference: (uz)i =
ui−ui−1

∆z
+ ∆z

2
(uzz)i

• central difference: (uz)i =
ui+1−ui−1

2∆zi
− ∆z2

6
(uzzz)i

• other second order:

(uz)i =
ui+1+3ui−5ui−1+ui−2

4∆zi
+ ∆z2

12
(uzzz)i −

∆z3

8
(uzzzz)i

• third order: (uz)i =
2ui+1+3ui−6ui−1+ui−2

6∆zi
− ∆z3

12
(uzzzz)i

• Provides the computable lumped model: dq/dt = Aq + s

• The choice of the discretization scheme directly affects the

definition of A and its eigenvalues distribution: need to

check stability and precision!
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E.g. stability: eigenvalues of A for CH4 at NEEM with

dt ≈ 1 week
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E.g. eig(A) for CH4 at NEEM with dt ≈ 1 week, zoom
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Conclusions

→ Guidelines to structure the general approach for modeling

• The clarity of the model and its usage directly depends on

its initial philosophy

• Prevent the temptation to avoid the documentation of

“obvious steps”

• Forecasting the use of experimental knowledge and

sub-model validation strategies during the modeling

phases is essential
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Homework 2
Use finite differences to solve the heat conduction

a
∂2

∂z2
x(z, t) =

∂

∂t
x(z, t), T(t) = x(L , t), P(t) = −

∂

∂z
x(z, t)|z=0.

1 define the discretized state

X(t) � [x1(t) . . . xi(t) . . . xN(t)]
T as a spatial discretization

of x(z, t);

2 use the central difference approximation ∂
2u
∂z2 ≈

ui+1−2ui+ui−1

∆z2

to express dxi(t)/dt as a function of xi+1, xi and xi−1, for

i = 1 . . .N;
3 introduce the boundary conditions

• with ∂u
∂z
(0, t) ≈ u1−u0

∆z
to express x0 as a function of x1 and

P, then substitute in dx1/dt ;
• with ∂u

∂z
(L , t) ≈ uN+1−uN

∆z
to express xN+1 as a function of xN ,

then substitute in dxN/dt (suppose that there is no heat

loss: ∂x(L , t)/∂z = 0);

4 write the discretized dynamics in the state-space form;

5 for N = 3 compare with the results obtained in class.
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Introduction

• Most common relationships within a number of areas in

physics.

• More general relationships become visible.

⇒ General modeling strategy.
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Physic fundamentals

Mass conservation
For a closed system: ∆M = 0.

Energy conservation

For an isolated system: ∆E = 0.

1st law of thermodynamics

Heat (Q) and Work (W ) are equivalent and can be exchanged.

∆E = ∆U +∆Ecin +∆Epot = Q + W .
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Electrical Circuits

Fundamental quantities:

voltage u (volt) and current i (ampere).

Components:
Nature Relationship (law) Energy

Inductor

(L henry)
i(t) =

1

L

∫ t

0

u(s)ds, u(t) = L
di(t)

dt

T(t) = 1
2
Li2(t)

(magnetic field E storage, J)

Capacitor

(C farad)
u(t) =

1

C

∫ t

0

i(s)ds, i(t) = C
du(t)

dt

T(t) = 1
2
Cu2(t)

(electric field E storage)

Resistor

(R ohm)
u(t) = Ri(t)

Nonlinear

resistance
u(t) = h1(t)i(t), i(t) = h2(t)u(t)

P(t) = u(t) · i(t)
(loss, in watts, 1 W = 1 J/s)

Ideal

rectifier
h2(t) =

{

x, x > 0

0, x ≤ 0
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Interconnections (Kirkhhoff’s laws):

∑

k

ik (t) ≡ 0 (nodes),
∑

k

uk (t) ≡ 0 (loops).

Ideal transformer:
transform voltage and current such that their product is

constant:

u1 · i1 = u2 · i2, u1 = αu2, i1 =
1

α
i2
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Mechanical Translation

Fundamental quantities:

force F (newton) and velocity v (m/s), 3-D vectors (suppose

constant mass ṁ = 0).

Components:
Nature Relationship (law) Energy

Newton’s

force law
v(t) =

1

m

∫ t

0

F(s)ds, F(t) = m
dv(t)

dt

T(t) = 1
2
mv2(t)

(kinetic E storage)

Elastic bodies

(k N/m)
F(t) = k

∫ t

0

v(s)ds, v(t) =
1

k

dF(t)

dt

T(t) = 1
2k

F2(t)
(elastic E storage)

Friction
F(t) = h(v(t))

Air drag

Dampers

h(x) = cx2sgn(x)
h(x) = γx

P(t) = F(t) · v(t)
(lost as heat)

Dry

friction
h(x) =



















+µ if x > 0

F0 if x = 0

−µ if x < 0

Principles of

physical

modeling

E. Witrant

Physic

fundamentals

Electrical

Circuits

Mechanical

Translation

Mechanical

Rotation

Flow Systems

Thermal

System

Heat Conduction

Heat Convection

Thermal

Systems

Conclusions

Interconnections:

∑

k

Fk (t) ≡ 0 (body at rest)

v1(t) = v2(t) = . . . = vn(t) (interconnection point)

Ideal transformer:
force amplification thanks to levers:

F1 · v1 = F2 · v2

F1 = αF2

v1 =
1

α
v2
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Example: active seismic isolation control [Itagaki &

Nishimura 2004]

Mass - spring - damper approximation:



















































































m4ẍ4(t) = γ4(ẋ3 − ẋ4) + k4(x3 − x4)
mi ẍi(t) = [γi(ẋi−1 − ẋi) + ki(xi−1 − xi)]

+[γi+1(ẋi+1 − ẋi)
+ki+1(xi+1 − xi)], i = 2, 3

m1ẍ1(t) = [γ1(ẋ0 − ẋ1) + k1(x0 − x1)]
+[γ2(ẋ2 − ẋ1) + k2(x2 − x1)]
+u(t)

m1ẍ0(t) = Fearth(t)
y(t) = [ẍ0 + ẍ1 x2 − x1]

T
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Example: active seismic isolation control (2)

Experiment at UNAM (Mexico):
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Mechanical Rotation

Fundamental quantities:

torque M [N ·m] and angular velocity ω [rad/s].

Components:
Nature Relationship (law) Energy

Inertia

J [Nm/s2]
ω(t) =

1

J

∫ t

0

M(s)ds, M(t) = J
dω(t)

dt

T(t) = 1
2
Jω2(t)

(rotational E storage)

Torsional

stiffness k
M(t) = k

∫ t

0

ω(s)ds, ω(t) =
1

k

dM(t)

dt

T(t) = 1
2k

M2(t)
(torsional E storage)

Rotational

friction
M(t) = h(ω(t)) P(t) = M(t) · ω(t)
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Interconnections:

∑

k

Mk (t) ≡ 0 (body at rest).

Ideal transformer:
a pair of gears transforms torque and angular velocity as:

M1 · ω1 = M2 · ω2

M1 = αM2

ω1 =
1

α
ω2
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Example: printer belt pulley [Dorf & Bishop 2001]











































































Spring tension: T1 = k(rθ − rθp) = k(rθ − y)
Spring tension: T2 = k(y − rθ)

Newton (mass): T1 − T2 = m
d2y

dt2

Motor torque (resistance, L = 0): Mm = Km i =
Km

R
v2

drives belts + disturb.: Mm = M + Md

T drives shaft to pulleys: J
d2θ

dt2
= M − h

dθ

dt
− r(T1 − T2)
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Flow Systems

Fundamental quantities:

for incompressible fluids, pressure p [N/m2] and flow Q [m3/s].

Fluid in a tube:

Pressure gradient ∇p force p · A

mass ρ · l · A flow Q = v · A

inertance [kg/m4] Lf = ρ · l/A

Constitutive relationships (Newton: sum of forces = mass ×

accel.):

Q(t) =
1

Lf

∫ t

0

∇p(s)ds, ∇p(t) = Lf

dQ(t)

dt

T(t) = 1
2
Lf Q

2(t)
(kinetic E storage)
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Fluid in a tube (2):

Pressure drop from Darcy-Weisbach’s equation for a circular

pipe:
∂P

∂x
= f

(

l

D

) (

v2

2g

)

Friction factor for laminar flow (Re < 2300): f = 64
Re

; for

turbulent flow, empirical formula or Moody Diagram:
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Flow in a tank (i.e. no friction):

• Volume V =
∫

Qdt , h = V/A , and fluid capacitance

Cf � A/ρg [m4s2/kg].

• Constitutive relationships:
Bottom pres. ∆p(t) = ρ · g · h

p = ρ · g · h + pa =
1

Cf

∫ t

0

Q(s)ds

T(t) = 1
2
Cf p

2(t)
(potential E storage)
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Flow through a section reduction:

• Pressure p, flow (hydraulic) resistance Rf , constant H .

• Constitutive relationships:

Pressure drop

Darcy’s law

area change

∇p(t) = h(Q(t))
∇p(t) = Rf Q(t)

∇p(t) = H ·Q2(t) · sign(Q(t))
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Interconnections:

∑

k

Qk (t) ≡ 0 (flows at a junction),
∑

k

pk ≡ 0 (in a loop)

Ideal transformer: piston

p1 · Q1 = p2 · Q2, p1 = αp2, Q1 =
1

α
Q2.
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Thermal System

Fundamental quantities:

Temperature T [K ], Entropy S [J/kg · K ] and heat flow rate

q̇ [W ].

3 ways to transfer heat:

• Conduction: Contact between 2 solids at different

temperatures

• Convection: Propagation of heat through a fluid (gas or

liquid)

• Radiation: 3rd principle of thermodynamics : P = ǫSσT4

(T > 0⇒ q̇rad > 0)

Thermal energy of a body or Fluid: Etherm = M · Cp · T

Heat transported in a Flow: q̇ = ṁ · h (h=enthalpy)
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Heat Conduction

Body heating:

Fourier’s law of conduction in 1D

k ·
∂T2

∂x2
= ρ · Cp ·

∂T

∂t

q̇(t) = M · Cp ·
∂T

∂t
,

where k [W/m · K ] is thermal conductivity of the body,

ρ [kg/m3] and M [kg] are the density and the mass of the body,

and Cp [W/(kg · K)] is the specific Heat of the body.

Interconnections:
∑

k

q̇k (t) ≡ 0 (at one point).
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Heat Convection

Forced convection between a flowing fluid in a pipe:

h · Sw · (Tw(t) − T(t)) = −Mw · Cp,w ·
dTw(t)

dt
= q̇(t)

where T [K ] is the fluid temperature,

h [W/m2 · K ] is the heat transfert coefficient,

and Tw [K ], Mw [kg], Sw [m2] Cp,w [J/kg · K ] are the

temperature, mass, surface and specific heat of the pipe.

Interconnections:

∑

k

q̇k (t) ≡ 0 (at one point).

Principles of

physical

modeling

E. Witrant

Physic

fundamentals

Electrical

Circuits

Mechanical

Translation

Mechanical

Rotation

Flow Systems

Thermal

System

Heat Conduction

Heat Convection

Thermal

Systems

Conclusions

Convective Heat Transfer

coefficient

Correlation for Forced internal turbulent Flow:
Dittus-Boelter correlation (1930) with 10000 < Re < 120000.

h =
k

D
Nu

where k is thermal conductivity of the bulk fluid, D is the

Hydraulic diameter and Nu is the Nusselt number.

Nu = 0.023 · Re0.8
· Prn

with Re = ρ·v ·D
µ

is the Reynolds Number and Pr is the Prandtl

Number. n = 0.4 for heating (wall hotter than the bulk fluid) and

n = 0.33 for cooling (wall cooler than the bulk fluid). Precision

is ±15%
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Thermal Systems: summary

• Conduction in 0D:
Thermal capacity

C [J/(K · s)]
T(t) =

1

C

∫ t

0

q̇(s)ds, q̇(t) = C
dT(t)

dt

• Interconnections:

q̇(t) = W∆T(t) (heat transfer between 2 bodies)
∑

k

q̇k (t) ≡ 0 (at one point).

where W = hSw [J/(K · s)].
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Conclusions

Obvious similarities among the basic equations for different

systems!

Some physical analogies:
System Effort Flow Eff. storage Flow stor. Static relation

Electrical Voltage Current Inductor Capacitor Resistor

Mechanical:

- Translational Force Velocity Body (mass) Spring Friction

- Rotational Torque Angular V. Axis (inertia) Torsion s. Friction

Hydraulic Pressure Flow Tube Tank Section

Thermal Temperature Heat flow rate - Heater Heat transfer
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Characteristics:

1 Effort variable e;

2 Flow variable f ;

3 Effort storage: f = α−1 ·
∫

e;

4 Flow storage: e = β−1 ·
∫

f ;

5 Power dissipation: P = e · f ;

6 Energy storage via I.: T = 1
2α

f2;

7 Energy storage via C.: T = 1
2β

e2;

8 Sum of flows equal to zero:
∑

fi = 0;

9 Sum of efforts (with signs) equal to zero:
∑

ei = 0;

10 Transformation of variables: e1f1 = e2f2.

• Note: analogies may be complete or not (i.e. thermal).

⇒ Create systematic, application-independent modeling from

these analogies (next lesson).
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Basic Concepts behind Bond

Graphs [S. Stramigioli’01]

• Mathematical modeling: mathematical relations, generally

without constraints or physical interpretation.

• Physical modeling: physical concepts and restrict to keep

some physical laws.

Bond-graph

• satisfy 1st principle of thermodynamics: energy

conservation

• self-dual graphs where:

vertices = ideal physical concepts (storage or transformation of

energy)

edges - power bonds - = lossless transfer of energy (i.e. water

pipes, energy from one part to the other in the system)

⇒ excellent tool for describing power-consistent networks of

physical systems.
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Causality

• Block diagrams: exchange of information takes place

through arrows, variable x going from A to B = causal

exchange of information

but often physically artificial and not justified, i.e. resistor

• Bond graphs: causality not considered in the modeling

phase, only necessary for simulation.

Energy

• one of the most important concepts in physics

• dynamics is the direct consequence of energy exchange

• lumped physical models: system = network

interconnection of basic elements which can store,

dissipate or transform energy
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Outline

1 Physical Domains and Power Conjugate Variables

2 The Physical Model Structure and Bond Graphs

3 Energy Storage and Physical State

4 Free Energy Dissipation

5 Ideal Transformations and Gyrations

6 Ideal Sources

7 Kirchhoff’s Laws, Junctions and the Network Structure

8 Bond Graph Modeling of Electrical Networks
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Physical Domains and Power

Conjugate Variables

Physical domains:

• Discriminate depending on the kind of energy that a
certain part of the system can store, i.e.

• kinetic energy of a stone thrown in the air→ translational

mechanical

• potential energy of a capacitor→ electric domain

• Most important primal domains:

• mechanical = mechanical potential & mechanical kinetic;

• electromagnetic = electric potential & magnetic potential;

• hydraulic = hydraulic potential & hydraulic kinetic;

• thermic: only one without dual sub-domains, related to the

irreversible transformation of energy to the thermal

domain.
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Power conjugate variables:

• Similarity among domains (cf. Lesson 3), i.e. oscillator

• In each primal domain: two special variables, power

conjugate variables, whose product is dimensionally equal

to power

• Efforts and flows:

Domain Effort Flow

Mechanical Translation force F velocity v

Mechanical Rotation torque τ angular velocity ω

Electro-magnetic voltage v current i

Hydraulic pressure p flow rate Q

Thermic temperature T heat flow rate q̇
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The Physical Model Structure and

Bond Graphs

Energetic ports:

• physical modeling→ atomic elements like the storage,

dissipation, or transformation of energy;

• external variables = set of flows and dual vectors;

• effort-flow pairs = energetic ports since their dual product

represents the energy flow through this imaginary port.

Bond graphs as a graphical language:

1 easy to draw;

2 mechanical to translate into block diagram or differential

equations;

3 a few rules and it is impossible to make the common “sign

mistakes” of block diagrams.
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Energetic bonds:

• edges in the graph, represent the flow of energy (e.g.

water pipes);

• notations: effort value above or left, flow under or right;

• rules:

A B A B

1 each bond represents both an effort e and a dual flow f ;

2 the half arrow gives the direction of positive power P = eT f

(energy flows);

3 effort direction can be, if necessary, specified by the causal

stroke & dual flow goes ALWAYS in the opposite direction

(if not an element could set P independently of destination

→ extract infinite energy).
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Network structure:

• if 2 subsystems A and B , both the effort and flow MUST

be the same: interconnection constraint that specifies how

A and B interact;

• more generally, interconnections and interactions are

described by a set of bonds and junctions that generalize

Kirchhoff’s laws.
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Energy Storage and Physical

State

Identical structure for physical lumped models

• Integral form characterized by:

1 an input u(t), always and only either effort or flow;

2 an output y(t), either flow or effort;

3 a physical state x(t);
4 an energy function E(x).

• State-space equations: ẋ(t) = u(t), y(t) =
∂E(x(t))

∂x
• Change in stored energy:

Ė =
dE

dt
=
∂E(x)

∂x

T
dx

dt
= yT u = Psupplied

→ half arrow power bonds always directed towards

storage elements (Ė > 0)!
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e.g. Capacitor:

x

E

∂
∂

∫ q v

u x y

i

flow effortstate

C
e

f
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Bond graphs representations

• Depending whether u is an effort or a flow in the integral
form, two dual elements:

• C element: has flow input u and dual effort output y;

• I element: has effort input u and dual flow output y.

• Causal representations:

generalized displacement

q(t) = q(t0) +
∫ t

t0
f(s)ds

differential form→ γ−1(e)

generalized potential energy E(q)

co-energy

E∗(e)⇒ γ−1(e) =
∂E∗(e)

∂e
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generalized momenta

p(t) = p(t0) +
∫ t

t0
e(s)ds

differential form→ γ−1(f)

generalized kinetic energy E(p)

co-energy

E∗(f)⇒ γ−1(f) =
∂E∗(f)

∂f

• Multidimensional I indicated by I and multidimensional C =

C.
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Mechanical domain

C - Spring:

• input u = velocity v, generalized displacement
∫

v = x,

stored potential energy E(x) = 1
2
kx2, effort

y =
∂E

∂x
= kx = F (elastic force);

• holds for ANY properly defined energy function, which is

the ONLY information characterizing an ideal storage of

energy;

• e.g. nonlinear spring: E(x) = 1
2
kx2 + 1

4
kx4
⇒

y = F =
∂E

∂x
= kx + kx3;

• linear spring, co-energy E∗(F) =
1

2

F2

k
,

x = γ−1(F) =
∂E∗(F)

∂F
=

F

k
.
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I - Effort as input, kinetic mechanical domain:

• input u = force F ,
∫

F = p = mv (momenta) by Newton’s

law (holds if m(t))
⇒ proper physical state for kinetic E storage: momentum p;

• E(p) =
1

2

p2

m
, y = v = γ(p) =

∂E

∂p
=

p

m
;

• kinetic co-energy E∗(v) =
1

2
mv2,

p = γ−1(v) =
∂E∗(v)

∂v
= mv.
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Electrical domain:

• proper physical states: charge q and flux φ, NOT i and v;

C - Storage in electrostatic domain:

• u = i, physical state
∫

i = q (generalized displacement),

stored potential energy E(q) =
1

2

q2

C
(co-energy

E∗(v) =
1

2
Cv2), effort y =

∂E

∂q
=

q

C
= v;

• e.g. nonlinear capacitor: E(q) =
1

2

q2

C
+

1

4

q4

C
⇒

y = v =
q

C
+

q3

C
.

• using co-energy, q = γ−1(v) =
∂E∗(v)

∂v
= Cv.

I - Ideal inductor:

• u = v,
∫

v = φ, E(φ) =
1

2

φ2

L
, where L � induction

constant, y = i =
φ

L
.
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Energy storage:

• Generalized states:

Domain Gen. momentum (
∫

e) Gen. displacement (
∫

f )

Mech. Translational momentum p displacement x

Mech. Rotational ang. momentum m ang. displacement θ

Electromagnetic flux linkage φ charge q

Hydraulic pressure mom. Pp volume V

Thermic NON EXISTENT entropy E

• Storage elements:

1 what are the real physical states?

2 energy function provides the equation;

3 argument→ what physical ideal element it represents;

4 the only ideal physical elements to which a state is

associated are energy storage;

5 in bond graphs, the power bond connected to a storage

element must always be directed toward the element.
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Duality

• 2 storage / physical domain but thermal (generalized

potential and kinetic energy storage) = dual;

• one major concept in physics: oscillations if interconnected

dual elements, e.g. spring-mass or capacitor-inductor;

• thermal domain does NOT have both = irreversibility of

energy transformation due to a lack of “symmetry”.

Extra supporting states

• states without physical energy;

• e.g. position of a mass translating by itself: physical state

p, position x =
∫

v = p/m but if the measurement is x and

not v:
(

ṗ

ẋ

)

=

(

0

p/m

)

+

(

u

0

)

, y = x

⇒ total state (p, x)T , physical state p, supporting state x

needed for analysis without associated physical energy.
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Free Energy Dissipation

Principle:

• irreversible transformation, e.g. mechanical or electrical→

thermal;

• dissipation of energy is transformation (1st principle of

thermodynamics);

• dissipation of free-energy (math.: Legendre transformation

of energy with respect to entropy), e.g. ideal electrical

resistors or mechanical dampers;

• ideal dissipator characterized by a purely statical

(no-states) effort/flow relation: e = Z(f) (Impedance form)

or f = Y(e) (Admittance form) for which Z(f)f < 0 or

eY(e) < 0 (energy flowing toward the element)
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Electrical domain

• Ohm’s law: u = Ri and i = u/R;

• causally invertible;

• r : constant R of a linear element (r = R).

Mechanical domain

• viscous damping coefficient b: F = bv and v = F/b,

r = b.
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Ideal Transformations and

Gyrations

Electrical domain

• elements with two power ports = two power bonds;

• ideal, power continuous, two port elements: power flowing

from one port (input bond) ≡ one flowing out from other

port (output bond)⇒ cannot store energy inside.

• e.g. ideal transformer:

• input and output bonds with positive power flow in and out;

• external variables: (ein, fin) = power flowing in from input

port and (eout , fout ) = power flowing out from other port;

• power continuity: Pin = eT
in

fin = eT
out fout = Pout

• linear relation between one of the external variable on one

port to one of the external variables on the other port;

• flow-flow→ ideal transformers, flow-effort→ ideal gyrators
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Ideal Transformers

• relation: linear between flows and dependent linear

between efforts;

• characterizing equation: fout = nfin where n: linear

constant characterizing the transformer

• power constraint: ein = neout ⇔ eout =
1
n
ein

⇒ if 2 ports belong to same domain and n < 1, ein < eout

but fin > fout .

• e.g. gearbox of a bicyle: ein = torque applied on pedal axis

and fin = angular velocity around the pedals, (eout , fout ) on

the back wheel;

• n relates the efforts in one way and also the flows in the

other way;

• if n variable: modulated TF (extra arrow).
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Ideal Gyrators

• linear constant between effort of output port and flow of

input port: eout = nfin;

• power constraint: ein = nfout ⇔ fout =
1
n
ein;

• e.g. gyrative effect of a DC motor (electrical power flows in

and mechanical power flows out): out torque τ = Ki,

power continuity→ u = Kω (e.m.f.):

Electrical

domain

(

i

u

)

→

←

(

τ

ω

)

Rotational

domain

• if n variable: modulated gyrator.
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Multi-bonds

• characteristic constant→ matrix, if variable→ modulated

transformer or gyrator;

• Transformers:

• TF, MTF;

• f2 = Nf1 ⇒ e1 = NT e2 (using eT
1

f1 = eT
2

f2);

• Gyrators:

• GY, MGY, SGY;

• e2 = Nf1 ⇒ e1 = NT f2;

• e = Sf with S = −ST =

[

0 −NT

N 0

]

• if N = identity matrix: symplectic gyrator SGY (algebraic

relationship, can be used to dualize C into I).
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Ideal Sources

• Supply energy: ideal flow source and ideal effort source.

• Only elements from which the power bond direction goes

out: Psource = eT f .

• Supply a certain effort or flow independently of the value

of their dual flow and effort.

• e.g. ideal voltage and current source in the electrical

domain
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Kirchhoff’s Laws, Junctions and

the Network Structure

• How we place the bricks with respect to each other

determines the energy flows and dynamics

• Generalization of Kirchhoff’s laws, network structure→

constraints between efforts and flows

• Two basic BG structures: 1 junctions = flow junctions and

0 junctions = effort junctions

• Any number of attached bonds

• Power continuous (in = out)
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1-junctions:

• flow junction: all connected bonds are constrained to have

the same flow values;

• causality: only one bond sets the in flow and all other

bonds use it (strokes constraint);

• equations:

fi1 = · · · = fim = fo1 = · · · = fon (flow equation),
m∑

k=1

eik =
n∑

k=1

eok (effort equation);

• Kirchhoff’s law for a mesh in electrical networks: same

current and the algebraic potential sum = 0;
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Electrical example:

• same current→

flow junction

• all bonds point to R, C and I and

source bond point out→ all

signs are automatically correct;

• I (integral causality) “sets” the

junction current (mesh) and

other elements have this current

as input and voltages as outputs;

• complete dynamics described
by:

• effort equation:

Vs = Vr + Vc + Vl

• I element: φ̇ = Vl and i = φ/L
• q element: q̇ = i and

Vc = q/C

• R element: Vr = Ri
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0-junctions:

• effort junction: all connected bonds constrained to have

same efforts;

• causality: only one bond sets ein and all other bonds use

it;

• equations:

ei1 = · · · = eim = eo1 = · · · = eon (effort equation),
m∑

k=1

fik =
n∑

k=1

fok (flow equation);

• Kirchhoff’s law for a node: algebraic current sum = 0.
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Effort difference:

• need the difference of two efforts to specify power

consistent interconnection with other elements;

• all flows are the same and

m∑

k=1

eik =
n∑

k=1

eok ⇒ e1 = e2 + e3 ⇔ e3 = e1 − e2.
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Flow difference:

• need the difference of two flows to specify power

consistent interconnection with other elements;

• all efforts are the same and

m∑

k=1

fik =
n∑

k=1

fok ⇒ f1 = f2 + f3 ⇔ f3 = f1 − f2.
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Bond Graph Modeling of

Electrical Networks

Algorithm:

1 for each node draw a 0-junction which corresponds to the

node potential;

2 for each bipole connected between two nodes, use effort

difference where a bipole is attached and connect the

ideal element to the 0-junction representing the difference.

3 choose a reference (v = 0) and attach an effort source

equal to zero to the corresponding 0-junction.

4 simplify:

• eliminate any junction with only 2 attached bonds and have

the same continuing direction (one in and one out);

• fuse 1 and 0-junctions that are connected through a

single-bond;

• eliminate all junctions after the 0 reference source that do

not add any additional constraint.
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Bond Graph Modeling of

Mechanical Systems

Algorithm:

1 for each moving mass draw a 1-junction = mass velocity;

2 add an additional 1-junction for inertial reference with an

attached Sf = 0;

3 for each inertia attach a corresponding I element to the

one junction corresponding to its velocity;

4 for each damper or spring: flow difference for ∆v attach to

the 1-junction;

5 simplify the graph by:

• eliminating all junctions with only two bonds in the same

continuing direction;

• fuse 1 and 0-junctions connected through a single-bond;

• eliminate all the junctions after the reference source which

do not add any additional constraints.
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Examples

DC motor example

• 6 interconnected lumps:

• 2 storage elements with corresponding physical states

(φ, p): ideal inductor L and rotational inertia I → 2 states

and order 2 model;

• 2 dissipative elements: the resistor R and the friction b;

• 1 gyration effect K ;

• an ideal voltage source u.
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• Elements equations:

• storage elements and physical states:

Inertia






ṗ = τI

ω =
∂EI

∂p
=
∂

∂p

(

1

2I
p2

)

=
p

I

Inductor






φ̇ = ul

i =
∂EL

∂φ
=
∂

∂φ

(

1

2L
φ2

)

=
φ

L

• dissipation (linear): ur = Ri and τb = bω (dissipating

torque);

• gyration equations: τ = Ki and um = Kω
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• Network interconnection:

• use previous algorithms to describe the electrical and

mechanical parts;

• introduce the gyrator to connect the two domains→

inter-domain element;
(a) Preliminary diagram drawing:

• 0-junctions of electrical to indicate the connection points of

the bipoles;

• mechanical: 1-junctions = angular rotation of the wheel and

reference inertial frame (source);

• gyrator = relation from flow i to effort τ⇒ 1 to 0 junction;

• torque applied between the wheel and ground.

• simplifications:

(b) eliminate the two zero sources and attached junctions;

(c) eliminate any junction with only two bonds attached to it;

(d) mix all the possible directly communicating junctions of the

same type.



Bond Graphs

E. Witrant

Power

Conjugate

Variables

Structure and

Bond Graphs

Storage and

state

Energy

Dissipation

Transformations

and Gyrations

Ideal sources

Junctions

Electrical

Networks

Mechanical

Systems

Examples

Conclusions

Bond Graphs

E. Witrant

Power

Conjugate

Variables

Structure and

Bond Graphs

Storage and

state

Energy

Dissipation

Transformations

and Gyrations

Ideal sources

Junctions

Electrical

Networks

Mechanical

Systems

Examples

Conclusions

Intuitively:

• electrical part = series connection source, resistor,

inductor and electrical gyrator side→ 1-junction;

• mechanical part: only the velocity w is present, the motor

applies a torque to the wheel, but part of it is “stolen” by

the dissipating element.

• final equations⇒ LTI state-space form:

ṗ = τI = τ − τb = Ki − bω =
K

L
φ −

b

I
p,

φ̇ = ul = −um − ur + u = −
K

I
p −

R

L
φ+ u

d

dt

(

p

φ

)

=

(

−b/I K/L

−K/I −R/L

)

︸                 ︷︷                 ︸

A

(

p

φ

)

+

(

0

1

)

︸︷︷︸

B

u

y � ω = (1/I 0)
︸    ︷︷    ︸

C

(

p

φ

)
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Multidimensional example

• two point masses connected by an elastic translational

spring and a damper;
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• bond graph:

• note: all bonds attached to 1-junction have the same flows

and all attached to 0-junction the same effort;

• “:: E(q)” = energy function, q = energy variable (p1, p2) for

I and position diff. ∆x for elastic;

• ideal source→ constant force = gravitation for each mass;

• “: b” for dissipative element indicates Fr = b(v2 − vl).
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Conclusions

Bond graphs:

• Provide a systematic approach to multiphysics modeling

• Based on the fundamental laws of energy conservation

• Fundamental theory = port-Hamiltonian systems

• Used in industry with dedicated numerical solvers (e.g.

20-Sim)

• Needs practice!
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Homework 3

Draw the bond graph model of the printer belt pulley problem

introduced in Lesson 3 and check that you obtain the same

equations.
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Introduction

ẋ = f(x , u)

y = h(x , u)

• Can contain complex calculations.

• Computer assistance?

• Computer algebra.

• 2 systematic ways to state-space: algebraic and bond

graphs.

• Numerical limitations.
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Outline

1 Computer Algebra

2 Analytical Solutions

3 Algebraic Modeling

4 An Automatic Translation of Bond Graphs to Equations

5 Numerical Methods - a short glance
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Computer Algebra

• Methods for manipulating mathematical formulas (,

numerical calculations).

• Numerous softwares: Macsyma, Maple, Reduce, Axiom,

Mathematica...

• Examples of capabilities:

• Algebraic expressions: (x + y)2 = x2 + 2xy + y2

• Factorizations: x3 − y3 = (x − y)(x2 + xy + y2)
• Symbolic differentiation

∂

∂z
(x2z + sin yz + a tan z) = x2 + y cos yz +

a

1 + z2

• Symbolic integration

∫

√

1 + x2dx =
1

2
(arc sinhx + x

√

x2 + 1)
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Analytical Solutions

• May have partial interesting results, i.e.

ẋ1 = f1(x1, x2)

ẋ2 = f2(x1, x2)

solution algorithm generates F(x1, x2) = C if possible,

continue from this to

x1 = φ1(t)

x2 = φ2(t).

F is called the integral of the system, geometrically = path

in x1 − x2 plane, but do not have velocity information.
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Example: the pendulum

θ̇ = ω

ω̇ = −
g

l
sin θ

has integral 1
2
ω2 − g

l
cos θ = C which represents the energy

(kinetic + potential) of the system.

Figure: Pendulum trajectories in θ − ω plane
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Algebraic Modeling
→ Transform the equations into a convenient form.

Introduction of state variables for higher-order differential

equations:

• Consider

F(y , ẏ , . . . , yn−1, yn; u) = 0,

• introduce the variables

x1 = y , x2 = ẏ, . . . , xn = yn−1,

• we get

ẋ1 = x2, , ẋ2 = x3, . . . , ẋn−1 = xn

F(x1, x2, . . . , xn, ẋn; u) = 0

→ state-space description provided ẋn can be solved for the

last equation.
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Example

• Let

y(3)2 − ẏ2y4 − 1 = 0.

• With x1 = y , x2 = ẏ , x3 = ÿ , we get

ẋ1 = x2

ẋ2 = x3

ẋ2
3 − x2

2 x4
1 − 1 = 0

• The last equation can be solved for ẋ3 and gives

ẋ1 = x2

ẋ2 = x3

ẋ3 = ±
√

x2
2
x4

1
+ 1

Note: 2 cases if we don’t know the sign of y(3) = ẋ3 from

physical context.
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Systems of higher-order differential equations:

• two higher-order differential equations in 2 variables

F(y , ẏ , . . . , yn−1, yn; v , v̇ , . . . , vm−1; u) = 0

G(y, ẏ , . . . , yn−1; v , v̇ , . . . , vm−1, vm; u) = 0

• introduce the variables

x1 = y , x2 = ẏ, . . . , xn = yn−1,

xn+1 = v , xn+2 = v̇ , . . . , xn+m = vm−1,

• we get

ẋ1 = x2, ẋ2 = x3, . . . , ẋn−1 = xn

F(x1, x2, . . . , xn , ẋn; xn+1, . . . , xn+m ; u) = 0

ẋn+1 = xn+2, . . . , ẋn+m−1 = xn+m

G(x1, x2, . . . , xn; xn+1, . . . , xn+m, ẋn+m; u) = 0

⇒ state-space description if ẋn and ẋn+m can be solved in F

and G.
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• Example:

ÿ + v̈ + ẏv̇ = 0 (1)

y2

2
+

v2

2
− 1 = 0 (2)

Problem: highest order derivatives in same equation
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• Solution:

• differentiate (2) twice gives (3);

• (1)×v-(3) =(4);

• (4)×v2 & vv̇ eliminated with (3) gives (5);

• eliminate v thanks to (2)→ eq. in y only.

• Can be generalized to an arbitrary number of equations

provided all equations are polynomial in the variables and

their derivatives.
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An Automatic Translation of Bond

Graphs to Equations

From a simple example:

• Introduce the state x = αf2 for I: ẋ = e2;

• imagine a list of equations with ei and fi computed from v

and x, e1 = v first and f1 = f2 last (or f1 = f3);

e1 = v

...

f1 = f2
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1) from I element: f2 = x/α, dual

e2 = ẋ2 = e1 − e3 (junction output)→
second to last so that e1 and e3 are

calculated before:

e1 = v

f2 =
1

α
x

...

ẋ = e2 = e1 − e3

f1 = f2

2) What variables are defined by first

2 equation? Junction→ flows and R:

e1 = v

f2 =
1

α
x

f3 = f2

e3 = βf3

ẋ = e2 = e1 − e3

f1 = f2

⇒ starting from v and x, all variables evaluated in proper order.
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• successive substitutions gives a compact state-space

description:

ẋ = e1 − e3 = e1 − βf3 = e1 − βf2 = e1 −
β

α
x = v −

β

α
x

→ choose 2 lists, forward and backward, instead of one.
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Algorithms for Equation Sorting

1 Choose a source and write its input in forward list and the

equation of its dual in backward list.

2 From adjacent bonds, if some variable is defined in terms

of already calculated variables, write its equation in the

forward list and the equation of the other bond variable in

the backward list, as far as possible.

3 Repeat 1 and 2 until all sources have been treated.

4 Choose an I element and write the equation fi =
1
αi

xi in

forward list and ẋi = ei = . . . in backward list.

5 Do the analogy of step 2.

6 Repeat 4 and 5 until all I elements have been processed.

7 Do the analogy of steps 4, 5, and 6 for all C elements

(ei =
1
βi

xi to forward list and ẋi = fi backward list.

8 Reverse the order of the backward list and put it after the

forward list.

Computer-

aided

modeling

E. Witrant

Computer

Algebra

Analytical

Solutions

Algebraic

Modeling

Automatic

Bond Graphs

Translation

Numerical

Methods

Conclusions

Homework

Example: DC motor

• State variables:

x1 =

∫ t

v2dτ = L1i2,

∫ t

M2dτ = Jω2
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• Create the list:

Step Forward list Backward list

1 v1 = v i1 = i2
2 i2 = 1

L1
x1 ẋ1 = v2 = v1 − v3 − v4

2 i3 = i2 v3 = R1i3
2 i4 = i2 v4 = kω1

2 M1 = ki4 ω1 = ω2

4 ω2 = 1
J
x2 ẋ2 = M2 = M1 −M3

5 ω3 = ω2 M3 = φ(ω3)
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• Reverse backward list after forward list:

v1 = v

i2 =
1

L1

x1

i3 = i2

i4 = i2

M1 = ki4

ω2 =
1

J
x2

ω3 = ω2

M3 = φ(ω3)

ẋ2 = M2 = M1 −M3

ω1 = ω2

v4 = kω1

v3 = R1i3

ẋ1 = v2 = v1 − v3 − v4

i1 = i2
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• Eliminating all variables that are not states gives:

ẋ1 = v −
R1

L1

x1 −
k

J
x2

ẋ2 =
k

L1

x1 − φ(x2/J)
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Numerical Methods
Physical model→ state-space equations→ scaling (same

order of magnitude to avoid numerical problems)→ impact of

discretization in simulation.

Basis of Numerical Methods:

• Consider the state-space model

ẋ = f(x(t), u(t))

where x ∈ Rn. If fixed input u(t) = ū(t), u is a time

variation and

ẋ = f(t , x(t))

x(0) = x0

we want an approximation of x at 0 < t1 < t2 < · · · < tf →
x1, x2, x3, . . . approximate x(t1), x(t2), x(t3), . . .
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• Simplest algorithm: difference ratio = Euler’s method:

xn+1 − xn

h
≈ ẋ(tn) = f(tn, xn), where h = tn+1 − tn

⇒ xn+1 = xn + h · f(tn , xn)

more generally

xn+1 = G(t , xn−k+1, xn−k+2, . . . , xn, xn+1)

where k is the number of utilized previous steps→ k-step

method. If xn+1 not in G: explicit method (i.e. Euler),

otherwise implicit.
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Firn example: gas in open pores (1)

Impact of the convection term discretization on the trace gases

mixing ratio at NEEM (EU hole)

0 10 20 30 40 50 60 70

310

320
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CO2 firn − NEEM EU
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2
 (
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p
m

)

Figure: For 100 (‘ · · · ’), 200 (‘- - -’) and 395 (‘—’) depth levels

(∆z ≈ 0.8, 0.4 and 0.2 m, respectively): Lax-Wendroff (blue,

reference), central (red) and first order upwind (green).
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Firn example: gas in open pores (2)

Impact of time discretization on the trace gases mixing ratio at

NEEM (EU hole, ∆z = 0.2 m and a zoom on specific region)
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Figure: Explicit with a sampling time ts=15 minutes (red), implicit

(blue) with ts = 1 day (‘—’), 1 week (‘– – –’) and 1 month (‘- - -’), and

implicit-explicit (green) with ts = 1 week (‘—’) and 1 month (‘– – –’).
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Firn example: gas in open pores (3)

Averaged simulation time per gas associated with the proposed

time-discretization schemes for NEEM EU (1800 to 2008, full

close-off depth at 78.8 m, 12 gases, left) and South Pole 1995 (1500

to 1995, full close-off depth at 123 m), obtained on a PC laptop

equipped with the processor i5 540 m (2.53 Ghz, 3 Mo):

Method ts ∆z a Simulation time a

Implicit 1 day 0.2 m 4.02 / 22.25 s

Implicit 1 week 0.2 m 0.63 / 3.91 s

Implicit 1 month 0.2 m 0.26 / 1.48 s

Explicit 15 min 0.2 m 5.09 / 29.45 min

Explicit 30 min 0.4 / 0.61 m 24.39 s / 1.34 min

Explicit 1 h 0.8 / 1.23 m 7.19 s / 12.13 s

Imp-explicit b 1 week 0.2 m 0.63 s / 3.77 s

Imp-explicit b 1 month 0.2 m 0.27 s / 1.48 s
a : NEEM EU / South Pole; b : Crank-Nicholson.



Computer-

aided

modeling

E. Witrant

Computer

Algebra

Analytical

Solutions

Algebraic

Modeling

Automatic

Bond Graphs

Translation

Numerical

Methods

Conclusions

Homework

• Accuracy determined by the global error

En = x(tn) − xn

but hard to compute→ one-step (provided exact previous

steps), local error

en = x(tn) − zn, zn = G(t , x(tn−k ), x(tn−k+1), . . . , zn)

i.e. for Euler (xn+1 ≈ xn + h · f(tn, xn))

en+1 = x(tn+1) − zn+1 = x(tn+1) − x(tn) − h · f(tn, x(tn))

=
h2

2
ẍ(ζ), for tn < ζ < tn+1

Note (Taylor):

x(tn+1) = x(tn) + h · f(tn , x(tn)) +
h2

2
· f ′(tn, x(tn)) + O(3)

→ local error proportional to h2 and global error

proportional to h (number of steps proportional to h−1).

If local error O(hk+1), k is the order of accuracy.

Computer-

aided

modeling

E. Witrant

Computer

Algebra

Analytical

Solutions

Algebraic

Modeling

Automatic

Bond Graphs

Translation

Numerical

Methods

Conclusions

Homework

• Stability is also crucial. i.e.

ẋ = λx , λ ∈ C
x(0) = 1

with Euler: xn+1 = xn + hλxn = (1 + hλ)xn has solution

xn = (1 + hλ)n .

It implies that

xn → 0 if |1 + hλ| < 1

|xn | → ∞ if |1 + hλ| > 1

stable if Re [λ] < 0 AND |1 + hλ| < 1 (h small enough)

→ the stability of the DE does not necessarily coincides

with the one of the numerical scheme!
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The Runge-Kutta Methods:

Consider the integral form

x(tn+1) = x(tn) +

∫ tn+1

tn

f(τ, x(τ))dτ

with central approximation

xn+1 = xn + h · f(tn +
h

2
, x(tn +

h

2
))

and (Euler) x(tn +
h
2
) ≈ xn +

h
2
f(tn, xn). Consequently, we have

the simplest Runge-Kutta algorithm

k1 = f(tn, xn),

k2 = f(tn +
h

2
, xn +

h

2
k1),

xn+1 = xn + hk2.

Local error x(tn+1) − xn+1 = O(h3)→ 1 order of magnitude

more accurate than Euler.
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• General form:

k1 = f(tn , xn),

k2 = f(tn + c2h, xn + ha21k1,

k3 = f(tn + c3h, xn + h(a31k1 + a32k2)),

...

ks = f(tn + csh, xn + h(as1k1 + · · ·+ as,s−1ks−1)),

xn+1 = xn + h(b1k1 + · · ·+ bsks),

where s, ci, bi and aij chosen to obtain the desired order

of accuracy p, calculation complexity or other criterion→
family of Runge-Kutta methods.

• A classic method sets s = p = 4 with

c2 = c3 =
1

2
, c4 = 1, a21 = a32 =

1

2
, a43 = 1,

b1 = b4 =
1

6
, b2 = b3 =

2

6
, (others = 0)
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Adams’ Methods:

• Family of multistep methods

xn = xn−1 +
k

∑

j=0

βj fn−j , fi = f(ti , xi)

where βj chosen such that the order of accuracy is as high

as possible. If β0 = 0: explicit form (accuracy k + 1),

Adams-Bashforth, while β0 , 0: implicit form (accuracy k ),

Adams-Moulton.

• Simplest explicit forms:

k = 1 : xn = xn−1 + fn−1h

k = 2 : xn = xn−1 + (3fn−1 − fn−2)
h

2

k = 3 : xn = xn−1 + (23fn−1 − 16fn−2 + 5fn−3)
h

12

k = 4 : xn = xn−1 + (55fn−1 − 59fn−2 + 37fn−3 − 9fn−4)
h

24
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• Simplest implicit forms:

k = 1 : xn = xn−1 + fnh

k = 2 : xn = xn−1 + (fn + fn−1)h/2

k = 3 : xn = xn−1 + (5fn + 8fn−1 − fn−2)h/12

k = 4 : xn = xn−1 + (9fn + 19fn−1 − 5fn−2 + fn−3)h/24

• Why more complicated implicit methods?

(a) Adams-Bashforth (explicit),

k = 1 (–), k = 2 (−−) and

k = 3 (· · · ).

(b) Adams-Moulton (implicit),

k = 2 (–) and k = 3 (−−).

⇒ Larger stability regions. Note: ր k ց stability.
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Variable Step Length:

• Fixed steps often inefficient→ large steps when slow

changes & small steps when rapid changes.

• Automatic adjustment based on local error approximation,

i.e. assume a local error

x(tn+1) − xn+1 = Chp+1 + O(hp+2)

where C depends on the solution (unknown). If 2 steps of

length h, we have approximately (errors are added)

x(tn+2) − xn+2 = 2Chp+1 + O(hp+2) (1)

x̃ � value computed for a step of length 2h from tn to tn+2:

x(tn+2) − x̃ = C(2h)p+1 + O(hp+2) (2)

(2) − (1) : xn+2 − x̃ = 2Chp+1(2p − 1) + O(hp+2) (3)

C from (3) in (1) : x(tn+2) − xn+2 =
xn+2 − x̃

2p − 1
+ O(hp+2)
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Previous result:

x(tn+2) − xn+2 =
xn+2 − x̃

2p − 1
+ O(hp+2)

Assume O(hp+2) negligible→ known estimate of the error.

• The estimate can be used in several ways, in general:

ց h if error > tolerance,

ր h if error≪ tolerance.

Ideally, a given accuracy is obtained with minimum

computational load.

• Crucial issue for embedded control and large-scale plants.

Most of the time, use existing softwares/libraries.
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Stiff differential equations:

• Both fast and slow components and large difference

between the time constants, i.e.

ẋ =

(

−10001 −10000

1 0

)

x

x(0) =

(

2

−1.0001

)

has solution

x1 = e−t + e−10000t

x2 = −e−t − 0.0001e−10000t .
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• Problem: in simulation, start with very small step to follow

the fast term (i.e. e−10000t ), which soon goes to zero:

solution only characterized by slow term. BUTր h implies

stability problems (i.e. −10 000 · h within stability region).

⇒ use methods that are always stable: compromise with

accuracy (implicit in general).
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Comments about Choice of Methods:

• Runge-Kutta most effective for low complexity

(computational work) while Adams better for high

complexity;

• methods for stiff problems - may be - ineffective for nonstiff

problems;

• problem dependent.
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Conclusions

• First step:

• from the physical model (high order or bond graphs), write

the system in a state-space form

• investigate the behavior of the continuous dynamics, e.g.

nonlinearities, time-delays, time constants of the linearized

dynamics . . .

• Second step:

• discretize the dynamics to get computable difference

equations

• check on the impact of the discretization step

• advanced methods with predictor/corrector schemes

• From experience:

• hand-made discretizations are often more tractable

• when doing “equivalent” model transformations, they are

more equivalent in the discretized framework
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Homework 4

a. Write the state-space description for:

• Example 1:

ÿ + v̇2 + y = 0

ẏ2 + v̈ + vy = 0

• Example 2:

ÿ + v3 + v̇2 + y = 0

ẏ2 + v̈ + vy = 0
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b. Numerical methods

Consider the differential equa-

tion

y′′(t) − 10π2y(t) = 0

y(0) = 1, ẏ(0) = −
√

10π

1 Write this equation in

state-space form.

2 Compute the eigenvalues.

3 Explain the difference

between exact and

numerical difference

expressed in Table 8.6.3.
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Models for simulation

• Choose the appropriate simulation tool/function depending

on the class of model

• I.e. Scilab provides a wide array of tools for different

models.

• Can use abbreviated commands and defaults parameters.

• Important to know appropriate tools, how the algorithms

are set up and how to face difficulties.

Simulation tools
Three forms:

1 primary tools used by knowledgeable users on challenging

problems;

2 simplified version easier to use and for simpler problems;

3 special cases occurring in specific areas of science and

engineering.
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Outline

1 Ordinary differential equations

2 Boundary value problems

3 Difference equations

4 Differential algebraic equations

5 Hybrid systems
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Ordinary differential equations

(ODEs)

ẏ = f(t , y), y(t0) = y0

where y, f vector valued, and t ∈ R.

• Higher order models can always be transformed into 1st

order and directly simulated in Scilab, except Boundary

value problems.

• Unique solution if f and ∂f/∂y continuous.

• The most continuous derivatives of f(t , y) exist, the more

derivatives y has. In simulation, accuracy obtained from

error estimates that are based on derivatives.

• Controlled differential equation (DE):

ẏ = f(t , y, u(t))

y has only one more derivative than u→ may create

problems for piecewise continuous inputs.
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Simulating ODEs: simplest call

y=ode(y0,t0,t,f)

• t0, y0, f(t , y)→ default method and error tolerance, adjust

step size;

• many more solutions than needed: specify also final time

vector t;

• returns y= [y(t0), y(t1), . . . , y(tn)];

• online function definition, i.e. f(t , y) = −y + sin(t)

function ydot = f(t,y)

ydot=-y+sin(t)

endfunction

• interface to ode solvers like ODEPACK.
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Simulating ODEs: advanced call

[y,w,iw]=ode([type],y0,t0,t [,rtol [,atol]],f [,jac]

... [w,iw])

• ”type”: lsoda (default, automatically selects between

nonstiff predictor-corrector Adams and stiff backward

difference formula BDF), adams, stiff (BDF), rk

(adaptive Runge-Kutta of order 4), rkf (RK 45, highly

accurate), fix (simpler rkf), root (lsodar with root

finding), discrete.

• ”rtol, atol”: real constants or vectors, set absolute and

relative tolerance on y: ǫy(i) = rtol(i) ∗ |y(i)|+ atol(i),
computational time vs. accuracy.

• ”jac”: external, analytic Jacobian (for BDF and implicit)

J=jac(t,y).

• ”w,iw”: real vectors for storing information returned by

integration routine.
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Simulating ODEs: more options

odeoptions[itask,tcrit,h0,hmax,hmin,jactyp,mxstep,

maxordn,maxords,ixpr,ml,mu]

• sets computation strategy, critical time, step size and

bounds, how nonlinear equations are solved, number of

steps, max. nonstiff and stiff order, half-bandwidths of

banded Jacobian.

• computational time and accuracy can vary greatly with the

method.
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Simulating ODEs: Implicit differential equations

• A(t , y)ẏ = g(t , y), y(t0) = y0. If A not invertible ∀(t , y) of

interest→ implicit DAE, if invertible→ linearly implicit DE

or index-zero DAE.

• Better to consider directly than inverting A (more efficient

and reliable integration).

y=impl([type],y0,ydot0,t0,t [,atol, [rtol]],res,adda

... [,jac])

→ requires also ẏ(t0) and to compute the residuals

(g(t , y) − A(t , y)ẏ) as: r=res(t,y,ydot)
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Simulating ODEs: Linear systems

• number of specialized functions for

ẋ = Ax + Bu, x(0) = x0,

y = Cx + Du.

• [sl]=syslin(dom,A,B,C [,D [,x0] ]) defines a

continuous or discrete (dom) state-space system, system

values recovered using [A,B,C,D]=abcd(s1);

• [y [,x]]=csim(u,t,sl,[x0])→ simulation (time

response) of linear system.

Simulating ODEs: Root finding

• to simulate a DE up to the time something happens;

• y,rd[,w,iw]=ode(root”,y0,t0,t [,rtol [,atol]],f [,jac],ng,g

[,w,iw])” integrate ODE f until g(t , y) = 0;

• iteratively reduces the last step to find surface crossing.
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Boundary value problems (BVPs)

• DE with information given at 2 or more times:

ẏ = f(t , y), t0 ≤ t ≤ tf ,

0 = B(y(t0), y(tf)).

If y is n-dimensional→ n boundaries.

• More complicated than initial value problems (cf.

Optimization class), where local algorithm move from one

point to the next.

• BVP: need more global algorithm with full t interval→

much larger system of equations.
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Simulating BVPs: Numerous methods

1 shooting methods: take given IC then guess the rest and

adjust by integrating the full interval→ easy to program

but not reliable on long intervals and stiff problems;

2 multiple shooting: breaks time interval into subinterval and

shoot over these;

3 discretize the DE and solve the large discrete system, i.e.

Euler with step h on ẏ = f(t , y), t0 ≤ t ≤ tf ,

0 = B(y(t0), y(tf )) gives:

yi+1 − yi − f(t0 + ih, yi) = 0, i = 0, . . . ,N − 1,

B(y0, yN) = 0.

usually with more complicated methods than Euler but

large system of (nonlinear) DE→ BVP solver has to deal

with numerical problems and need Jacobian-like

information.
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Simulating BVPs: COLNEW

Scilab uses Fortran COLNEW code in bvode, which assumes

that the BVP is of the form

dmi ui

dxmi
= fi

(

x , u(x),
du

dx
, . . . ,

dmi−1u

dxmi−1

)

, 1 ≤ i ≤ nc ,

gi

(

ζj , u(ζj), . . . ,
dm∗u

dxm∗

)

= 0, j = 1, . . . ,m∗,

where ζj are x where BC hold and aL ≤ x ≤ aR .

Let m∗ = m1 + m2 + · · ·+ mnc
, z(u) =

[

u, du
dx
, . . . , dm∗u

dxm∗

]

, then

dmi ui

dxmi
= fi (x , z(u(x))) , 1 ≤ i ≤ nc , aL ≤ x ≤ aR

gi (ζj , z(u(ζj))) = 0, j = 1, . . . ,m∗,

bvode starts with initial mesh, solve NL system and iteratively

refines the mesh.
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Simulating BVPs: COLNEW implementation

[z]=bvode(points,ncomp,m,aleft,aright,zeta,ipar,ltol,

...tol,fixpnt,...fsub1,dfsub1,gsub1,dgsub1,guess1)

• solution z evaluated at the given points for ncomp≤ 20

DE;

• we have to provide bounds (aleft,aright) for u, BCs and

numerical properties of the model.
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Simulating BVPs: Example - optimal control
Necessary conditions: consider the NL controlled system

ẏ = y2 + v, J(y, u) =

∫ 10

0

10v2 + y2 dt

Find v : y(0) = 2→ y(10) = −1, while min J. NC found from
Hamiltonian and give the BV DAE

ẏ = y2 + v,

λ̇ = −2y − 2λy,

0 = 20v + λ,
y(0) = 2, y(10) = −1.

⇒ BVP :



















ẏ = y2 − λ/20,

λ̇ = −2y − 2λy,

y(0) = 2, y(10) = −1.

Ready to be solved by bvode, which gives:
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Difference equations

• Discrete-time values or values changing only at discrete

times, for discrete processes or because of isolated

observations.

• Integer variable k and sequence y(k) that solves

y(k + 1) = f(k , y(k)), y(k0) = y0,

or with time sequence tk , k ≥ k0:

z(tk+1) = g(tk , z(tk )), z(tk0) = z0.

If evenly spaced events tk+1 − tk = h = cst :

v(k + 1) = g(w(k), v(k)), v(k0) = v0,

w(k + 1) = w(k) + h, w(k0) = tk0
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Difference equations (2)

• Solution existence simpler than DE: y(k) computed

recursively from y(k0) as long as (k , y(k)) ∈ Df .

• Note: uniqueness theorem for DE (if 2 solutions start at

the same time but with different y0 and if continuity of f , fy
holds, then they never intersect) not true for difference

equations.

• Can always be written as 1st order difference equations.
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Simulating difference equations

1 Easier because no choice about time step and no error

from derivatives approximations→ only function

evaluation and roundoff errors.

2 First order y(k + 1) = f(k , y(k)), y(k0) = y0, evaluated

by y=ode(discrete”,y0,k0,kvect,f)” where kvect =

evaluation times.

3 Linear systems

x(k + 1) = Ax(k) + Bu(k), x(0) = x0,

y(k) = Cx(k) + Du(k),

• [X]=ltitr(A,B,U,[x0]) or

[xf,X]=ltitr(A,B,U,[x0]);

• If given by a transfer function

[y]=rtitr(Num,Den,u [,up,yp]) where [,up,yp] are

past values, if any;

• Time response obtained using

[y [,x]]=flts(u,sl [,x0]).
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Differential algebraic equations

(DAEs)

• Most physical models are differential + algebraic (DAEs):

F(t , y , ẏ) = 0

→ rewrite as ODE or simpler DAE, or simulate the DAE

directly.

• Theory much more complex than ODEs: ∃ solutions only

for certain IC, called consistent IC, i.e.

ẏ1 = y1 − cos(y2) + t ,

0 = y3
1 + y2 + et ,

requires y1(t0)
3 + y2(t0) + et0 = 0.
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Differential algebraic equations (2)

• Structure→ index definition (≥ 0, 0 for ODE). Index-one
DAE in Scilab: F(t , y , ẏ) = 0 with {Fẏ , Fy} is an index-one
matrix pencil along solutions and Fẏ has constant rank:

1 implicit semiexplicit:

F1(t , y1, y2, ẏ1) = 0

F2(t , y1, y2) = 0

where ∂F1/∂ẏ1 and ∂F2/∂y2 nonsingular, y1 is the

differential variable and y2 the algebraic one;

2 semiexplicit:

ẏ1 = F1(t , y1, y2)

0 = F2(t , y1, y2)

with ∂F2/∂y2 nonsingular.
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Simulating DAEs

• Need information on both y(t0) and ẏ(t0) to uniquely

determine the solution and start integration, i.e.

tan(ẏ) = −y + g(t)→ family of DE

ẏ = tan−1(−y + g) + nπ. Sometimes approximate value of

ẏ(t0) or none at all.

• Scilab uses backward differentiation formulas (BDF), i.e.

backward Euler on F(t , y , ẏ) = 0 gives

F

(

tn+1, yn+1,
yn+1 − yn

h

)

= 0

→ given yn, iterative resolution using the Jacobian w.r.t.

yn+1: Fy +
1
h
Fy ′ .

• based on DASSL code (for nonlinear fully implicit

index-one DAEs):

[r [,hd]]=dassl(x0,t0,t [,atol,[rtol]],res [,jac]

where x0 is y0 [ydot0], res returns the residue

r=g(t,y,ydot) and info sets computation properties.
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Example tan(ẏ) = −y + 10t cos(3t), y(0) = 0

ẏ(0) = nπ is a consistent IC→ compare ẏ(0) = {0, π, 2π}

implicit ODEs and fully implicit DAEs can have multiple nearby

roots→ integrators must ensure no jump on another solution

when making a step (conservatism in the step size choice).

DAEs and root-finding:

[r,nn,[,hd]]=dasrt(x0,t0,t [,atol,[rtol]]

...,res [,jac],ng, surf [,info] [,hd]): just add

intersection surface.
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Hybrid systems

• Mixture of continuous- and discrete-time events.

• When an event (discrete variable change) occurs: change

in DE, state dimension, IC (initialization problem). . .

• Interfere with error control of integrators.

• Handled in Scilab and more particularly Scicos.
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Simulating Hybrid systems

• Continuous variable yc and discrete variable yd (piecewise

constant on [tk , tk+1[):

ẏc(t) = f0(t , yc(t), yd(t)), t ∈ [tk , tk+1[

yd(tk+1) = f1(t , yc(tk+1), yd(tk )) at t = tk+1

i.e. sampled data system (u is a control function):

ẏc(t) = f0(t , yc(t), u(t)), t ∈ [tk , tk+1[,

u(tk+1) = f1(t , yc(tk+1), u(tk )) at t = tk+1.

• yt=odedc(y0,nd,stdel,t0,t,f), where

y0=[y0c;y0d],

stdel=[h, delta] with delta=delay/h,

yp=f(t,yc,yd,flag).
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Conclusions

• Implementing the equations needs some dedicated

thinking

• Need to understand the expected results prior to

computation

• Trade-off:

• computation time vs. precision

• mathematical simplicity vs. code efficiency

• Particularly challenging for real-time modeling

• A code aims to be transmitted to other people: the

structure and comments have to be clear!
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Basics of System Identification

System identification = use of data in modeling

• Include experimental data in modeling work.

• Used to find constants or complete the model.

• Based on system variables: inputs, outputs and possibly

disturbances.

→ understand how the system works, describe partial

systems and compute values of the constants.

• Three different ways to use identification for modeling:

1 make simple experiments to facilitate problem structuration

(phase 1);

2 describe I/O relationships independently of physical

insights (often linear);

3 use data to determine unknown parameters in physical

models: tailor-made models.
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Estimate system from measurements of u(t) and y(t)

Many issues:

• choice of sampling frequency, input signal (experiment

conditions);

• what class of models, how to model disturbances?

• estimating model parameters from sampled, finite and

noisy data.
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Outline

1 From Continuous Dynamics to Sampled Signals

2 Disturbance Modeling

3 Signal Spectra

4 Choice of Sampling Interval and Presampling Filters

⇒ Introduction to signal analysis and processing
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From Continuous Dynamics to

Sampled Signals

Continuous-time signals and systems
Continuous-time signal y(t)

Fourier transform Y(ω) =
∫ ∞

−∞
y(t)e−iωt dt

Laplace transform Y(s) =
∫ ∞

−∞
y(t)e−st dt

Linear system y(t) = g ∗ u(t)
Y(ω) = G(ω)U(ω)
Y(s) = G(s)U(s)

Derivation operator p × u(t) = u̇(t) works as s-variable, but in

time domain.

Example (0 IC) y(t) = 0.5u̇(t) + u(t)
y(t) = (0.5p + 1)u(t)

Y(s) = (0.5s + 1)U(s)
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Discrete-time signals and systems
Discrete-time signal y(kh)

Fourier transform Y (h)(ω) = h
∑∞

k=−∞ y(kh)e−iωkh

z-transform Y(z) =
∑∞

k=−∞ y(kh)z−k

Linear system y(kh) = g ∗ u(kh)

Y (h)(ω) = Gd(e
iωh)U(h)(ω)

Y(z) = Gd(z)U(z)
Shift operator q × u(kh) = u(kh + h) works as z-variable, but in

time-domain.

Example (0 IC) y(kh) = 0.5u(kh) + u(kh − h)
y(kh) = (0.5 + q−1)u(kh)
Y(z) = (0.5 + z−1)U(z)
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Sampled systems

Continuous-time linear system

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) + Du(t)

⇒ G(s) = C(sI − A)−1B + D.

Assume that we sample the inputs and outputs of the system

Relation between sampled inputs u[k ] and outputs y[k ]?
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Sampled systems (2)

Systems with piecewise constant input:

• Exact relation possible if u(t) is constant over each

sampling interval.

• Solving the system equations over one sampling interval

gives

x[k + 1] = Adx[k ] + Bdu[k ]

y[k ] = Cx[k ] + Du[k ]

Gd(z) = C(zI − Ad)
−1Bd + D

where Ad = eAh and Bd =
∫ h

0
eAsBds.
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Sampled systems (3)

Example: sampling of scalar system

• Continuous-time dynamics

ẋ(t) = ax(t) + bu(t)

• Assuming that the input u(t) is constant over a sampling

interval

x[k + 1] = adx[k ] + bdu[k ]

where ad = eah and bd =
∫ h

0
easbds = b

a
(eah − 1).

• Note: continuous-time poles in s = a, discrete-time poles

in z = eah .
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Sampled systems (4)

Frequency-domain analysis of sampling

• Transfer function of sampled system

Gd(z) = C(zI − Ad)
−1Bd + D

produces same output as G(s) at sampling intervals.

• However, frequency responses are not the same! One has

|G(iω) − Gd(e
iωh)| ≤ ωh

∫ ∞

0

|g(τ)|dτ

where g(τ) is the impulse response for G(s).

⇒ Good match at low frequencies (ω < 0.1ωs)⇒ choose

sampling frequency > 10× system bandwidth.
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Sampling of general systems

• For more general systems,

• nonlinear dynamics, or

• linear systems where input is not piecewise constant

conversion from continuous-time to discrete-time is not

trivial.

• Simple approach: approximate time-derivative with finite

difference:

p ≈
1 − q−1

h
Euler backward

p ≈
q − 1

h
Euler forward

p ≈
2

h
×

q − 1

q + 1
Tustin’s approximation

(typical for linear systems)

. . .

• I.e. write x(tk ) = x(tk − 1) +
∫ tk

tk−1
f(τ) dτ and find the

previous transformations using different integral

approximations
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Numerical approximations of the integral [F. Haugen’05]
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Disturbance Modeling

• Discrete-time set-up:
⇒ Estimate Gd from

measurements y[k ] and u[k ].
The effect of disturbances is

crucial, need for a disturbance

model!
• Basic observations:

• disturbances are different from time to time

• some characteristics (e.g., frequency content) persist

• Can be captured by describing disturbances as filtered

white noise v(k) = H(q)e(k)
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Discrete-time stochastic processes

• Discrete-time stochastic process: an infinite sequence

{v(k , θ)} whose values depend on a random variable θ

• To each fixed value θ∗ of θ, the sequence {v(k , θ∗)}
depends only on k and is called a realization of the

stochastic process

• For a discrete-time stochastic process v[k ], we define its

Expected or mean value mv(k) = Eθ{v[k ]}
Auto-correlation function Rv(k , l) = Eθ{v[k + l]v[k ]}

and say that v[k ] is

stationary if mv and Rv are independent of k

ergodic if mv and Rv can be computed from

a single realization
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Some background

• define the real random variable e the possible outcomes

of unpredictable experiment;

• define fe(x) the probability density function:

P(a ≤ e < b) =

∫ b

a

fe(x)dx

• the expectation is

Ee =

∫

R

xfe(x)dx or (discrete) Ee =
∑

xiP[X = xi ]

• the covariance matrix is

Cov(e, y) = E[(e − E(e))(y − E(y))T ] = E(ey) − E(e)E(y)

=
∑

i,j

(ei − E(e))(yj − E(y))P[e = ei , y = yj ] (discrete)
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Some background (2)

White noise:

• A stochastic process e[k ] is called white noise

if me = 0 and

Re(k , l) =

{

σ2 if l = 0

0 otherwise

Unpredictable sequence!

Signals and auto-correlation function (ACF)

• Different realizations may look very different.

• Still, qualitative properties captured as:

- slowly varying ACF↔

slowly varying process;

- quickly varying ACF↔

quickly varying process.

• Close to white noise if R(l)→ 0 rapidly as |l| grows.
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Some background (3)

Properties of the auto-correlation function [Wikipedia]

• Symmetry: ACF is even (Rf (−l) = Rf (l) if f ∈ R) or

Hermitian (conjugate transpose, Rf (−l) = R∗
f
(l) if f ∈ C)

• Peak at the origin (|Rf(l)| ≤ Rf (0)) and the ACF of a

periodic function is periodic with the same period (dirac at

0 if white noise)

•
∑

uncorrelated functions (0 cross-correlation ∀l) =
∑

ACF of each function

• Estimate: for discrete process {X1,X2, . . . ,Xn} with known

mean µ and variance σ:

R(l) ≈
1

(n − l)σ2

n−l
∑

t=1

(Xt − µ)(Xt+k − µ), ∀l < n ∈ N+

• unbiased if true µ and σ

• biased estimate if sample mean and variance are used

• can split the data set to separate the µ and σ estimates

from the ACF estimate
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Signal Spectra

A common framework for deterministic and stochastic

signals

• Signals typically described as stochastic processes with

deterministic components (det. inputs vs. stoch.

disturbances).

• For a linear system with additive disturbance e(t)
(sequence of independent random variables with

me(t) = 0 and variances σ2)

y(t) = G(q)u(t) + H(q)e(t)

we have that

Ey(t) = G(q)u(t)

so y(t) is not a stationary process.
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Quasi-Stationary Signals (QSS)

Definition: s(t) is QSS if

1 Es(t) = ms(t), |ms(t)| ≤ C, ∀t (bounded mean)

2 Es(t)s(r) = Rs(t , r), |Rs(t , r)| ≤ C, and the following limit

exists

lim
N→∞

1

N

N
∑

t=1

Rs(t , t − τ) = Rs(τ), ∀τ (bounded autocor.)

where E is with respect to the stochastic components of s(t).
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Quasi-Stationary Signals (2)

• If {s(t)} deterministic then {s(t)} is a bounded sequence

such that

Rs(τ) = lim
N→∞

1

N

N
∑

t=1

s(t)s(t − τ)

exists (E has no effect).

• If {s(t)} stationary, the bounds are trivially satisfied and

Rs(τ) do not depend on t .

• Two signals {s(t)} and {w(t)} are jointly quasi-stationary if

both QSS and if the cross-covariance

Rsw(τ) = Ēs(t)w(t−τ), with Ēf(t) � lim
N→∞

1

N

N
∑

t=1

Ef(t), exists.

• Uncorrelated signals if Rsw(τ) ≡ 0.
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Definition of Spectra

• Power spectrum of {s(t)} (freq. content of stoch. process,

always real):

φs(ω) =
∞
∑

τ=−∞

Rs(τ)e
−iτω

e.g. for white noise φs(ω) = σ
2: same power at all

frequencies.

• Cross-spectrum between {w(t)} and {s(t)} (measures how

two processes co-vary, in general complex):

φsw(ω) =
∞
∑

τ=−∞

Rsw(τ)e
−iτω

ℜ(φsw)→ cospectrum, ℑ(φsw)→ quadrature spectrum,

arg(φsw)→ phase spectrum, |φsw | → amplitude spectrum.
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Definition of Spectra (2)

• From the definition of inverse Fourier transform:

Ēs2(t) = Rs(0) =
1

2π

∫ π

−π

φs(ω)dω

• Example (stationary stochastic process): for the process

v(t) = H(q)e(t), the spectrum is φv(ω) = σ
2|H(eiω)|2.

• Example (spectrum of a mixed det. and stoch. signal): for

the signal

s(t) = u(t) + v(t),

where {u(t)} deterministic and {v(t)} stationary stochastic

process, the spectrum is φs(ω) = φu(ω) + φv(ω).

Signals for

System

Identification

E. Witrant

Basics of

System

Identification

Sampled

Signals

Discrete-time

Sampled systems

Sampling

Disturbance

Modeling

Discrete-time

stochastic processes

Some background

Signal Spectra

Quasi-Stationary

Signals

Definition of Spectra

Transformation by

linear systems

Spectral factorization

Filtering and spectrum

Sampling

Interval and

Filters

Aliasing

Antialiasing filters

Noise-reductioneffect

Conclusions

Homework

Transformation of spectrum by linear systems

• Theorem: Let {w(t)} QSS with spectrum φw(ω), G(q)
stable and s(t) = G(q)w(t). Then {s(t)} is also QSS and

φs(ω) = |G(e iω)|2φw(ω)

φsw(ω) = G(e iω)φw(ω)

• Corollary: Let y(t) given by

y(t) = G(q)u(t) + H(q)e(t)

where {u(t)} QSS, deterministic with spectrum φu(ω), and

{e(t)} white noise with variance σ2.
Let G and H be stable filters, then {y(t)} is QSS and

φy(ω) = |G(e iω)|2φu(ω) + σ
2|H(e iω)|2

φyu(ω) = G(e iω)φu(ω)

⇒ We can use filtered white noise to model the character of

disturbances!
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Spectral factorization

• The previous theorem describes spectrum as real-valued

rational functions of eiω from transfer functions G(q) and

H(q).
In practice: given a spectrum φv(ω), can we find H(q) s.t.

v(t) = H(q)e(t) has this spectrum and e(t) is white

noise? Exact conditions in [Wiener 1949] & [Rozanov

1967]

• Spectral factorization: suppose that φv(ω) > 0 is a rational

function of cos(ω) (or eiω), then there exists a monic

rational function (leading coef. = 1) of z, H(z), without

poles or zeros on or outside the unit circle, such that:

φv(ω) = σ
2|H(eiω)|2
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Spectral factorization (SF): ARMA process example

If a stationary process {v(t)} has a rational spectrum φv(ω), we
can represent it as v(t) = H(q)e(t), where

H(q) =
C(q)

A(q)
=

1 + c1q−1 + · · ·+ cnc
q−nc

1 + a1q−1 + · · ·+ ana
q−na
.

We may write the ARMA model:

v(t) + a1v(t − 1) + · · ·+ ana
v(t − na)

= e(t) + c1e(t − 1) + · · ·+ cnc
e(t − nc)

• if nc = 0, autoregressive (AR) model:

v(t) + a1v(t − 1) + · · ·+ ana
v(t − na) = e(t),

• if na = 0, moving average (MA) model:

v(t) = e(t) + c1e(t − 1) + · · ·+ cnc
e(t − nc).

⇒ SF provides a representation of disturbances in the standard

form v = H(q)e from information about its spectrum only.
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Filtering and spectrum

• Consider the general set-up with u(k) and e(k)
uncorrelated:

φy(ω) = |G(eiω)|2φu(ω) + φe(ω)

φyu(ω) = G(eiω)φu(ω)

• Note:

• power spectrum additive if signals are uncorrelated

• cross correlation can be used to get rid of disturbances
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Choice of Sampling Interval and

Presampling Filters

Sampling is inherent to computer-based data-acquisition

systems→ select (equidistant) sampling instances to minimize

information losses.

Aliasing

Suppose s(t) with sampling interval T: sk = s(kT),
k = 1, 2, . . ., sampling frequency ωs = 2π/T and Nyquist

(folding) frequency ωN = ωs/2.

If sinusoid with |ω| > ωN, ∃ ω̄, −ωN ≤ ω̄ ≤ ωN, such that

cosωkT = cos ω̄kT

sinωkT = sin ω̄kT

k = 0, 1, . . .
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Aliasing (2)

⇒ Alias phenomenon: part of the signal with ω > ωN

interpreted as lower frequency↔ spectrum of sampled signal

is a superposition (folding) of original spectrum:

φ
(T)
s (ω) =

∞
∑

r=−∞

φc
s(ω+ rωs)

where φc
s and φ

(T)
s correspond to continuous-time and sampled

signals.

To avoid aliasing: choose ωs so that φc
s(ω) is zero outside

(−ωs/2, ωs/2). This implies φ
(T)
s (ω) = φc

s(ω).
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Antialiasing presampling filters

• We loose signals above ωN , do not let folding effect distort

the interesting part of spectrum below ωN → presampling

filters κ(p): sF(t) = κ(p)s(t) ⇒ φ
c
sF
(ω) = |κ(iω)|2φc

s(ω)

• Ideally, κ(iω) s.t.

{

|κ(iω)| = 1, |ω| ≤ ωN

|κ(iω)| = 0, |ω| > ωN

which means that sF
k
= sF(kT) would have spectrum

φ
(T)
sF

(ω) = φc
s(ω), −ωN ≤ ω < ωN
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Antialiasing presampling filters (2)

⇒ Sampled spectrum without alias thanks to antialiasing

filter, which should always be applied before sampling if

significant energy above ωN .

• Example - Continuous-time signal: square wave plus

high-frequency sinusoidal
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Noise-reduction effect of antialiasing (AA) filters

• Typically, signal = useful part m(t) + disturbances v(t)
(more broadband, e.g. noise): choose ωs such that most

of the useful spectrum below ωN. AA filters cuts away HF.

• Suppose s(t) = m(t) + v(t) and sampled, prefiltered

signal sF
k
= mF

k
+ vF

k
, sF

k
= sF(kT). Noise variance:

E(vF
k )

2 =

∫ ωN

−ωN

φ
(T)
vF

(ω)dω =
∞
∑

r=−∞

∫ ωN

−ωN

φc
vF
(ω+ rωs)dω

→ noise effects from HF folded into region [−ωN , ωN] and
introduce noise power. Eliminating HF noise by AA filter,
variance of vF

k
is thus reduced by

∑

r,0

∫ ωN

−ωN

φc
v(ω+ rωs)dω =

∫

|ω|>ωN

φc
v(ω)dω

compared to no presampling filter.

⇒ ց noise if spectrum with energy above ωN.
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Conclusions

• First step to modeling and identification = data acquisition

• Implies computer-based processing and sampled signal

• Models including both deterministic and stochastic

components

• Characterize the spectrum for analysis and processing

• Prepare experimental signal prior to the identification

phase
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Homework
Spectrum of a sinusoid function:

u(t) = A cos(ω0t)

1 Show that u(t) is a quasi-stationary signal by computing

the bound Ru(τ).

2 Show that the power spectrum φu(ω) is composed of two

Dirak δ functions.

Hint - you may wish to use the identities:

cos θ+ cos φ = 2 cos

(

θ+ φ

2

)

cos

(

θ − φ

2

)

cos(ω0τ) =
1

2

(

eiω0τ + e−iω0τ
)

δ(x) =
1

2π

∞
∑

n=−∞

einx
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Class goal

Linear time-invariant model

• described by transfer functions or impulse responses

• determine such functions directly, without restricting the

set of models

• non-parametric: do not explicitly employ finite-dimensional

parameter vector in the search

• focus on determining G(q) from input to output
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Outline

1 Transient-response and correlation analysis

2 Frequency-response analysis

3 Fourier analysis

4 Spectral analysis

5 Estimating the disturbance spectrum

6 Conclusions

Nonparametric

identification

E. Witrant

Time-domain

methods

Impulse-response

Step-response

Correlation

Frequency-

response

Sine-wave testing

Correlation method

Relationship to Fourier

Fourier

ETFE definition

ETFE properties

Spectral

Smoothing the ETFE

Blackman-Turkey

procedure

Frequency window

Asymptotic properties

Disturbance

spectrum

Residual spectrum

Coherency spectrum

Conclusions

Homework

Time-domain methods

Impulse-response analysis

Consider the system:

(input u(t), output y(t) and

additive disturbance v(t))

y(t) =
∞∑

k=1

g(k)u(t − k) + v(t)

= G0(q)u(t) + v(t)

• pulse u(t) =

{

α, t = 0

0, t , 0
→ y(t) = αg0(t) + v(t),

by def of G0 and impulse response {g0(t)}
• if v(t) small, then the estimate is ĝ(t) = y(t)/α and error

ǫ(t) = v(t)/α from experiment with pulse input.

• Drawbacks:

• most physical processes do not allow pulse inputs s.t. ǫ(t)
negligible

• nonlinear effects may be emphasized
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Step-response analysis

Similarly,

u(t) =

{

α, t ≥ 0

0, t < 0

• y(t) = α
t∑

k=1

g0(k) + v(t)

• ĝ(t) =
y(t) − y(t − 1)

α
and ǫ(t) =

v(t) − v(t − 1)

α
• results in

⊲ large errors in most practical application

⊲ sufficient accuracy for control variables, i.e. time delay,

static gain, dominant time-constants

⊲ simple regulators tuning (Ziegler-Nichols rule, 1942)

⊲ graphical parameter determination (Rake, 1980)
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Correlation analysis

Consider again:

y(t) =
∞∑

k=1

g0(k)u(t − k) + v(t)

• If u is QSS with Ēu(t)u(t − τ) = Ru(τ) and

Ēu(t)v(t − τ) = 0 (OL) then

Ēy(t)u(t − τ) = Ryu(τ) =
∞∑

k=1

g0(k)Ru(k − τ)

• If u is a white noise s.t. Ru(τ) = αδτ0 then

g0(τ) = Ryu(τ)/α

⊲ An estimate of the impulse response is obtained from an

estimate of Ryu(τ)
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Example: N measurements

R̂N
yu(τ) =

1

N

N∑

t=τ

y(t)u(t − τ)

if u , white noise,

• estimate R̂N
u (τ) =

1

N

N∑

t=τ

u(t)u(t − τ)

• solve R̂N
yu(τ) =

1

N

N∑

k=1

ĝ(k)R̂N
u (k − τ) for ĝ(k)

• if possible, set u such that R̂N
u and R̂N

yu are easy to solve

(typically done by commercial solvers).
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Frequency-response analysis

Sine-wave testing

• physically, G(z) is such that G(eiω) describes what

happened to a sinusoid

• if u(t) = α cosωt , t = 0, 1, 2, . . . then

y(t) = α|G0(e
iω)| cos(ωt + φ) + v(t) + transient

where φ = arg G0(e
iω)

⊲ G0(e
iω) determined as:

• from u(t), get the amplitude and phase shift of y(t)
• deduce the estimate ĜN(e

iω)
• repeat for frequencies within the interesting band

• known as frequency analysis

• drawback: |G0(e
iω)| and φ difficult to determine accurately

when v(t) is important
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Frequency analysis by the correlation method

• since y(t) of known freq., correlate it out from noise

• define sums

IC(N) �
1

N

N∑

t=1

y(t) cosωt and IS(N) �
1

N

N∑

t=1

y(t) sinωt

• based on previous y(t) (ignore transients and cos(a + b))

IC(N) =
α

2
|G0(e

iω)| cos(φ) + α|G0(e
iω)|1

2

1

N

N∑

t=1

cos(2ωt + φ)

︸                                      ︷︷                                      ︸

→0 as N→∞

+
1

N

N∑

t=1

v(t) cos(ωt)

︸                   ︷︷                   ︸

→0 as N→∞ if v(t) DN contain ω

• if {v(t)} is a stat. stoch. process s.t.
∑∞

0 τ|Rv(τ)| < ∞ then

the 3rd term variance decays like 1/N
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• similarly,

IS(N) = −α
2
|G0(e

iω)| sin(φ) + α|G0(e
iω)|1

2

1

N

N∑

t=1

sin(2ωt + φ)

+
1

N

N∑

t=1

v(t) sin(ωt) ≈ −α
2
|G0(e

iω)| sin(φ)

• and we get the estimates

|ĜN(e
iω)| =

√

I2
C
(N) + I2

S
(N)

α/2
, φ̂N = arg ĜN(e

iω) = − arctan
IS(N)

IC(N)

• repeat over the freq. of interest (commercial soft.)

(+) Bode plot easily obtained and focus on spec. freq.

(-) many industrial processes DN admit sin inputs & long

experimentation
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Relationship to Fourier analysis

Consider the discrete Fourier transform

YN(ω) =
1√
N

∑N
t=1 y(t)e−iωt and IC & IS , which gives

IC(N) − i IS(N) =
1
√

N
YN(ω)

• from the periodogram (signal power at frequency ω) of

u(t) = α cosωt , UN(ω) =
√

Nα/2 if ω = 2πr/N for some

r ∈ N
• then ĜN(e

iω) =
√

NYN(ω)
Nα/2

=
YN(ω)
UN(ω)

• ω is precisely the input frequency

• provides a most reasonable estimate.
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Commercial software example

In practice, you may use Matlab Identification toolboxr to

• import the data in a GUI
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• pre-process it (remove mean, pre-filter, separate

estimation from validation, etc.)
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• analyse the signals
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• get multiple models of desired order and compare the

outputs
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Fourier analysis

Empirical transfer-function estimate

Extend previous estimate to multifrequency inputs

ˆ̂
GN(e

iω) =
YN(ω)

UN(ω)
with (Y/U)N(ω) =

1
√

N

N∑

t=1

(y/u)(t)e−iωt

ˆ̂
GN = ETFE, since no other assumption than linearity

• original data of 2N numbers y(t), u(t), t = 1 . . .N
condensed into N numbers (essential points/2)

Re
ˆ̂
GN(e

2πik/N), Im
ˆ̂
GN(e

2πik/N), k = 0, 1, . . . ,
N

2
− 1

→ modest model reduction
• approx. solves the convolution (using Fourier techniques)

y(t) =
N∑

k=1

g0(k )u(t − k ), t = 1, 2, . . . ,N
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Properties of the ETFE

If the input is periodic:

• the ETFE is defined only for a fixed number of frequencies

• at these frequencies the ETFE is unbiased and its

variance decays like 1/N

If the input is a realization of a stochastic process:

• the periodogram |UN(ω)|2 is an erratic function of ω, which

fluctuates around φu(ω)

• the ETFE is an asymptotically unbiased estimate of the TF

at increasingly (with N) many frequencies

• the ETFE variance do notց as N ր and is given as the

noise to signal ratio at the considered freq.

• the estimates at different frequencies are uncorrelated
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Conclusions on ETFE

• increasingly good quality for periodic signals but no

improvement otherwise as N ր
• very crude estimate in most practical cases

• due to uncorrelated information per estimated parameter

⇒ relate the system behavior at one frequency to another

Nonparametric

identification

E. Witrant

Time-domain

methods

Impulse-response

Step-response

Correlation

Frequency-

response

Sine-wave testing

Correlation method

Relationship to Fourier

Fourier

ETFE definition

ETFE properties

Spectral

Smoothing the ETFE

Blackman-Turkey

procedure

Frequency window

Asymptotic properties

Disturbance

spectrum

Residual spectrum

Coherency spectrum

Conclusions

Homework

Spectral analysis

Smoothing the ETFE

Assumption: the true transfer function G0(e
iω) is a smooth

function of ω. Consequences:

• G0(e
iω) supposed constant over

2πk1

N
= ω0 −∆ω < ω < ω0 +∆ω =

2πk2

N

• the best way (min. var.) to estimate this cst is a weighted
average of G0(e

iω) on the previous freq., each
measurement weighted by its inverse variance:

• for large N, we can use Riemann sums and introduce the

weights Wγ(ζ) =

{

1, |ζ | < ∆ω
0, |ζ | > ∆ω

• after some cooking and simplifications,

ĜN(e
iω0) =

∫ π

−πWγ(ζ − ω0)|UN(ζ)|2 ˆ̂GN(e
iζ)dζ

∫ π

−πWγ(ζ − ω0)|UN(ζ)|2dζ
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Connection with the Blackman-Turkey procedure

Noticing that as N → ∞
∫ π

−π
Wγ(ζ − ω0)|UN(ζ)|2dζ →

∫ π

−π
Wγ(ζ − ω0)φu(ζ)dζ

supposing
∫ π

−πWγ(ζ)dζ = 1 then

φ̂N
u (ω0) =

∫ π

−π
Wγ(ζ − ω0)|UN(ζ)|2dζ

φ̂N
yu(ω0) =

∫ π

−π
Wγ(ζ − ω0)YN(ζ)ŪN(ζ)dζ

ĜN(e
iω0) =

φ̂N
yu(ω0)

φ̂N
u (ω0)

→ ratio of cross spectrum by input spectrum (smoothed

periodograms proposed by B&T )
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Weighting function Wγ(ζ): the frequency window

• “Wide” fw→ weight many different frequencies, small

variance of ĜN(e
iω0) but far from ω0 = bias

• γ (∼ width−1) = trade-off between bias and variance

• Width and amplitude:
M(γ) �

∫ π

−π ζ
2Wγ(ζ)dζ and W̄(γ) � 2π

∫ π

−πW2
γ (ζ)dζ

• Typical windows for spectral analysis:

2πWγ(ω) M(γ) W̄(γ)

Bartlett
1

γ

(

sin γω/2

sinω/2

)2
2.78

γ
0.67γ

Parzen
4(2 + cosω)

γ3

(

sin γω/4

sinω/2

)4
12

γ2
0.54γ

Hamming
1

2
Dγ(ω) +

1

4
Dγ(ω − π/γ) +

1

4
Dγ(ω+ π/γ),

π2

2γ2
0.75γ

where Dγ(ω) �
sin(γ+ 1/2)ω

sinω/2

• good approx. for γ ≥ 5, as γր M(γ)ց and W̄(γ)ր
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• Example: γ = 5 vs. γ = 10
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Asymptotic properties of the smoothed estimate

• The estimates ReĜN(e
iω) and ImĜN(e

iω) are

asymptotically uncorrelated and of known variance

• ĜN(e
iω) at , freq. are asymptotically uncorrelated

• γ that min. the mean square estimate (MSE) is

γopt =

(

4M2|R(ω)|2φu(ω)

W̄φv(ω)

)1/5

· N1/5

→ frequency window more narrow when more data

available, and leads to MSE ∼ C · N−4/5

• typically, start with γ = N/20 and compute ĜN(e
iω) for

various values of γ,ր γց biasր variance (more details)
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Example

• Consider the system

y(t) − 1.5y(t − 1) + 0.7y(t − 2) = u(t − 1) + 0.5u(t − 2) + e(t)

where e(t) is a white noise with variance 1 and u(t) a

pseudo-random binary signal (PRBS), over 1000 samples.

% Construct the polynomial

m0=poly2th([1 -1.5 0.7],[0 1 0.5]);

% Generate pseudorandom, binary signal

u=idinput(1000,’prbs’);

% Normally distributed random numbers

e=randn(1000,1);

% Simulate and plot the output

y=idsim([u e],m0);

z=[y u]; idplot(z,[101:200])
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• we get the inputs and ouputs
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• The ETFE and smoothing thanks to Hamming window

(γ = 10, 50, 200) are obtained as

% Compute the ETFE

ghh=etfe(z);[om,ghha]=getff(ghh);

% Performs spectral analysis

g10=spa(z,10);[om,g10a]=getff(g10);

g50=spa(z,50);[om,g50a]=getff(g50);

g200=spa(z,200);[om,g200a]=getff(g200);

g0=th2ff(m0);[om,g0a]=getff(g0);

bodeplot(g0,ghh,g10,g50,g200,’a’);
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• we get the ETFE and estimates
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⇒ γ = 50 seems a good choice
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Estimating the disturbance

spectrum

y(t) = G0(q)u(t) + v(t)

Estimating spectra

• Ideally, φv(ω) given as (if v(t) measurable):

φ̂N
v (ω) =

∫ π

−π
Wγ(ζ − ω)|VN(ζ)|2dζ

• Bias: E φ̂N
v (ω) − φv(ω) =

1
2
M(γ)φ′′v (ω) + O(C1(γ))

︸     ︷︷     ︸

γ→∞

+O(
√

1/N)
︸      ︷︷      ︸

N→∞

• Variance : Var φ̂N
v (ω) =

W̄(γ)

N
φ2

v(ω) + O(1/N)
︸   ︷︷   ︸

N→∞

• Estimates at , freq. are uncorrelated
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The residual spectrum

• v(t) not measurable→ given the estimate ĜN

v̂(t) = y(t) − ĜN(q)u(t)

gives

φ̂N
v (ω) =

∫ π

−π
Wγ(ζ − ω)|YN(ζ) − ĜN(e

iζ)UN(ζ)|2dζ

• After simplifications: φ̂N
v (ω) = φ̂

N
y (ω) −

|φ̂N
yu(ω)|2

φ̂N
u (ω)

• Asymptotically uncorrelated with ĜN
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Coherency spectrum

• Defined as

κ̂Nyu(ω) �

√√

|φ̂N
yu(ω)|2

φ̂N
y (ω)φ̂

N
u (ω)

→ φ̂N
v (ω) = φ̂

N
y (ω)[1 − (κ̂Nyu(ω))

2]

• κyu(ω) is the coherency spectrum, i.e. freq. dependent

corr. btw I/O

• if 1 at a given ω, perfect corr. ↔ no noise.
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Conclusions

Nonparametric identification

• direct estimate of transient or frequency response

• valuable initially to provide the model structure (relations

between variables, static relations, dominant

time-constants . . . )

• spectral analysis for frequency fonctions, Fourier = special

case (wide lag window)

• essential user influence = γ: trade-off between frequency

resolution vs. variability

• reasonable γ gives dominant frequency properties
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Homework

1 Download the User’s guide for the System Identification

ToolboxTM

http://www.mathworks.com/access/helpdesk/help/pdf_doc/ident/ident.pd

Suppose that you have some data set with inputs

u ∈ R1×Nt and outputs y ∈ RNy×Nt for which you wish to

build a model: find the functions in the system

identification toolbox that would allow you to perform all

the computations done in class.

2 Follow the Matlab example Estimating Transfer Function

Models for a Heat Exchanger: perform and analyse all the

proposed functions.
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Class goal

Today, you should be able to

• distinguish between common model structures used in

identification

• estimate model parameters using the prediction-error

method

• calculate the optimal parameters for ARX models using

least-squares

• estimate bias and variance of estimates from model and

input signal properties
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System identification

Many issues:

Les. 7 choice of sampling frequency, input signal (experiment

conditions), pre-filtering;

Les. 8 non parametric models, from finite and noisy data, how to

model disturbances?

Today what class of models? estimating model parameters from

processed data.

Parameter

estimation in

linear models

E. Witrant

Linear models

Model structures

TF parameterizations

From physical insights

Parameter

estimation

Prediction

Estimation methods

Evaluating models

Minimizing

pred error

Choice of L

Choice of l

Multivariable systems

Linear reg. &

LS

LS criterion

Properties of the LSE

Multivariable LS

LS for state-space

General models

PEM

properties

Convergence

Variance

Identifiability

Conclusions

Homework

System identification via parameter estimation

Need to fix model structure before trying to estimate

parameters

• system vs. disturbance model

• model order (degrees of transfer function polynomials)
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Outline

1 Linear models

2 Basic principle of parameter estimation

3 Minimizing prediction errors

4 Linear regressions and least squares

5 Properties of prediction error minimization estimates
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Linear models

Model structures
Many model structures commonly used (BJ includes all others

as special cases)
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Transfer function parameterizations

The transfer functions G(q) and H(q) in the linear model

y[k ] = G(q; θ)u[k ] + H(q; θ)e[k ]

will be parameterized as (i.e. BJ)

G(q; θ) � q−nk
b0 + b1q−1 + · · ·+ bnb

q−nb

1 + f1q−1 + · · ·+ fnf
q−nf

H(q; θ) �
1 + c1q−1 + · · ·+ cnc

q−nc

1 + d1q−1 + · · ·+ dnd
q−nd

where the parameter vector θ contains the coefficients {bk },

{fk }, {ck }, {dk }.

Note: nk determines dead-time, nb , nf , nc , nd order of transfer

function polynomials.
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Model order selection from physical insight

Physical insights often help to determine the right model order:

y[k ] = q−nk
b0 + b1q−1 + · · ·+ bnb

q−nb

1 + f1q−1 + · · ·+ fnf
q−nf

u[k ] + H(q; θ)e[k ]

If system sampled with first-order hold (input pw. cst, 1 − q−1),

• nf equals the number of poles of continuous-time system

• if system has no delay and no direct term, then nb = nf ,

nk = 1

• if system has no delay but direct term, then nb = nf + 1,

nk = 0

• if continuous system has time delay τ, then nk = [τ/h] + 1

Note: nb does not depend on number of continuous-time zeros!

i.e. compare Euler vs. Tustin discretization
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Basic principle of parameter

estimation

• For given parameters θ, the model predicts that the

system output should be ŷ[t ; θ]

• Determine θ so that ŷ[t ; θ] matches observed output y[t ]
“as closely as possible”

• To solve the parameter estimation problem, note that:

1 ŷ[t ; θ] depends on the disturbance model

2 “as closely as possible” needs a mathematical formulation

Parameter

estimation in

linear models

E. Witrant

Linear models

Model structures

TF parameterizations

From physical insights

Parameter

estimation

Prediction

Estimation methods

Evaluating models

Minimizing

pred error

Choice of L

Choice of l

Multivariable systems

Linear reg. &

LS

LS criterion

Properties of the LSE

Multivariable LS

LS for state-space

General models

PEM

properties

Convergence

Variance

Identifiability

Conclusions

Homework

One step-ahead prediction

Consider LTI y(t) = G(q)u(t) + H(q)e(t) and undisturbed

output y∗ = G∗u∗. Suppose that H(q) is monic (h(0) = 1, i.e.

1 + cq−1 for moving average), the disturbance is

v(t) = H(q)e(t) =
∞∑

k=0

h(k)e(t − k) = e(t) +
∞∑

k=1

h(k)e(t − k)

︸                ︷︷                ︸

m(t−1), known at t − 1

Since e(t) white noise (0 mean), the conditional expectations

(expected value of a real random variable with respect to a

conditional probability distribution) are:

v̂(t |t − 1) = m(t − 1) = (H(q) − 1)e(t) = (1 − H−1(q))v(t)

⇒ ŷ(t |t − 1) = G(q)u(t) + v̂(t |t − 1)

= G(q)u(t) + (1 − H−1(q))(y(t) − G(q)u(t))

=
[

1 − H−1(q)
]

y(t) + H−1(q)G(q)u(t)
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Parameter estimation methods
Consider the particular model structureM parameterized using

θ ∈ DM ⊂ R
d: M∗ = {M(θ)|θ ∈ DM}

• each model can predict future outputs:

M(θ) : ŷ(t |θ) = Wy(q, θ)y(t) + Wu(q, θ)u(t)

i.e. one step-ahead prediction of

y(t) = G(q, θ)u(t) + H(q, θ)e(t) :

Wy(q, θ) = [1 − H−1(q, θ)], Wu(q, θ) = H−1(q, θ)G(q, θ)
(multiply by H−1 to make e white noise),

• or nonlinear filterM(θ) : ŷ(t |θ) = g(t ,Z t−1; θ) where

ZN
� [y(1), u(1), . . . , y(N), u(N)] contains the past

information.

⇒ Determine the map ZN → θ̂N ∈ DM = parameter

estimation method
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Evaluating the candidate models

Given a specific modelM(θ∗), we want to evaluate the

prediction error

ǫ(t , θ∗) = y(t) − ŷ(t |θ∗)

computed for t = 1, 2, . . . ,N when ZN is known.

• “Good model” = small ǫ when applied to observed data,

• “good” prediction performance multiply defined, guiding

principle:

Based on Z t we can compute the prediction error ǫ(t , θ).
At time t = N, select θ̂N such that ǫ(t , θ̂N), t = 1, 2, . . . ,N,

becomes as small as possible.

• How to qualify “small”:

1 scalar-valued norm or criterion function measuring the size

of ǫ;

2 ǫ(t , θ̂N) uncorrelated with given data (“projections” are 0).
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Minimizing prediction errors

1. Get ŷ(t |θ∗) from the model to compute

ǫ(t , θ∗) = y(t) − ŷ(t |θ∗). Ex.: calculate ǫ

2. Filter ǫ ∈ RN with a stable linear filter L(q):
ǫF(t , θ) = L(q)ǫ(t , θ), 1 ≤ t ≤ N

3. Use the norm (l(·) > 0 scalar-valued)

VN(θ,Z
N) =

1

N

N∑

t=1

l(ǫF(t , θ))

4. Estimate θ̂N by minimization

θ̂N = θ̂N(Z
N) = arg min

θ∈DM
VN(θ,Z

N)

⇒ Prediction-error estimation methods (PEM), defined

depending on l(·) and prefilter L(q).
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Choice of L
Extra freedom for non-momentary properties of ǫ

• same as filtering I/O data prior to identification

• L acts on HF disturbances or slow drift terms, as

frequency weighting

• note that the filtered error is

ǫF(t , θ) = L(q)ǫ(t , θ) =
[

L−1(q)H(q, θ)
]−1

[y(t) − G(q, θ)]

⇒ filtering is same as changing the noise model to

H̄L(q, θ) = L−1(q)H(q, θ)
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Choice of l

• quadratic norm l(ǫ) is first candidate

• other choices for robustness constraints

• may be parameterized as l(ǫ, θ), independently of model

parametrization

θ =

[

θ′

α

]

: l(ǫ(t , θ), θ) = l(ǫ(t , θ′), α)
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Multivariable systems

Quadratic criterion:

l(ǫ) =
1

2
ǫTΛ−1ǫ

with weight Λ ≥ 0 ∈ Rp×p

• Define, instead of l, the p × p matrix

QN(θ,Z
N) =

1

N

N∑

t=1

ǫ(t , θ)ǫT (t , θ)

• and the scalar-valued function

VN(θ,Z
N) = h(QN(θ,Z

N))

with h(Q) = 1
2
tr(QΛ−1).
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Linear regressions and least

squares

Linear regressions

Employ predictor architecture (linear in theta)

ŷ(t |θ) = φT (t)θ + µ(t)

where φ is the regression vector, i.e. for ARX

y(t) + a1y(t − 1) + . . .+ ana
y(t − na)

= b1u(t − 1) + . . .+ bnb
u(t − nb) + e(t),

⇒ φ(t) = [−y(t − 1) − y(t − 2) . . . − y(t − na)

u(t − 1) . . . u(t − nb)]
T

and µ(t) a known data-dependent vector (take µ(t) = 0 in the

following).
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Least-squares criterion

The prediction error becomes ǫ(t , θ) = y(t) − φT(t)θ and the

criterion function (with L(q) = 1 and l(ǫ) = 1
2
ǫ2)

VN(θ,Z
N) =

1

N

N∑

t=1

1

2

∣
∣
∣

∣
∣
∣y(t) − φT(t)θ

∣
∣
∣

∣
∣
∣
2

2

∴ least-squares criterion for linear regression. Can be

minimized analytically (1st order condition) with

θLS
N = arg min VN(θ,Z

N) =





1

N

N∑

t=1

φ(t)φT (t)





−1

︸                    ︷︷                    ︸

R(N)−1∈Rd×d

1

N

N∑

t=1

φ(t)y(t)

︸            ︷︷            ︸

f(N)∈Rd

the least-squares estimate (LSE). [Exercise: proove this result]
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Example: parameter estimation in ARX models

Estimate the model parameters a and b in the ARX model

y(k) = ay(k − 1) + bu(k − 1) + e(k)

from {y(k)}, {u(k)} for k = 0, . . . ,N.

⇒ find θLS
N

!
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Solution

• θ = [a b]T and φ(t) = [y(t − 1) u(t − 1)]T

• The optimization problem is solved with

R(N) =
1

N

N∑

t=1

[

y2(t − 1) y(t − 1)u(t − 1)
y(t − 1)u(t − 1) u2(t − 1)

]

and

f(N) =
1

N

N∑

t=1

[

y(t − 1)y(t)
u(t − 1)y(t)

]

• Note: estimate computed using covariances of u(t), y(t)
(cf. correlation analysis).

[Exercise:] Find R−1 for N = 2. Remember:

[

a b

c d

]−1

=
1

ad − bc

[

d −b

−c a

]
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The Inverted Correlation Matrix

• The determinant of the correlation matrix will equal 1.0

only if all correlations equal 0. Otherwise the determinant

will be less than 1.

• The determinant is related to the volume of the space

occupied by the swarm of data points represented by

standard scores on the measures involved.

• When the measures are uncorrelated, this space is a

sphere with a volume of 1.

• When the measures are correlated, the space occupied

becomes an ellipsoid whose volume is less than 1.

refs: https://www.quora.com/What-does-the-determinant-of-the-correlation-matrix-represent ,

http://www.tulane.edu/˜PsycStat/dunlap/Psyc613/RI2.html
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Properties of the LSE

Consider the observed data y(t) = φT(t)θ0 + v0(t), θ0 being

the true value:

lim
N→∞

θLS
N − θ0 = lim

N→∞
R(N)−1 1

N

N∑

t=1

φ(t)v0(t) = (R∗)−1f∗

with R∗ = Ēφ(t)φT (t), f∗ = Ēφ(t)v0(t), v0 & φ QSS. Then

θLS
N
→ θ0 if

• R∗ non-singular (co-variance exists, decaying as 1/N)

• f∗ = 0, satisfied if

1 v0(t) a sequence of independent random variables with

zero mean (i.e. white noise): v0(t) indep. of what

happened up to t − 1

2 {u(t)} indep. of {v0(t)}& na = 0 (i.e. ARX)→ φ(t) depends

on u(t) only.

[Exercise: proove this result]
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Multivariable case
When y(t) ∈ Rp

VN(θ,Z
N) =

1

N

N∑

t=1

1

2

[

y(t) − φT (t)θ
]T

Λ−1
[

y(t) − φT(t)θ
]

gives the estimate

θLS
N = arg min VN(θ,Z

N)

=





1

N

N∑

t=1

φ(t)Λ−1φT (t)





−1

1

N

N∑

t=1

φ(t)Λ−1y(t)

Key issue: proper choice of the relative weight Λ!

Parameter

estimation in

linear models

E. Witrant

Linear models

Model structures

TF parameterizations

From physical insights

Parameter

estimation

Prediction

Estimation methods

Evaluating models

Minimizing

pred error

Choice of L

Choice of l

Multivariable systems

Linear reg. &

LS

LS criterion

Properties of the LSE

Multivariable LS

LS for state-space

General models

PEM

properties

Convergence

Variance

Identifiability

Conclusions

Homework

LS for state-space

Consider the LTI

x(t + 1) = Ax(t) + Bu(t) + w(t)

y(t) = Cx(t) + Du(t) + v(t)

Set

Y(t) =

[

x(t + 1)
y(t)

]

, Θ =

[

A B

C D

]

, Φ(t) =

[

x(t)
u(t)

]

, E(t) =

[

w(t)
v(t)

]

Then Y(t) = ΘΦ(t) + E(t) where E(t) from sampled sum of

squared residuals (provides cov. mat. for Kalman filter).

Problem: get x(t). Essentially obtained as x(t) = LŶr where

Ŷr is a r-steps ahead predictor (cf. basic subspace algorithm).
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Parameter estimation in general model structures

More complicated when predictor is not linear in parameters. In

general, we need to minimize VN(θ) ≥ 0 using iterative

numerical method, e.g.,

θi+1 = θi − µiMiV ′N(θ
i)

[Exercise: analyze the convergence of V ]

Example: Newtons method uses (pseudo-Hessian)

Mi =
(

V ′′N (θ
i)
)−1

or
(

V ′′N (θ
i) + α

)−1

while Gauss-Newton approximate Mi using first-order

derivatives.

⇒ locally optimal, but not necessarily globally optimal.
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Properties of prediction error

minimization estimates

What can we say about models estimated using prediction

error minimization?

Model errors have two components:

1 Bias errors: arise if model is unable to capture true system

2 Variance errors: influence of stochastic disturbances

Two properties of general prediction error methods:

1 Convergence: what happens with θ̂N as N grows?

2 Accuracy: what can we say about size of θ̂N − θ0 as N ր?
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Convergence

• If disturbances acting on system are stochastic, then so is

prediction error ǫ(t)

• Under quite general conditions (even if ǫ(t) are not

independent)

lim
N→∞

1

N

N∑

t=1

ǫ2(t |θ) = E{ǫ2(t |θ)}

and

θ̂N → θ∗ = arg min
θ

E{ǫ2(t |θ)} as N →∞

⇒ Even if model cannot reflect reality, estimate will minimize

prediction error variance! ↔ Robustness property.
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Example

Assume that you try to estimate the parameter b in the model

ŷ[k ] = bu[k − 1] + e[k ]

while the true system is given by

y[k ] = u[k − 1] + u[k − 2] + w[k ]

where {u, e, w} are white noise sequences, independent of

each other.

[Exercise: What will the estimate (computed using the

prediction error method) converge to?]
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Solution
The PEM will find the parameters that minimize the variance

E{ǫ2(k)} = E{(y[k ] − ŷ[k ])2}

= E{(u[k − 1] + u[k − 2] + w[k ] − bu[k − 1] − e[k ])2}

= E{((1 − b)u[k − 1] + u[k − 2])2}+ σ2
w + σ2

e

= (1 − b)2σ2
u + σ2

u + σ2
w + σ2

e

minimized by b = 1→ asymptotic estimate.
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Convergence (2): frequency analysis

Consider the one-step ahead predictor and true system

ŷ(t) = [1 − H−1
∗ (q, θ)]y(t) + H−1

∗ (q, θ)G(q, θ)u(t)

y(t) = G0(q)u(t) + w(t)

⇒ ǫ(t , θ) = H−1
∗ (q)[y(t) − G(q, θ)u(t)]

= H−1
∗ (q)[G0(q) − G(q, θ)]u(t) + H−1

∗ w(t)

Looking at the spectrum and with Parseval’s identity

θ∗ = lim
N→∞

θ̂N = arg min
θ

∫ π

−π

|G0(e
iω) −G(e iω, θ)|2

︸                      ︷︷                      ︸

made as small as possible

φu(ω)

|H∗(e iω)|2
︸      ︷︷      ︸

weighting function

dω

• good fit where φu(ω) contains much energy, or H∗(e
iω)

contains little energy

• can focus model accuracy to “important” frequency range

by proper choice of {u}

• θ∗ can be computed using the ETFE as G0
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Example

Output error method using low- and high-frequency inputs
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Estimation error variance
Supposing that ∃ θ0 s.t.

y(t) − ŷ(t |θ0) = ǫ(t |θ0) = e(t) = white noise with var λ

the estimation error variance is

E{(θ̂N − θ0)(θ̂N − θ0)
T } ≈ 1

N
λR̄−1, where R̄ = E{ψ(t |θ0)ψ(t |θ0)

T }

and ψ(t |θ) � d
dθ

ŷ(t |θ) (prediction gradient wrt θ). Then:

• the error varianceր with noise intensity andց with N

• the prediction quality is proportional to the sensitivity of ŷ

with respect to θ (componentwise)

• considering that ψ computed by min. algo., use

R̄ ≈
1

N

N∑

t=1

ψ(t |θ̂N)ψ(t |θ̂N)
T , λ ≈

1

N

N∑

t=1

ǫ2(t |θ̂N)

• θ̂N converges to a normal distribution with mean θ0 and

variance 1
N
λR̄−1
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Error variance (2):frequency domain characterization

The variance of the frequency response of the estimate

Var

{

G(eiω; θ) ≈
n

N

Φw(ω)

Φu(ω)

}

• increases with number of model parameters n

• decreases with N & signal-to-noise ratio

• input frequency content influences model accuracy
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Identifiability

• Determines if the chosen parameters can be determined

from the data, uniquely.

• A specific parametrization is identifiable at θ∗ if

ŷ(t |θ∗) ≡ ŷ(t |θ) implies θ = θ∗

• May not hold if

• two , θ give identical I/O model properties

• we get , models for , θ but the predictions are the same

due to input deficiencies
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Conclusions

• Model structure from physical insights

• Seek (next step) model prediction using measurement

history

• Minimize prediction error with proper weights (filters)

• i.e. least squares: regressor & disturbance architecture⇒

optimization using signal covariances

• Evaluate convergence & variance as performance criteria,

check identifiability
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Homework (Exam 2012)

Design an identification scheme for processes with transfer

functions of the form:

1 G1(z
−1) =

b1z−1

1 + a1z−1
z−2

2 G2(s) =
b0

(Ts + 1)2

e.g. identify the parameters ai, bi and T from N inputs and

outputs measurements.

Hint: use Tustin’s method to discretize G2.
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Class goal

Today, you should be able to

• use system identification as a systematic model-building

tool

• do a careful experiment design/data collection to enable

good model estimation

• select the appropriate model structure and model order

• validate that the estimated model is able to reproduce the

observed data
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System identification: an iterative

procedure
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Outline

1 Experiments and data collection

2 Informative experiments

3 Input design for open-loop experiments

4 Identification in closed-loop

5 Choice of the model structure

6 Model validation

7 Residual analysis
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Experiments and data collection

A two-stage approach.

1 Preliminary experiments:

• step/impulse response tests to get basic understanding of

system dynamics

• linearity, stationary gains, time delays, time constants,

sampling interval

2 Data collection for model estimation:

• carefully designed experiment to enable good model fit

• operating point, input signal type, number of data points to

collect, etc.
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Preliminary experiments: step response

Useful for obtaining qualitative information about system:

• indicates dead-times, static gain, time constants and

resonances

• aids sampling time selection (rule-of-thumb: 4-10 samples

per rise time)
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Tests for verifying linearity

For linear systems, response is independent of operating point,

• test linearity by a sequence of step response tests for

different operating points
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Tests for detecting friction

Friction can be detected by using small step increases in input

Input moves every two or three steps.
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Designing experiment for model estimation

Input signal should excite all relevant frequencies

• estimated model accurate in frequency ranges where

input has much energy

• good choice is often a binary sequence with random hold

times (e.g., PRBS)

Trade-off in selection of signal amplitude

• large amplitude gives high signal-to-noise ratio, low

parameter variance

• most systems are nonlinear for large input amplitudes

Many pitfalls if estimating a model of a system under

closed-loop control!
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Informative experiments

• The data set Z∞ is “informative enough” with respect to

model setM∗ if it allows for discremination between 2,

models in the set.

• Transferred to “informative enough” experiment if it

generates appropriate data set.

• Applicable to all models likely to be used.
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Open-loop experiments

Consider the set of SISO linear models

M∗ = {G(q, θ),H(q, θ)|θ ∈ DM}

with the true model

y(t) = G0(q)u(t) + H0(q)e0(t)

If the data are not informative with respect toM∗ & θ1 , θ2,

then

|∆G(eiω)|2Φu(ω) ≡ 0,

where ∆G(q) � G(q, θ1) − G(q, θ2):

⇒ crucial condition on the open-loop input spectrum Φu(ω)

• if it implies that ∆G(eiω) ≡ 0 for two equal models, then

the data is sufficiently informative with respect toM∗
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Persistence of excitation

Def. A QSS {u(t)} with spectrum Φu(ω) is said persistently

exciting of order n if, ∀Mn(q) = m1q−1 + . . .+ mnq−n

|Mn(e
iω)|2Φu(ω) ≡ 0→ Mn(e

iω) ≡ 0

Lem. In terms of covariance function Ru(τ), it means that if

R̄n �





Ru(0) . . . Ru(n − 1)
...

. . .
...

Ru(n − 1) . . . Ru(0)





then {u(t)} persistently exciting⇔ R̄n nonsingular.

Lec.PE If the underlying system is y[t ] = θTφ[t ] + v[t ] then θ̂ that

makes the model y[t ] = θ̂φ[t ] best fit measured {u[t ]} and

{y[t ]} are given by

θ̂ = (φT
NφN

︸︷︷︸

R̄n

)−1φT
NyN
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Informative open-loop experiments

Consider a setM∗ st.

G(q, θ) =
q−nk (b1 + b2q−1 + . . .+ bnb

q−nb+1)

1 + f1q−1 + . . .+ fnf
q−nf

then an OL experiment with an input that is persistently exciting

of order n = nb + nf is sufficiently informative with respect to

M∗.
Cor. an OL experiment is informative if the input is persistently

exciting.

• the order of excitation = nb of identified parameters

• e.g. Φu(ω) , 0 at n points (n sinusoids)

Rq: immediate multivariable counterpart

⇒ The input should include many distinct frequencies: still a

large degree of freedom!
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Input design for open-loop

experiments

Three basic facts:

• asymptotic properties of the estimate (bias & variance)

depend only on input spectrum, not the waveform

• limited input amplitude: u ≤ u ≤ ū

• periodic inputs may have some advantages
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The crest factor

• cov. matrix typically inversely proportional to input power

⇒ have as much power as possible

• physical bounds u, ū→ desired waveform property

defined as crest factor; for zero-mean signal:

C2
r =

maxt u2(t)

limN→∞
1
N

∑N
t=1 u2(t)

• good waveform = small crest factor

• theoretical lower bound is 1 = binary, symmetric signals

u(t) = ±ū

• specific caution: do not allow validation against

nonlinearities
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Common input signals

Achieve desired input spectrum with smallest crest factor:

typically antagonist properties.

• Filtered Gaussian white noise (WN): any spectrum with

appropriate filter, use off-line non-causal filters (e.g.

Kaiser & Reed, 1977) to eliminate the transients

(theoretically unbounded)

• Random binary signals (RBS): generate with a filtered

zero-mean Gaussian noise and take the sign. Cr = 1,

problem: filter change spectrum

• Pseudo-Random Binary Signal (PRBS): periodic,
deterministic signal with white noise properties.
Advantages with respect to RBS:

• cov. matrix can be analytically inverted

• secured second order properties when whole periods

• not straightforward to generate uncorrelated PRBS

• work with integer number of periods to have full PRBS

advantages→ limited by experimental length
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Common input signals (2)

• Low-pass filtering by increasing the clock period: to get

more low-frequency, filter PRBS (no B) and take P

samples over one period:

u(t) =
1

P
(e(t) + . . .+ e(t − P + 1))

• Multi-sines: sum of sinusoids

u(t) =
∑d

k=1 ak cos(ωk t + φk )

• Chirp signals or swept sinusoids: sin. with freq. that

changes continuously over certain band Ω : ω1 ≤ ω ≤ ω2

and time period 0 ≤ t ≤ M

u(t) = A cos
(

ω1t + (ω2 − ω1)t
2/(2M)

)

instantaneous frequency (d/dt): ωi = ω1 +
t
M
(ω2 − ω1).

Good control over excited freq. and same crest as sin. but

induces freq. outside Ω.
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Periodic inputs

Some guidelines:

• generate PRBS over one full period, M = 2n − 1 and

repeat it

• for multi-sine of period M, choose ωk from DFT-grid

(density functional theory) ωl = 2πl/M, l = 0, 1, . . . ,M − 1

• for chirp of period M, choose ω1,2 = 2πk1,2/M

Advantages and drawbacks:

• period M → M distinct frequencies in spectrum, persistent

excitation of (at most) order M

• when K periods of length M (N = KM), average outputs

over the periods and select one to work with (ց data to

handle, signal to noise ration improved by K )

• allows noise estimation: removing transients, differences

in output responses over , periods attributed to noise

• when model estimated in Fourier transformed data, no

leakage when forming FT
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Example: input consisting of five sinusoids

u = idinput([100 1 20],’sine’,

[],[],[5 10 1]);

% u = idinput(N,type,band,levels)

% [u,freqs] = idinput(N,’sine’,

% band,levels,sinedata)

% N = [P nu M] gives a periodic

% input with nu channels,

% each of length M*P and

% periodic with period P.

% sinedata = [No_of_Sinusoids,

% No_of_Trials, Grid_Skip]

u = iddata([],u,1,’per’,100);

u2 = u.u.ˆ2;

u2 = iddata([],u2,1,’per’,100);
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Spectrum of u vs. u2: frequency splitting (the square having

spectral support at other frequencies) reveals the nonlinearity

involved.
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Identification in closed-loop

Identification under output feedback necessary if unstable

plant, or controlled for safety/production, or inherent feedback

mechanisms.

Basic good news: prediction error method provides good

estimate regardless of CL if

• the data is informative

• the model sets contains the true system

Some fallacies:

• CL experiment may be non-informative even if persistent

input, associated with too simple regulators

• direct spectral analysis gives erroneous results

• corr. analysis gives biased estimate, since

Ēu(t)v(t − τ) , 0

• OEM do not give consistent G when the additive noise not

white
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Example: proportional feedback

Consider the first-order model and feedback

y(t) + ay(t − 1) = bu(t − 1) + e(t), u(t) = −fy(t)

then

y(t) + (a + bf)y(t − 1) = e(t)

⇒ all models â = a + γf , b̂ = b − γ where γ is an arbitrary

scalar give the same I/O description: even if u(t) is persistently

exciting, the experimental condition is not informative enough.
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Some guidelines

• The CL experiment is informative⇔ reference r(t) is

persistently exciting in

y(t) = G0(q)u(t) + H0(q)e(t)

u(t) = r(t) − Fy(q)y(t)

• Non linear, time-varying or complex (high-order) regulators

yield informative enough experiments in general

• A switch between regulators, e.g.

u(t) = −F1(q)y(t) and u(t) = −F2(q)y(t),

s.t. F1(e
iω) , F2(e

iω); ∀ω

achieves informative experiments

• Feedback allows to inject more input in certain freq ranges

without increasing output power.
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Choice of the model structure

1 Start with non-parametric estimates (correlation analysis,
spectral estimation)

• give information about model order and important

frequency regions

2 Prefilter I/O data to emphasize important frequency ranges

3 Begin with ARX models

4 Select model orders via

• cross-validation (simulate & compare with new data)

• Akaike’s Information Criterion, i.e., pick the model that

minimizes
(

1 + 2
d

N

) N∑

t=1

ǫ[t ; θ]2

where d = nb estimated parameters in the model
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Model validation

Parameter estimation→ “best model” in chosen structure, but

“good enough”?

• sufficient agreement with observed data

• appropriate for intended purpose

• closeness to the “true system”

Example: G(s) =
1

(s + 1)(s + a)
has O- & CL responses for

a = {−0.01, 0, 0.01}

Insufficient for OL prediction, good enough for CL control!
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Validation

• with respect to purpose: regulator design, prediction or

simulation→ test on specific problem, may be limited to

do exhaustively (cost, safety)

• feasibility of physical parameters: estimated values and

variance compared with prior knowledge. can also check

sensitivity for identifiability

• consistency of I/O behavior:

• Bode’s diagrams for , models & spectral analysis

• by simulation for NL models

• with respect to data: verify that observations behave
according to modeling assumptions

1 Compare model simulation/prediction with real data

2 Compare estimated models frequency response and

spectral analysis estimate

3 Perform statistical tests on prediction errors
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Example: Bode plot for CL control

Different low-frequency behavior, similar responses around

cross-over frequency
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Model reduction

• Original model unnecessarily complex if I/O properties not

much affected by model reduction

• Conserve spectrum/eigenvalues

• Numerical issues associated with matrix conditioning (e.g.

plasma in optimization class)

Parameter confidence interval

• Compare estimate with corresponding estimated standard

deviation

• If 0∈ confidence interval, the corresponding parameter

may be removed

• Usually interesting if related to a physical property (model

order or time-delay)

• If standard dev. are all large, information matrix close to

singular and typically too large order
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Simulation and prediction

• Split data into two parts; one for estimation and one for

validation.

• Apply input signal in validation data set to estimated model

• Compare simulated output with output stored in validation

data set.
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Residual analysis

• Analyze the data not reproduced by model = residual

ǫ(t) = ǫ(t , θ̂N) = y(t) − ŷ(t |θ̂N)

• e.g. if we fit the parameters of the model

y(t) = G(q, θ)u(t) + H(q, θ)e(t)

to data, the residuals

ǫ(t) = H(q, θ)−1 [y(t) − G(q, θ)u(t)]

represent a disturbance that explains mismatch between

model and observed data.

• If the model is correct, the residuals should be:

⋄ white, and

⋄ uncorrelated with u
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Statistical model validation

• Pragmatic viewpoint: basic statistics from

S1 = max
t
|ǫ(t)|, S2

2 =
1

N

N∑

t=1

ǫ2(t)

likely to hold for future data = invariance assumption (ǫ do

not depend on something likely to change or on a

particular input in ZN)

⇒ Study covariance

R̂N
ǫu(τ) =

1

N

N∑

t=1

ǫ(t)u(t − τ), R̂N
ǫ (τ) =

1

N

N∑

t=1

ǫ(t)ǫ(t − τ)

⋄ R̂N
ǫu(τ): if small, S1,2 likely to be relevant for other inputs,

otherwise, remaining traces of y(t) not inM
⋄ R̂N

ǫ (τ): if not small for τ , 0, part of ǫ(t) could have been

predicted⇒ y(t) could be better predicted
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Whiteness test

• Suppose that ǫ is a white noise with zero mean and

variance λ, then

N

λ2

M∑

τ=1

(

R̂N
ǫ (τ)

)2
=

N
(

R̂N
ǫ (τ)

)2

M∑

τ=1

(

R̂N
ǫ (τ)

)2
� ζN,M

should be asymptotically χ2(M)-distributed (independency

test), e.g. if ζN,M < χ
2
α(M), the α level of χ2(M)

• Simplified rule: autocorrelation function
√

NR̂N
ǫ (τ) lies

within a 95% confidence region around zero→ large

components indicate unmodelled dynamics

• Similarly, independency if
√

NR̂N
ǫu(τ) within 95%

confidence region around zero:

⋄ large components indicate unmodelled dynamics

⋄ R̂N
ǫu(τ) nonzero for τ < 0 (non-causality) indicates the

presence of feedback
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Conclusions

System identification: an iterative procedure in several steps

• Experiment design

⋄ preliminary experiments detect basic system behavior

⋄ carefully designed experiment enable good model

estimation (choice of sampling interval, anti-alias filters,

input signal)

• Examination and prefiltering of data

⋄ remove outliers and trends

• Model structure selection

• Model validation

⋄ cross-validation and residual tests
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Homework (Exam 2014)
You wish to obtain a model from an experimental process

which allows you to perform all the desired tests and

sequences of inputs.

1 Which preliminary experiments should be carried to get a

preliminary idea of the system properties before the

identification?

2 Suppose that you wish to evaluate the matching between

the identified model:

G(q, θ) =
q−2(b1 + b2q−1 + b3q−2)

1 + f1q−1 + f2q−2 + f3q−3 + f4q−4 + f5q−5

and your measured signals:

1 which property has to be verified by your input signal?

2 write the algorithm that would allow you to check this

property.

3 If a local feedback controller is set on the experiment, how

would you proceed to get valid measurements?
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Motivation

Linear systems limited when considering:

• Physical models

• large parameter variability

• complex systems

Today’s concerns:

• generic classes of models

• black box: neural networks and Artificial Intelligence

• parameter estimation for NL models: back on nonlinear

programming
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Outline

1 Nonlinear State-space Models

2 Nonlinear Black-box Models

3 Parameters estimation with Gauss-Newton stochastic gradient

4 Temperature profile identification in tokamak plasmas
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Nonlinear State-space Models

• General model set:

x(t + 1) = f(t , x(t), u(t),w(t); θ)

y(t) = h(t , x(t), u(t), v(t); θ)

Nonlinear prediction→ no finite-dimensional solution

except specific cases: approximations

• Predictor obtained from simulation model (noise-free)

x(t + 1, θ) = f(t , x(t , θ), u(t), 0; θ)⇔
d

dt
x(t , θ) = f(·)

ŷ(t |θ) = h(t , x(t , θ), u(t), 0; θ)

• Include known physical parts of the model, but unmodeled

dynamics that can still have a strong impact on the system

→ black-box components.
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Nonlinear Black-box Models:

Basic Principles

Model = mapping from past data Z t−1 to the space of output

ŷ(t |θ) = g(Z t−1, θ)

→ seek parameterizations (parameters θ) of g that are flexible

and cover “all kinds of reasonable behavior” ≡ nonlinear

black-box model structure.
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A structure for the general mapping: Regressors

Express g as a concatenation of two mappings:

• φ(t) = φ(Z t−1): takes past observation into regression

vector φ (components = regressors), or φ(t) = φ(Z t−1, θ);

• g(φ(t), θ): maps φ into space of outputs.

Two partial problems:

1 How to choose φ(t) from past I/O? Typically, using only

measured quantities, i.e. NFIR (Nonlinear Finite Impulse

Response) and NARX.

2 How to choose the nonlinear mapping g(φ, θ) from

regressor to output space?

Nonlinear

Black-box

Identification

E. Witrant

Nonlinear

State-space

Models

Nonlinear

Black-box

Models

Regressors

Function expansions

and basis functions

Multi-variable basis

functions

Approximation issues

Networks

Parameters

estimation with

Gauss-Newton

Stochastic descent

Assumptions

For black-box models

Identification in

tokamaks

Identification method

Results

Conclusions

Basic features of function expansions and basis functions

• Focus on g(φ(t), θ) : Rd → Rp, φ ∈ Rd , y ∈ Rp.

• Parametrized function as family of function expansions

g(φ, θ) =
n
∑

k=1

αk gk (φ), θ = [α1 . . . αn]
T

gk referred as basis functions, provides a unified

framework for most NL black-box model structures.

• How to choose gk ? Typically

• all gk formed from one “mother basis function” κ(x);
• κ(x) depends on a scalar variable x;

• gk are dilated (scaled) and translated versions of κ, i.e. if

d = 1 (scalar case)

gk (φ) = gk (φ, βk , γk ) = κ(βk (φ − γk ))

where βk = dilatation and γk = translation.
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Scalar examples

• Fourier series: κ(x) = cos(x), g are Fourier series

expansion, with βk as frequencies and γk as phases.

• Piece-wise continuous functions: κ as unit interval

indicator function

κ(x) =

{

1 for 0 ≤ x < 1

0 else

and γk = k∆, βk = 1/∆, αk = f(k∆): give a piece-wise

constant approximation ∀ f over intervals of length ∆.

Similar version with Gaussian bell κ(x) = 1√
2π

e−x2/2.

• Piece-wise continuous functions - variant -: κ as unit step

function

κ(x) =

{

0 for x < 0

1 for x > 0

Similar result with sigmoid function κ(x) = 1
1+e−x
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Classification of single-variable basis functions

• local basis functions, with significant variations in local

environment (i.e. presented piece-wise continuous

functions);

• global basis functions, with significant variations over the

whole real axis (i.e. Fourier, Voltera, Legendre

polynomials).
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Example: accumulation rate in Antarctica
D. Callens, R. Drews, E. Witrant, M. Philippe, F. Pattyn: Temporally stable

surface mass balance asymmetry across an icerise derived from radar

internal reflection horizons through inverse modeling, Journal of Glaciology,

62(233) 525-534, 2016.

Map of Derwael Ice Rise
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Example: accumulation rate in Antarctica (2)

Internal Reflexion Horizons from radars
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Example: accumulation rate in Antarctica (3)

Spatial distribution of the SMB across the DIR inferred (inverse

problem with Legendre polynomials) from younger and deeper

IRHs:

→ asymmetric distribution related to orographic uplift of air

masses which induces an increase of precipitation on the

upwind side and a deficit on the downwind side (NW).
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Construction of multi-variable basis functions

(φ ∈ Rd , d > 1)

1 Tensor product. Product of the single-variable function,

applied to each component of φ:

gk (φ) = gk (φ, βk , γk ) =
d
∏

j=1

κ(β
j

k
(φj − γj

k
))

2 Radial construction. Value depend only on φ’s distance

from a given center point

gk (φ) = gk (φ, βk , γk ) = κ
(

||φ − γk ||βk

)

where || · ||βk
is any chosen norm, i.e. quadratic:

||φ||2
βk

= φTβkφ with βk > 0 matrix.

3 Ridge construction. Value depend only on φ’s distance

from a given hyperplane (cst ∀φ in hyperplane)

gk (φ) = gk (φ, βk , γk ) = κ(β
T
k (φ − γk ))
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Approximation issues

• For any of the described choices, the resulting model

becomes

g(φ, θ) =
n
∑

k=1

αkκ(βk (φ − γk ))

• Fully determined by κ(x) and the basis functions

expansion on a vector φ.

• Parametrization in terms of θ characterized by three

parameters: coordinates α, scale or dilatation β, location

γ. Note: linear regression for fixed scale and location.

• Accuracy [Juditsky et al., 1995]: for almost any choice of

κ(x) (except polynomial), we can approximate any

“reasonable” function g0(φ) (true system) arbitrarily well

with n large enough.
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Approximation issues (2)

Efficiency [Barron 1993]:

1 if β and γ allowed to depend on the function g0 then n

much less than if βk , γk fixed a priori;

2 for local, radial approach, necessary n to achieve a degree

of approximation d of s times differentiable function:

n ∼ 1

δ(d/s)
, δ ≪ 1

→ increases exponentially with the number of regressors

= curse of dimensionality.
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Networks for nonlinear black-box structures
Basis function expansions often referred to as networks.

• Multi-layer networks:

Instead of taking a linear combination of regressors, treat

as new regressors and introduce another “layer” of basis

functions forming a second expansion, e.g. two-hidden

layers network
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Networks for nonlinear black-box structures (2)

• Recurrent networks. When some regressors at t are

outputs from previous time instants φk (t) = g(φ(t − k), θ).

Estimation aspects

Asymptotic properties and basic algorithms are the same as

the other model structures!
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Parameters estimation with

Gauss-Newton stochastic

gradient algorithm

⇒ A possible solution to determine the optimal parameters of

each layer.

Problem description

Consider no system outputs y ∈ Rnm×no , with nm measurements

for each output, and a model output ŷ ∈ Rnm×no .

Objective: determine the optimal set of model parameters θ

which minimizes the quadratic cost function

J(θ) �
1

nm

nm
∑

i=1

||y(i) − ŷ(θ, i)||22

Output error variance is minimized for θ∗ = arg minθ J(θ).
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Stochastic descent algorithm

Based on the sensitivity of ŷ(θ, i) with respect to θ

S(θ, i) �
∂ŷ

∂θ
=

[

∂ŷ

∂θ1
, . . . ,

∂ŷ

∂θnv

]T

,

the gradient of the cost function writes as

∇θJ(θ) = −
2

nm

nm
∑

i=1

S(θ, i)(y(i) − ŷ(θ, i))
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Stochastic descent algorithm (2)

θ∗ obtained by moving along the steepest slope −∇θJ(θ) with a

step η, which as to ensure that

θl+1 = θl − ηl∇θJ(θl)

converges to θ∗, where l � algorithm iteration index. ηl chosen

according to Gauss-Newton’s method as

ηl � (ΨθJ(θ
l) + υI)−1,

where υ > 0 is a constant introduced to ensure strict

positiveness and ΨθJ(θ
l) is the pseudo-Hessian, obtained

using Gauss-Newton approximation

ΨθJ(θ
l) =

2

nm

nm
∑

i=1

S(θl , i)S(θl , i)T
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Stochastic descent algorithm (3)

Consider dynamical systems modeled as (t ∈ [0,T ])


















dxm

dt
= fm(xm(t), u(t), θ), xm(t0) = xm0

ŷ(t) = gm(xm(t), u(t), θ)

xm is the model state and fm(·) ∈ C1, then

S(θ, t) =
∂gm

∂xm

∂xm

∂θ
+
∂gm

∂θ

where the state sensitivity
∂xm

∂θ
obtained by solving the ODE

d

dt

[

∂xm

∂θ

]

=
∂fm

∂xm

∂xm

∂θ
+
∂fm

∂θ
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Assumptions

• ni independent system inputs u =
{

u1, . . . , uni

}

∈ Rnm×ni ,

available during the optimal parameter search process.

• The set {y , u} corresponds to historic data and J is the

data variance.

• The set of nm measurements is large enough and well

chosen (sufficiently rich input) to be considered as

generators of persistent excitation to ensure that the

resulting model represents the physical phenomenon

accurately within the bounds of u.
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For black-box models
Consider the nonlinear black-box structure

g(φ, θ) =
n
∑

k=1

αkκ(βk (φ − γk ))

To find the gradient ∇θJ(θ) we just need to compute

∂

∂α
[ακ(β(φ − γ))] = κ(β(φ − γ))

∂

∂β
[ακ(β(φ − γ))] = α

∂

∂β
[κ(β(φ − γ))]φ

∂

∂γ
[ακ(β(φ − γ))] = −α

∂

∂γ
[κ(β(φ − γ))]
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Example: sigmoid functions family

κj =
1

1 + e−βj(x−γj)

The sensitivity function is set with

∂ŷ

∂αj
=

1

1 + e−βj(x−γj)
,
∂ŷ

∂βj
=
αje
−βj(x−γj)(x − γj)

(1 + e−βj(x−γj))2
,

∂ŷ

∂γj

= −
αje
−βj(x−γj)βj

(1 + e−βj(x−γj))2
.

Notes:

• any continuous function can be arbitrarily well

approximated using a superposition of sigmoid functions

[Cybenko, 1989]

• nonlinear function⇒ nonlinear optimization problem
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Temperature profile identification

in tokamak plasmas
⇒ Parameter dependant identification of nonlinear distributed

systems

• Grey-box modeling,

• 3-hidden layers approach: spatial distribution, steady-state

and transient behaviour,

• Stochastic descent method with direct differentiation.
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Identification method: TS Temperature profile (L-mode)

Physical model:
3

2

∂nT

∂t
= ∇ (nχ∇T) + ST

• Input: normalized profile v(x , t) =
Te(x ,t)
Te0(t)

1. v̂(x , t) = α

1+e−β(x−γ)
, ⇒ θf = {α, β, γ}

2.























αlh = eϑsα0 I
ϑsα1
p B

ϑsα2

φ0
N
ϑsα3

∥

(

1 +
Picrf

Ptot

)ϑsα4

βlh = −eϑsβ0 I
ϑsβ1

p B
ϑsβ2

φ0
n̄
ϑsβ3

e N
ϑsβ4

∥
⇒ θs = {ϑsα i, ϑsβ i , ϑsγ i}

γlh = eϑsγ0 I
ϑsγ1

p B
ϑsγ2

φ0
N
ϑsγ3

∥

(

1 +
Picrf

Ptot

)ϑsγ4
(

1 +
Picrf

Ptot

)ϑsγ5

3.



























τth(t) = eϑt0 I
ϑt1
p B

ϑt2

φ0
n̄
ϑt3
e P

ϑt4

tot

dW

dt
= Ptot −

1

τth
W , W(0) = Ptot(0)τth(0)

T̂e0(t) = AW ⇒ θt = {ϑt ,i}
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Identification method (2)

v(x , tk )

v̂(θf (tk ))

θ̂f(uss , θs)

uss(tkss)

f̂(ŵ, ut , θt , θs)

ut(tkt)
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Results (19 shots - 9500 measurements)
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Results (2)

Test case:

0

0.2

0.4
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1
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0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

0
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0.15
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Central temperature (keV) and power inputs (MW)

|η(x , t) − η̂(x , t)|

x

time (s)

Te0(t)

T̂e0(t)ITERL-96P(th)Plh Picrf
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Conclusions

• Development similar to linear models

• Predictor→ nonlinear function of past observations

• Unstructured black-box models much more demanding

• Clearly identify nonlinearities prior to identification:

semi-physical models give the regressor

• Define sub-models that can be analyzed independently
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Homework 5

1 Comment and write down the equations corresponding to

the algorithm “fitTe sig.m” below.

2 How should the script be modified to use Gaussian fitting

curves?

function [P,Jf] = fitTe_sig(TE,xval,P)

% TE = input temperature profile

% xval = location of the measurement

% P = Initial Conditions on design parameters

[np,nm] = size(TE); % number of profiles/measurements

xval = xval’; y = TE’;

ni = 1000; % number of iterations

nv = 3; % number of design parameters

nu = .1*eye(nv); % conditioning parameter

J = zeros(ni,1); % cost function

for j = 1:ni % for each iteration

GJ = zeros(nv,1); % Gradient J

DP2(:,j) = P; % design parameters evolution recording

Nonlinear

Black-box

Identification

E. Witrant

Nonlinear

State-space

Models

Nonlinear

Black-box

Models

Regressors

Function expansions

and basis functions

Multi-variable basis

functions

Approximation issues

Networks

Parameters

estimation with

Gauss-Newton

Stochastic descent

Assumptions

For black-box models

Identification in

tokamaks

Identification method

Results

Conclusions

y_est = zeros(nm,1); % model output (estimated system output)

sigmoid = P(1)./(1+exp(-P(2).*(xval-P(3)))); % source terms

y_est = y_est + sigmoid;

dsigmoid_e = sigmoid.ˆ2./P(1).*exp(-P(2).*(xval-P(3)));

S = [sigmoid./P(1) (xval-P(3)).*dsigmoid_e -P(2).*dsigmoid_e];

% Sensitivity function dy/dK

PJ = S’*S; % pseudo-hessian \psi

for i=1:np % for each profile

error = y(:,i)-y_est;

% difference between the reference (0 in our case) and model

for k = 1:nv % for each design parameter

GJt(k) = error’*S(:,k);

end

GJ = GJ + GJt’;

J(j) = J(j) + (error’*error)/np;

end

GJ = -2/np.*GJ;

PJ = 2.*PJ;

alpha = inv(PJ + nu);

P = P - alpha*GJ; % this is the veriation law for K
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if J(j) < 1*1e-4

% if the cost function is sufficiently small we are happy and

% get out!

TE_est = y_est’;

break

end

end

Jf = J(j);
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Motivation

On-line model when the system is in operation to take decision

about the system, i.e.

• Which input should be applied next?

• How to tune the filter parameters?

• What are the best predictions of next

outputs?

• Has a failure occurred? Of what type?

⇒ Adaptive methods (control, filtering, signal processing and

prediction).

Recursive estimation methods

• completed in one sampling interval to keep up with

information flow;

• carry on their estimate of parameter variance;

• also competitive for off-line situations.
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Overview

• General mapping of data set to parameter space

θ̂t = F(t ,Z t) may involve an unknown large amount of

calculation for F .

• Recursive algorithm format:

• X(t): information state

X(t) = H(t ,X(t − 1), y(t), u(t))

θ̂t = h(X(t))

• H & h: explicit expressions involving limited calculations

⇒ θ̂t evaluated during a sampling interval

• small information content in latest measurements pair (γt

and µt ):

θ̂t = θ̂t−1 + γt Qθ(X(t), y(t), u(t))

X(t) = X(t − 1) + µtQX(X(t), y(t), u(t))
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Outline

1 Recursive Least-Squares Algorithm

2 Recursive IV Method

3 Recursive Prediction-Error Methods

4 Recursive Pseudolinear Regressions

5 Choice of Updating Step
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The Recursive Least-Squares

Algorithm

Weighted LS criterion

θ̂t = arg min
θ

t∑

k=1

β(t , k)
[

y(k) − φT(k)θ
]2

where φ is the regressor, has solution






θ̂t = R̄−1(t)f(t)

R̄(t) =
t∑

k=1

β(t , k)φ(k)φT (k)

f(t) =
t∑

k=1

β(t , k)φ(k)y(k)

Z t and θ̂t−1 cannot be directly used, even if closely related to

θ̂t .
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Recursive algorithm

• Suppose the weighting sequence properties

β(t , k ) = λ(t)β(t − 1, k ), 0 ≤ k ≤ t − 1

β(t , t) = 1

}

⇒ β(t , k ) =
t∏

k+1

λ(j)

where λ(t) is the forgetting factor. It implies that

R̄(t) = λ(t)R̄(t − 1) + φ(t)φT (t)

f(t) = λ(t)f(t − 1) + φ(t)y(t)

⇒ θ̂t = R̄−1(t)f(t)= θ̂t−1 + R̄−1(t)φ(t)
[

y(t) − φT (t)θ̂t−1

]

Exercise: prove it

• At (t − 1) we only need to store the information vector

X(t − 1) = [θ̂t−1, R̄(t − 1)].
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Efficient matrix inversion
To avoid inverting R̄(t) at each step, introduce P(t) = R̄−1(t)
and the matrix inversion lemma

[A + BCD]−1 = A−1 − A−1B[DA−1B + C−1]−1DA−1

with A = λ(t)R̄(t − 1), B = DT = φ(t) and C = 1 to obtain






θ̂(t) = θ̂(t − 1) + L(t)
[

y(t) − φT(t)θ̂(t − 1)
]

L(t) =
P(t − 1)φ(t)

λ(t) + φT(t)P(t − 1)φ(t)

P(t) =
1

λ(t)

[

P(t − 1) − L(t)φT (t)P(t − 1)
]

Note: we used θ̂(t) instead of θ̂t to account for slight

differences due to the IC.
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Normalized gain version

To bring out the influence of R̄ & λ(t) on θ̂t−1, normalize as

R(t) = γ(t)R̄(t), γ(t) =





t∑

k=1

β(t , k)





−1

⇒
1

γ(t)
=

λ(t)

γ(t − 1)
+1

It implies that

θ̂t = θ̂t−1 + R̄−1(t)φ(t)
[

y(t) − φT(t)θ̂t−1

]

R̄(t) = λ(t)R̄(t − 1) + φ(t)φT (t)

becomes






ǫ(t) = y(t) − φT (t)θ̂(t − 1)

θ̂(t) = θ̂(t − 1) + γ(t)R−1φ(t)ǫ(t)

R(t) = R(t − 1) + γ(t)
[

φ(t)φT (t) − R(t − 1)
]

• R(t): weighted arithmetic mean of φ(t)φT (t);

• ǫ(t): prediction error according to current model;

• γ(t): updating step size or gain of the algorithm.
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Initial conditions

• Ideally, R̄(0) = 0, θ̂0 = θI but cannot be used (R̄−1)→

initialize when R̄(t0) invertible: spare t0 samples s.t.






P−1(t0) = R̄(t0) =

t0∑

k=1

β(t0, k)φ(k)φ
T (k)

θ̂0 = P(t0)

t0∑

k=1

β(t0, k)φ(k)y(k)

• Simpler alternative: use P(0) = P0 and θ̂(0) = θI, which
gives

θ̂(t) =




β(t ,0)P−1

0 +
t∑

k=1

β(t , k )φ(k )φT(k )





−1 

β(t ,0)P−1

0 θI +
t∑

k=1

β(t , k )φ(k )y(k )





If P0 and t large, insignificant difference.
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Weighted multivariable case

θ̂t = arg min
θ

1

2

t∑

k=1

β(t , k)
[

y(k) − φT(k)θ
]T

Λk
−1
[

y(k) − φT(k)θ
]

gives, similarly to the scalar case






θ̂(t) = θ̂(t − 1) + L(t)
[

y(t) − φT(t)θ̂(t − 1)
]

L(t) = P(t − 1)φ(t)
[

λ(t)Λt + φT (t)P(t − 1)φ(t)
]−1

P(t) =
1

λ(t)

[

P(t − 1) − L(t)φT (t)P(t − 1)
]

and (normalized gain)






ǫ(t) = y(t) − φT(t)θ̂(t − 1)

θ̂(t) = θ̂(t − 1) + γ(t)R−1φ(t)Λt
−1ǫ(t)

R(t) = R(t − 1) + γ(t)
[

φ(t)Λt
−1φT(t) − R(t − 1)

]

Note: can also be used for the scalar case with weighted norm

β(t , k) = αk

t∏

k+1

λ(j), where the scalar αk corresponds to Λ−1
k
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Kalman filter interpretation

• The Kalman filter for

{

x(t + 1) = F(t)x(t) + w(t)
y(t) = H(t)x(t) + v(t)

is






x̂(t + 1) = F(t)x̂(t) + K(t)[y(t) − H(t)x̂(t)], x̂(0) = x0,

K(t) = [F(t)P(t)HT(t) + R12(t)][H(t)P(t)HT(t) + R2(t)]
−1

P(t + 1) = F(t)P(t)FT(t) + R1(t) − K(t)[H(t)P(t)HT(t) + R2(t)]K
T (t),

P(0) = Π0.

with R1(t) = Ew(t)wT(t), R12(t) = Ew(t)vT(t), R2(t) = Ev(t)vT (t)

• The linear regression model ŷ(t |θ) = φT(t)θ can be

expressed as

{

θ(t + 1) = Iθ(t) + 0, (≡ θ)
y(t) = φT (t)θ(t) + v(t)

Corresponding KF:

(Λt � R2(t))






θ(t + 1) = θ(t) + K(t)[y(t) − φT (t)θ(t)],

K(t) = P(t)φ(t)[φT(t)P(t)φ(t) + Λt ]
−1,

P(t + 1) = P(t) − K(t)[φT (t)P(t)φ(t) + Λt ]K
T (t).

= exactly the multivariable case formulation if λ(t) ≡ 1!
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Resulting practical hints

• if v(t) is white and Gaussian, then the posteriori

distribution of θ(t), given Z t−1, is Gaussian with mean

value θ̂(t) and covariance P(t);

• IC: θ̂(0) is the mean and P(0) the covariance of the prior

distribution→ θ̂(0) is our guess before seing the data and

P(0) reflects our confidence in that guess;

• the natural choice for |Λt | is the error noise covariance

matrix. If (scalar) α−1
t = Ev2(t) is time-varying, use

β(k , k) = αk in weighted criterion.
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Time-varying systems

• Adaptive methods and recursive algorithms: time-varying

system properties⇒ track these variations.

⇒ Assign less weight to older measurements: choose

λ(j) < 1, i.e. if λ(j) ≡ λ, then β(t , k) = λt−k and old

measurements are exponentially discounted: λ is the

forgetting factor. Consequently γ(t) ≡ γ = 1 − λ

• OR have the parameter vector vary like random walk

θ(t + 1) = θ(t) + w(t), Ew(t)wT (t) = R1(t)

with w white Gaussian and Ev2(t) = R2(t).

Kalman filter gives

conditional

expectation and

covariance of θ̂ as:






θ̂(t) = θ̂(t − 1) + L(t)
[

y(t) − φT (t)θ̂(t − 1)
]

L(t) =
P(t − 1)φ(t)

R2(t) + φT(t)P(t − 1)φ(t)

P(t) = P(t − 1) − L(t)φT (t)P(t − 1) + R1(t)

⇒ R1(t) prevents L(t) from tending to zero.
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Example: parametrization of the plasma resistivity profile

Consider the time and space dependant η(x, t) (shot 35109),

approximated with the scaling law

η̂(x , t , θ(t)) � eθ1eθ2xeθ3x2

. . .eθNθ
xNθ−1

where x ∈ RNx and θ = θ(t) ∈ RNθ , then

• the data is processed as

y(x , t) = ln η(x , t)

• the model is

parameterized as

ŷ(t , θ) � ln η̂(x, t , θ(t))

= [1 x x2 . . . xNθ−1]
︸               ︷︷               ︸

ΦT∈RNx ×Nθ





θ1(t)
θ2(t)
...

θNθ
(t)





︸      ︷︷      ︸

θ(t)
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Example (2): code for multivariable case

lambda = .5; % forgetting factor

weight = exp(-x.ˆ2./.07); % gaussian distribution

Lambda = inv(diag(weight)); % gauss. weight

P = inv(lambda.*Phi*Phi’); % initial P

for j = 1:Nt % time loop

y_t = y(:,j); % acquire measurement

epsilon = y_t - Phi’*Theta; % prediction err.

Theta_r(:,j) = Theta; % store param. at t

L = P*Phi*inv(lambda.*Lambda + Phi’*P*Phi);

P = (P - L*Phi’*P)./lambda; % update P

Theta = Theta + L*epsilon; % update Theta

y_est(:,j) = Phi’*Theta; % record estimation

cost(j) = epsilon’*inv(Lambda)*epsilon;

end
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Simulation results
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Simulation results (2): effect of λ and Λt
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λ = .8 and Λt = |EεεT |I

λ = .8

λ = .99
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The Recursive IV Method

Instrumental Variables (IV)

• Linear regression model: ŷ(t |θ) = φT(t)θ

⇒ θ̂LS
N = sol






1

N

N∑

t=1

φ(t)[y(t) − φT (t)θ] = 0






• Actual data: y(t) = φT(t)θ0 + v0(t). LSE θ̂N 9 θ0 typically,

because of the correlation between v0(t) and φ(t):
introduce a general correlation vector ζ(t), which elements

are called the instruments or instrumental variables.
• IV estimation:

θ̂IV
N = sol






1

N

N∑

t=1

ζ(t)[y(t) − φT(t)θ] = 0





=





1

N

N∑

t=1

ζ(t)φT(t)





−1

1

N

N∑

t=1

ζ(t)y(t)

Requires

{

Ēζ(t)φT (t) nonsingular IV cor. with φ,

Ēζ(t)v0(t) = 0 IV not cor. with noise

Recursive

Estimation

Methods

E. Witrant

Recursive LS

Recursive algorithm

Matrix inversion

Normalized gain

Initial conditions

Multivariable case

Kalman filter

Time-varying systems

Example

IV Method

Choice of Instruments

Recursive IV method

Recursive PEM

Recursive method

Final recursive

scheme

Family of RPEM

Example

Recursive

Pseudolinear

Regressions

Updating Step

Adaptation gain

Forgetting factors

Conclusions

Homework

Choice of Instruments: i.e. ARX

Supposing the true system:

y(t) + a1y(t − 1) + · · ·+ ana y(t − na) = b1u(t − 1) + · · ·+ bnb
u(t − nb ) + v(t)

Choose the IV similar to the previous model, while ensuring
the correlation constraints:

ζ(t) = K(q)[−x(t − 1) . . . − x(t − na) u(t − 1) . . . u(t − nb )]
T ,

where K is a filter and N(q)x(t) = M(q)u(t) (i.e. N, M from LS

estimated model and K(q) = 1 for open-loop).

⇒ ζ obtained from filtered past inputs: ζ(t) = ζ(t , ut−1)
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Recursive IV method

• Rewrite the IV method as

θ̂IV
N = R̄−1(t)f(t), with R̄(t) =

N∑

k=1

β(t , k )ζ(k )φT(k ), f(t) =
N∑

k=1

β(t , k )ζ(k )y(k )

which implies that






θ̂(t) = θ̂(t − 1) + L(t)
[

y(t) − φT (t)θ̂(t − 1)
]

L(t) =
P(t − 1)ζ(t)

λ(t) + φT (t)P(t − 1)ζ(t)

P(t) =
1

λ(t)

[

P(t − 1) − L(t)φT (t)P(t − 1)
]

• Asymptotic behavior: same as off-line counterpart except

for the initial condition issue.

• Choice of the IV (i.e. model-dependant):

ζ(t , θ) = Ku(q, θ)u(t) with Ku a linear filter and

ζ(t , θ) : {x(t , θ), u(t)} with A(q, θ)x(t , θ) = B(q, θ)u(t).
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Recursive Prediction-Error

Methods

Weighted prediction-error criterion

Vt(θ,Z
t) = γ(t)

1

2

t∑

k=1

β(t , k)ǫ2(k , θ),

with γ, β as defined above (β(t , k) = λ(t)β(t − 1, k),
β(t , t) = 1). Note that

∑t
k=1 γ(t)β(t , k) = 1 and the gradient

w.r.t. θ obeys (with ǫ(k , θ) = y(k) − ŷ(k , θ) and ψ � ∂ŷ/∂θ):

∇θVt(θ,Z
t) = −γ(t)

t∑

k=1

β(t , k)ψ(k , θ)ǫ(k , θ),

= γ(t)

[

λ(t)
1

γ(t − 1)
∇θVt−1(θ,Z

t−1) − ψ(t , θ)ǫ(t , θ)

]

= ∇θVt−1(θ,Z
t−1) + γ(t)

[

−ψ(t , θ)ǫ(t , θ) − ∇θVt−1(θ,Z
t−1)
]

since λ(t)γ(t)/γ(t − 1) = 1 − γ(t).
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Recursive method
General search algorithm (ith iteration of min. and Z t data):

θ̂
(i)
t = θ̂

(i−1)
t − µ

(i)
t

[

R
(i)
t

]−1
∇θVt(θ̂

(i−1)
t ,Z t),

Suppose one more data point collected at each iteration:

θ̂(t) = θ̂(t − 1) − µ
(t)
t

[R(t)]−1
∇θVt(θ̂(t − 1),Z t),

where θ̂(t) = θ̂
(t)
t

and R(t) = R
(t)
t

. Make the induction

assumption that θ̂(t − 1) minimized Vt−1(θ,Z
t−1):

∇θVt−1(θ̂(t − 1),Z t−1) = 0

⇒ ∇θVt(θ̂(t − 1),Z t) = −γ(t)ψ(t , θ̂(t − 1))ǫ(t , θ̂(t − 1))

along with µ(t) = 1, it gives

θ̂(t) = θ̂(t − 1) + γ(t)R−1(t)ψ(t , θ̂(t − 1))ǫ(t , θ̂(t − 1))
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Recursive method (2)

• Problem: ψ(t , θ̂(t − 1)), ǫ(t , θ̂(t − 1)) derived from

ŷ(t , θ̂(t − 1)) & ŷ(t , θ) requires the knowledge of all the

data Z t−1, and consequently cannot be computed

recursively.

• Assumption: at k , replace θ by the currently available

estimate θ̂(k) and denote the approximation of

ψ(t , θ̂(t − 1)) and ŷ(t , θ̂(t − 1)) by ψ(t) and ŷ(t).

Ex.1 Finite LPV:






ξ(t + 1, θ) = A(θ)ξ(t , θ) + B(θ)

[

y(t)
u(t)

]

[

ŷ(t |θ)
ψ(t , θ)

]

= C(θ)ξ(t , θ)

≈






ξ(t + 1) = A(θ̂(t))ξ(t) + B(θ̂(t))

[

y(t)
u(t)

]

[

ŷ(t)
ψ(t)

]

= C(θ̂(t − 1))ξ(t).
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Ex.2: Gauss-Newton

∂2VN(θ,Z
N)

∂θ2
≈

1

N

N∑

1

ψ(t , θ)ψT (t , θ) � HN(θ), &R
(i)
N

= HN(θ̂
(i)
N
),

with the proposed approximation suggests that

R(t) = γ(t)
t∑

k=1

β(t , k)ψ(k)ψT (k).

Final recursive scheme






ǫ(t) = y(t) − ŷ(t)

θ̂(t) = θ̂(t − 1) + γ(t)R−1(t)ψ(t)ǫ(t)

R(t) = R(t − 1) + γ(t)
[

ψ(t)ψT (t) − R(t − 1)
]

Together with R(t) from Gauss-Newton example→ recursive

Gauss-Newton prediction-error algorithm.
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Family of recursive prediction-error methods (RPEM)

• Wide family of methods depending on the underlying

model structure & choice of R(t).

• Example: linear regression ŷ(t |θ) = φT(t)θ gives

ψ(t , θ) = ψ(t) = φ(t), the RLS method. Gradient variant

(R(t) = I) on the same structure:

θ̂(t) = θ̂(t − 1) + γ(t)φ(t)ǫ(t)

where the gain γ(t) is a given sequence or normalized as

γ(t) = γ′(t)/|φ(t)|2 widely used in adaptive signal

processing and called LMS (least mean squares).
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Example: recursive maximum likelihood
Consider the ARMAX model

y(t) + a1y(t − 1) + · · ·+ ana y(t − na) = b1u(t − 1) + · · ·+ bnb
u(t − nb)

+ e(t) + c1e(t − 1) + · · ·+ cnc e(t − nc)

and define θ � [a1 . . . ana b1 . . . bnb
c1 . . . cnc ]

T . Introduce the vector

φ(t , θ) = [−y(t − 1) . . . − y(t − na) u(t − 1) . . . u(t − nb) ǫ(t − 1, θ) . . . ǫ(t − nc , θ)]
T ,

⇒

{

ŷ(t |θ) = φT(t , θ)θ, ǫ(t , θ) = y(t) − ŷ(t |θ)
ψ(t , θ) + c1ψ(t − 1, θ) + · · ·+ cncψ(t − nc , θ) = φ(t , θ)

The previous simplifying assumption implies that

ǭ(t) = y(t) − φT (t)θ̂(t)

φ(t) = [−y(t − 1) . . . − y(t − na) u(t − 1) . . . u(t − nb ) ǭ(t − 1, θ) . . . ǭ(t − nc , θ)]
T

ŷ(t) = φT(t)θ̂(t − 1); ǫ(t) = y(t) − ŷ(t)

ψ(t) + ĉ1(t − 1)ψ(t − 1) + · · ·+ ĉncψ(t − nc) = φ(t)

and the algorithm becomes θ̂(t) = θ̂(t − 1) + γ(t)R−1(t)ψ(t)ǫ(t)

⇒ Recursive Maximum Likelihood (RML) scheme.
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Recursive Pseudolinear

Regressions

Very similar to Recursive Prediction-Error Methods except that

the gradient is replaced by the regressor:






ŷ(t) = φT(t)θ̂(t − 1)
ǫ(t) = y(t) − ŷ(t)

θ̂(t) = θ̂(t − 1) + γ(t)R−1(t)φ(t)ǫ(t)

R(t) = R(t − 1) + γ(t)
[

φ(t)φT (t) − R(t − 1)
]
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Choice of Updating Step

How to determine the update direction and length of the step

(γ(t)R−1(t))?

Update direction

1 Gauss-Newton: R(t) approximates the Hessian

R(t) = R(t − 1) + γ(t)
[

ψ(t)ψT (t) − R(t − 1)
]

2 Gradient: R(t) is a scaled identity R(t) = |ψ(t)|2 · I or

R(t) = R(t − 1) + γ(t)
[

|ψ(t)|2 · I − R(t − 1)
]

→ trade-off between convergence rate (Gauss-Newton, d2

operations) and algorithm complexity (gradient, d operations)
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Update step: adaptation gain

Two ways to cope with time-varying aspects:

1 select appropriate forgetting profile β(t , k) or suitable gain

γ(t), equivalent as

β(t , k) =
t∏

j=k+1

λ(j) =
γ(k)

γ(t)

t∏

j=k+1

(1 − γ(j)),

λ(t) =
γ(t − 1)

γ(t)
(1 − γ(t)) ⇔ γ(t) =

[

1 +
λ(t)

γ(t − 1)

]−1

;

2 introduce covariance matrix R1(t) for parameters change

per sample: ր P(t) and consequently the gain vector

L(t).

→ trade-off between tracking ability and noise sensitivity.
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Choice of forgetting factors λ(t)

• Select the forgetting profile β(t , k) so that the criterion

keeps the relevant measurements for the current

properties.

• For ”quasi-stationary” systems, constant factor λ(t) ≡ λ
slightly < 1:

β(t , k) = λt−k = e(t−k ) ln λ ≈ e−(t−k )(1−λ)

⇒ measurements older than memory time constant

t − k = 1
1−λ

included with a weight < e−1 ≈ 36% (good if

the system remains approximately constant over t − k

samples). Typically, λ ∈ [0.98, 0.995].

• If the system undergoes abrupt and sudden changes,

choose adaptive λ(t): ց temporary if abrupt change (”cut

off” past measurements).

→ trade-off between tracking alertness and noise sensitivity.
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Conclusions

• Instruments for most adaptation schemes

• Derived from off-line methods by setting a new iteration

when a new observation is performed

• Same results off/on line for specific cases (RLS, RIV) but

data not maximally utilized

• Asymptotic properties of RPEM for constant systems are

the same as off-line: the previous analysis hold

• 2 new important quantities: update direction and gains

• Can be applied to both “deterministic” and “stochastic”

systems
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Homework 6

1 Apply RPEM to a first-order ARMA model

y(t) + ay(t − 1) = e(t) + ce(t − 1).

Derive an explicit expression for the difference

ŷ(t) − ŷ(t |θ̂(t − 1)).

Discuss when this difference will be small.

2 Consider γ(t) =
[∑t

k=1 β(t , k)
]−1

and β(t , k) defined by

β(t , k) = λ(t)β(t − 1, k), 0 ≤ k ≤ t − 1

β(t , t) = 1

}

Show that β(t , k) =
γ(k)

γ(t)

t∏

j=k+1

[1 − γ(j)]
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