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Analytical Framework

∂ζ

∂t
+ ∇ · A(ζ, x, t) + ∇D(∇ · ζ, ζ, x, t) = So(u, x, t) − Si(ζ, x, t)

y = g(ζ, x, t)
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Applications
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1 Advective transport
Space-invariant parameters
Time-delay model
Information transport
Travelling waves
Complex models
Thermonuclear fusion

2 Diffusive transport
Quasi-steady modeling
Dynamics and peripheral components

3 Advective-diffusive transport
Transport identification
Source reconstruction

4 Conclusions
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Advective transport

∂ζ

∂t
+ ∇ · A(ζ, x, t) + ∇D(∇ · ζ, ζ, x, t)

= So(u, x, t) − Si(ζ, x, t)

• Focus on the “traveling effect”, i.e. Telegrapher’s equation

• No shock wave, or just the energy loss effect
• i.e. continuity if velocity independ. on density gradient:

• mass can be neither created or destroyed in finite space
∂

∂t

∮

V

ρdV+

∮

S
ρV · dS = 0

⇒ at a point in the flow (continuum hyp.):
∂ρ

∂t
+ ∇ · (ρV) = 0

→ Space-invariant parameters (volume-averaged
transport/communication in NCS)

→ Travelling waves (Euler/Navier-Stokes)

→ Complex combinations (MHD)
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Mining potential wireless control architecture [IJRNC’10]
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Space-invariant parameters

Suppose that we can express the transport equation as:

∂ζ

∂t
+A1(ζ, x, t)∇ζ +D1(∇ · ζ, ζ, x, t)∇

2ζ + Si,1(ζ, x, t)ζ =

So,1(u, x, t)u

If the flow is “mostly unidirectional” in x and “sufficiently
quasi-steady”, then we can use volume averaging to get the
“LPV” representation:

∂ζ

∂t
+ Ā1(t)

∂ζ

∂x
+ D̄1(t)

∂2ζ

∂x2
+ S̄i,1(t)ζ = S̄o,1(t)u

where X̄ �
∮

V

XdV.

⇒ Given (distributed) measurements, estimate transport
coefficients and set feedback using ζ or y = g(ζ, x , t)
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Mine pressure model [Ieee CASE’08]

Starting from Euler equations

∂

∂t
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
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0
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



















,

Hypotheses

1 only static pressure considered in
energy conservation;

2 impulsive term≪ compared to
pressure in momentum conservation;

3 M simplified using Saint-Venant
equations→ algebraic relationship.

Give the pressure model (ρ and M averag-
ing)

∂p
∂t

= −
∂

∂x

[

M
ρ
·

(

1 +
R
cv

)

p

]

+
R
cv

q̇
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Online LPV parameter estimation [W, Marchand’08]
i.e. ϑ(t) = {Ā1(t), D̄1(t), S̄i,1(t), S̄o,1(t)}

Theorem (parameter estimation for affine PDE):
Consider the class of systems



















ζt = F (ζ, ζx , ζxx , u, ϑ)ϑ
a1ζx(0, t) + a2ζ(0, t) = a3

a4ζx(L , t) + a5ζ(L , t) = a6

with distributed measurements of ζ(x , t) and for which we want
to estimate ϑ. Then

||ζ(x, t) − ζ̂(x, t)||22 = e−2(γ+λ)t ||ζ(x, 0) − ζ̂(x, 0)||22

if






























ζ̂t = F (ζ̂, ζ̂x , ζ̂xx , u, ϑ̂)ϑ̂+ γ(ζ − ζ̂)

a1ζ̂x(0, t) + a2ζ̂(0, t) = a3

a4ζ̂x(L , t) + a5ζ̂(L , t) = a6

ϑ̂ = F (ζ̂, ζ̂x , ζ̂xx , u, ϑ̂)†[ζt + λ(ζ − ζ̂)]
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Ex.: comparison with gradient-descent algorithm

pt = d(t)pxx + c(t)px + r(t)p + s(t)pext(x , t)
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Gradient−based estimation
Reference
Observer−based estimation

⇒ very accurate results, need to add a filter.
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Time-delay model [W,
Niculescu’10]

Consider the advective-resistive flow:

ζt(x , t) + Ā1(t)ζx(x , t) = −S̄i,1(t)ζ(x , t)

with ζ(0, t) = u(t), ζ(x , 0) = ψ(x). Applying the method of
characteristics with the new independent variable θ as

ζ(θ) � ζ(x(θ), t(θ))

It follows that (solution including time axis)

ζ(L , t) � u(t − θf)exp

(

−

∫ θf

0
S̄i,1(η)dη

)

, with L =

∫ t

t−θf

Ā1(η)dη

The average state ζ̄(t) �
∫ L
0
ζ(η, t)dη is provided by the Delay

Differential Equation

d
dt
ζ̄ = Ā1(t)

[

u(t) − u(t − θf)exp

(

−

∫ θf

0
S̄i,1(η)dη

)]

− S̄i,1(t)ζ̄
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Tracking feedback controller design
Design a feedback such that the average distributed pressure:

ζ̄(t) =
1
L

∫ L

0
ζ(x , t)dx

tracks reference ζ̄r(t). Achieved if (fixed point theorem):

˙̄ζ(t) − ˙̄ζr(t) + λ(ζ̄(t) − ζ̄r(t)) = 0

Using the previous DDE and solving for u(t), it follows that

d
dt
ζ̄ = LĀ1(t)

[

u(t) − u(t − θf )exp

(

−

∫ θf

0
S̄i,1(η)dη

)]

− S̄i,1(t)ζ̄

u(t) = −
L

Ā1(t)

[

−S̄i,1(t)ζ̄(t) + λ(ζ̄(t) − ζ̄r)
]

+ ζ(L , t)

ensures
|ζ̄(t) − ζ̄r | = |ζ̄(0) − ζ̄r |e

−λt
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Mine reference model
Simulator properties:

• ventilation shafts ≈ 28 control volumes
(CV), 3 extraction levels

• regulation of the turbine and fans

• flows, pressures and temperatures
measured in each CV

• Computation time 34× faster than
real-time

Case study:

• 1st level fan not used (natural airflow), 2nd

operated at 1000 s (150 rpm) and 3rd runs
continuously (200 rpm)

• CO pollution injected in 3rd level

• measurement of flow speed, pressure,
temperature and pollution at the surface
and extraction levels
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feedback control results for mine ventilation

Reference and effective turbine output pressure:
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Feedback tracking error:
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⇒ Sensible to initial conditions and some numerical integration
errors but exponential convergence verified!
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Information transport

Physical models

• Telegrapher’s equation (homogeneous if α = 0):
[

Vt

It

]

+

[

0 1/C
1/L 0

] [

Vz

Iz

]

= α(t)
VI
2

[

0 −1/C
1/L 0

] [

V
I

]

• Local inductance and capacitance variations captured with
α(t) in the elementary cell [Ph.D.’05]:

e1

f1

e2

f2

I C

1 0Pin Pout

MTF0 . .
α

induce wave reflections and time-varying delays.
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Communication models
I.e. Fluid-flow model for the network [Misra et al. 2000, Hollot
and Chait 2001]: TCP with proportional active queue
management (AQM) set the window size W and queue length
q variations as

dWi(t)

dt
=

1
Ri(t)

−
Wi(t)

2

Wi(t − Ri(t))

Ri(t − Ri(t))
pi(t),

dq(t)

dt
= −Cr +

N
∑

i=1

Wi(t)

Ri(t)
, q(t0) = q0,

where Ri(t) �
q(t)
Cr

+ Tpi is the round trip time, Cr the link

capacity, pi(t) = Kpq(t − Ri(t)) the packet discard function and
Tpi the constant propagation delay. The average time-delay is
τi =

1
2Ri(t)
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Wireless Sensor Networks
[Park, di Marco, Soldati, Fischione, Johansson’09...]

PAN coordinator

         Sensor

• IEEE 802.15.4, Markov chain model, network & control
codesign

• Communication constraints = time-delay + packet loss
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Delays characterization [Springer’10]

10
−3

10
−2

10
−1

10
0

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency  (×π rad/sample)

P
ow

er
/fr

eq
ue

nc
y 

(d
B

/r
ad

/s
am

pl
e)

Periodogram Power Spectral Density Estimate

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time (s)

pa
ck

et
 d

el
ay

 (
s)

 

 

node 1
node 2
node 3
node 4

• Three-frequencies jitter & KUMSUM Kalman estimation

• Synchronous/async. cases

• Packet losses as time-delays
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Feedback design
I.e. finite-spectrum assignment with online adaptation of the
horizon of a MPC feedback scheme with robust gain design
[TAC’07]

ż(t) = f(z(t), ud(t)), z(0) = z0

τ(t) = h(z(t), ud(t))

ẋ(t) = Ax(t) + Bu(t − τ(t))

y(t) = Cx(t)

Linear System

Network Model

δ(t) − τ(t + δ(t)) = 0

Predictor Horizon

u(t) = −KeAδ(t)

[

x(t) + eAt

t+δ(t)
∫

t

e−AθBu(θ − τ(θ))dθ

]

Time-Varying Predictive Control

0 ≤ τ(t) ≤ τmax

τ̇ (t) < 1

Time-Delay

u(t)

u(t − τ(t))

x(t)
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Experimental results on an inverted pendulum
Control over a network with 2 users (LQR gain design):
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Room temperature control over multi-hop WSN in
intelligent buildings [TdS’09]

dx
dt

= (A1 + A2(u))x + (B1 + B2(u))u + Bww+PP(x − Ux) + s +H(Y , x)
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Simulation results [IMA’10]
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(c) Synchronous mode (Mixed-
sensitivity H∞)
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(d) Asynchronous mode (Mixed-
sensitivity H∞)
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(e) BRL with weights, post check for
TD stability (Skelton et al., 1997)
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(f) Delay constraint during the design
(Seuret, 2009)
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Travelling waves modeling
The conservative form of Euler equations:
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writes in 1-D for a straight line topology and neglecting the
kinetic effects (V2) as:

∂ζ

∂t
+A1(ζ, x, t)∇ζ = u

where ζ = [ ρ M E ]T , u = [ 0 0 q ]T and A1 is the
Jacobian flux matrix [Hirsh’90] (ideal gas hyp.):

A1 =




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Decoupled model

• The eigenvalues of the Jacobian define the traveling
waves, going into two directions:
λ1(ζ) = V − c, λ2(ζ) = V and λ3(ζ) = V + c

• Using a change of coordinates ζ̄ given by the Riemann
invariants, we obtain a quasi-linear hyperbolic formulation
with (isentropic case):

A1 =





















λ1(ζ̄) 0 0
0 λ2(ζ̄) 0
0 0 λ3(ζ̄)


















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Cryogenics at CERN [Cryogenics’10]
LHC sector 5-6 with the main cooling loops for the
superconducting magnets:
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Temperature transport
Impact of convection heat, hydrostatic pressure and friction
pressure drops:
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Complex models

Resistive-wall mode physics in RFP:
from Magnetohydrodynamic instability
to perturbed ODE

• Linear stability investigated by
periodic spectral decomposition

b(r , t) =
∑

mn

bmn(r)e j(tω+mθ+nφ)

Fourier eigenmodes bmn(r) with
growth-rate γmn = jωmn,

• Ideal MHD modes:

τmn ḃ r
mn − τmnγmnb r

mn = b r ,ext
mn

b r
mn: radial component of

perturbed field, b r ,ext
mn : external

active coil, τmn: penetration time.
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Growth-rates τwγmn. *:
Integer-n non-resonant
positions (RWMs) for m = 1.
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Stability analysis and delay effects [CDC’08, IOP
PPCF’10]
Closed-loop dynamics with multiple delays and time-scales:

• Infinite spectrum of the Delay Differential Equation

det∆(s) = det















sI −A0 −

n
∑

i=1

Aie
−sτi















= 0

• Mode-control and perfect decoupling: SISO dynamics
(fixed gains)

Gmn(s) =
1

τmns − τmnγmn

1
τcs + 1

1
τas + 1

e−sτh

→ fictitious but useful for disturbance rejection and
resonant-field amplification analysis
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Controlled thermonuclear fusion

Tokamak:

• Sustainable nuclear
energy

• Magnetic confinement and
RF actuation plasma self
heating

Plasma Physics Issues:

• MHD Stability

• Control of Plasma Purity

• Heat Confinement

• Steady State Operation

• Plasma self heating using
α-particles



Modeling Inho-
mogeneous
Transport

E.Witrant

Advective
transport
Space-invariant
parameters

Time-delay model

Information transport

Travelling waves

Complex models

Thermonuclear fusion

Preliminary
conclusions

Diffusive
transport
Quasi-steady
modeling

Dynamics and
peripheral
components

Preliminary
conclusions

Advective-
diffusive
transport
Transport identification

Source reconstruction

Conclusions

Experimental results

− Direct Eigenvalue Optimization

− Two different parameterizations,
implicitly assigning the
closed-loop performance and
control-input norm

− Robust: convergence within
10 − 30 iterations

k
i

k d

k
p
=−10.4
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⇒ 44 % reduction of average field energy at the expense of
higher input power (+28 %).
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Preliminary conclusions

• Time-delay is often the main issue

• Its proper inclusion in the feedback architecture
compensates advection and losses can be dealt with an
integral action

• Information transport strongly affected by information
losses and needs robustness

• Capturing the traveling wave requires finer modeling

• Strong relationship with CFD

• Adapt model complexity to measurements sparsity
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Diffusive transport

∂ζ

∂t
+ ∇ · A(ζ, x, t) + ∇D(∇ · ζ, ζ, x, t)

= So(u, x, t) − Si(ζ, x, t)

y = g(ζ, x, t)

• Inherent stability

• Performance and robustness issues

• Addapt the model complexity to capture I/O map

• Real-time modeling objective
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Quasi-steady state (QSS)
behavior

Consider again the simplified transport model:

∂ζ

∂t
+ D̄1(t

′)
∂2ζ

∂x2
= S̄o,1(x , t

′) − S̄i,1(t
′)ζ

∂ζ

∂x
(0, t) = 0, ζ(1, t) = ζL(t

′)

where ζ reacts “sufficiently quickly” to the slow variations in t ′.
t ′ then considered as constant and ζ approximated by the
steady-state behavior ζ̃qss(x):

{

D̄1 ζ̃qss,xx + S̄i,1 ζ̃qss − S̄o,1 = 0,→ no time-derivative!
ζ̃qss,x(0) = 0, ζ̃qss(1) = ζ̃L .
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Solving QSS [CDC’09]

• QSS behavior given by:

ζ̃qss(x, t
′) =

ζ̃L − C(S̄o,1)

cosh λ
cosh λx

+
1

√

D̄1S̄i,1

∫ x

0
sinh[λ(η − x)]S̄o,1(η, t ′)dη,

C(S̄o,1) �
1

√

D̄1S̄i,1

∫ 1

0
sinh[λ(η − 1)]S̄o,1(η, t ′)dη

with λ = −
√

S̄i,1/D̄1.

• Approximation error z(x , t) � ζ(x , t) − ζ̃qss(x , t) obeys

||z(x , t)||22 ≤ e−
−D̄1+4S̄i,1

2 t ||z(x , 0)||22.

⇒ First order response that can be used to verify the order
of magnitude of −D̄1 + 4S̄i,1.
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Identifying density sources in the Scrape-off layer

• Scrape-off layer (SOL):
between the last closed
magnetic surface
(separatrix) and the wall;

• LH (RF current drive)
efficiency strongly
depends on the electron
density the SOL.

Problem formulation (linearizing and averaging):

∂ñ
∂t

= D⊥(t)
∂2ñ
∂r2
−

cs(t)

2Lc(t)
ñ

+S(r , t)

∂ñ(0, t)

∂r
= 0, ñ(L , t) = ñL(t)
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Optimal source tracking for the LTI discretized model

• Satisfying accuracy
(ǫI < 5 %ne)

• Reveals the influence
of LH power as:
⋆ amplification + shift

of limiter source;
⋆ smaller source in

front of LH.

⇒ Validates of LH as a source term in the model.

• BUT unconstrained (negative S terms) and not explicitly
related to physical model.
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Shape identification with QSS

• Shape hypothesis:

S(x , t ′) ≈
∑

i=l, LH

ϑi(t
′)eβ(x , µi(t ′), σi(t ′)),

where ϑi = amplitude, β(·) = dilatation function, σi =
dilatation coefficient and µi = translation.

• Identified parameters θ(t ′) � {ϑl , µl , σl , ϑLH , µLH , σLH}

obtained by solving:

min
θ

{

J(θ, t ′) =
1
2

∫ 1

0
(ñmeas(x , t

′) − ñqss(x , θ, t
′))2dx

}

for each sampling instant t ′.

⇒ Nonlinear optimization problem with analytical gradient
computation
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Experimental results
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Limiter
LH antenna

Satisfying estimation, with some
limitations:

• parameter decoupling

• underestimated LH location

• noisy width
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Dynamics and peripheral
components

∂ζ

∂t
+ ∇ · A(ζ, x, t) + ∇D(∇ · ζ, ζ, x, t)

= So(u, x, t) − Si(ζ, x, t)

y = g(ζ, x, t)

For sufficiently deterministic transport, improve the accuracy of
I/O map by getting the proper approximation of peripheral
components.
Key issues:

• time-variations of the transport coefficient

• nonlinear components

• “simple” model of the distributed inputs
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Poloidal flux dynamics in a tokamak

• P. coils,
• LH,
• ECCD,
• ICRH.

• ji , q, Ii , Vloop ,
• li , βθ , ∆.

Hypotheses (Tore Supra):

• cylindrical coordinates
(neglect GSS),

• neglect diamagnetic
effect,

System dynamics [Blum’89, Brégeon & al’98]:

∂ψx

∂t
(x, t) =

∂

∂x

[

η∥(x, t)

[

1
µ0a2x

∂ψx

∂x
+ R0jbs(x, t) + R0jni(x, t)

]]

jeff(x, t) = −
1

µ0R0a2x
∂ψx

∂x
or q(x, t) �

dφ
dψ

= −
Bφ0a

2x

ψx

with ψx(0, t) = 0, ψx(1, t) = f(Ip) or ψ̇(1, t) = f(Vloop) and IC.
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A system-identification approach to peripheral modeling
[IOP PPCF’07]

• Temperature: grey box modeling & neural network

• Density: averaged scaled profiles

• RF intpus (wave/plasma coupling): identified gaussian
distributions

• Time integration: dedicated integration & algebraic
operators of integration/differentiation

• Nonlinearity: specific integration as delayed component

⇒ Efficient experimentally tuned model: 3 coupled PDE +
wave/particles interaction→ 1 PDE + identified shapes;

⇒ simulation ≈ 20 times faster than real-time!
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Experimental results
Lower Hybrid effect: shot TS 35109 - variations in N∥, constant
Ip (0.6 MA) and power input (1.8 MW).
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(h) Estimated Te profile

Figure: ψsim (—) vs. measurements (−−) and CRONOS (− · −): loop
voltage (top), βθ + li/2 (middle) and edge safety factor (bottom).
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(b) Estimated Te profile

Figure: ψsim (—) vs. CRONOS (− · −) at t = 7 s: safety factor (top)
and current densities (effective jφ, LH jlh , ohmic jω and bootstrap jbs)
profiles (bottom).



Modeling Inho-
mogeneous
Transport

E.Witrant

Advective
transport
Space-invariant
parameters

Time-delay model

Information transport

Travelling waves

Complex models

Thermonuclear fusion

Preliminary
conclusions

Diffusive
transport
Quasi-steady
modeling

Dynamics and
peripheral
components

Preliminary
conclusions

Advective-
diffusive
transport
Transport identification

Source reconstruction

Conclusions

Feedback control
Comparison of linear lumped approaches (np = 2, N = 8 for
control, 22 for simulation) [CDC’10,IFAC’11]
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Lyapunov-based PDE control [TAC’12, IOP NF’12]→
Federico’s Ph.D. defense at 15:00!
Bootstrap current maximization [CDC’12]
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Preliminary conclusions

• Importance of capturing the equilibrium

• Tendency to “flatten” everything between the boundaries

• Performance challenge: overcome sluggishness without
triggering peripheral couplings

• Robustness challenge: sensitivity to the distributed
parameters and changes in the orders of magnitude
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Advective-diffusive transport

∂ζ

∂t
+ ∇ · A(ζ, x, t) + ∇D(∇ · ζ, ζ, x, t)

= So(u, x, t) − Si(ζ, x, t)

y = g(ζ, x, t)

• “Half-opposite” effects of advection and diffusion

• A typically associated with external forces or
unidirectional transport

• D typically prevents steep gradients

• The transport coefficients set the respective weights
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Transport identification from
sparse measurements

∂ζ

∂t
+ ∇ · A(ζ, x) + ∇D(∇ · ζ, ζ, x)

= So(u, x, t) − Si(ζ, x)

y = g(ζ, x, tf)

• Need to characterize the I/O map with limited information

• Use physics to describe the qualitative behavior and as
much flow quantification as possible

• Use measurements to complete missing signals
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Firn inverse modeling and climate change
Trace gas measurements in interstitial air from polar firn:

- reconstruct atmospheric
concentration over the last
50 to 100 years
- measures recent
anthropogenic impact on
atmospheric composition
- i.e. CH4 transport at
NEEM (Greenland)
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Poromechanics: three interconnected networks
[Coussy’03]

Ice lattice, gas connected to the
surface (open pores) and gas
trapped in bubbles (closed pores):

∂[ρice(1 − ǫ)]

∂t
+ ∇[ρice(1 − ǫ)~v ] = 0

∂[ρo
gasf ]

∂t
+ ∇[ρo

gas f(~v + ~wgas)] = −~ro→c

∂[ρc
gas(ǫ − f)]

∂t
+ ∇[ρc

gas(ǫ − f)~v] = ~ro→c

Scheme adapted from [Sowers
et al.’92, Lourantou’08].
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Trace gas conservation in open pores [Rommelaere & al.’97,
ACPD’11]

• Flux driven by advection with air and firn sinking

• Flux driven by mol. diff. due to concentration gradients

• Flux driven by external forces: gravity included with
Darcy-like flux

• Sink = particles trapped in bubbles & radioactive decay

• Boundary input: surface concentration

• Results in transport PDE:

∂

∂t
[ρo
αf ] +

∂

∂z
[ρo
αf(v + wair)] −

∂

∂z

[

Dα

(

∂ρo
α

∂z
− ρo

α

∂ρair/∂z
ρair

+Ass

)]

= −ρo
α(τ+ λ)

ρo
α(0, t) = ρatm

α (t),
RT
Mf

∂ρo
α

∂z
(zf ) − ρ

o
α(zf ) = 0

with Ass such that ∂[ρo
α,ss f ]/∂t = 0 at steady state, i.e.

Ass = −
ρo
α,ssf

Dα

(wα − wair) − ρ
o
α,ss

(

∂ρo
α,ss/∂z

ρo
α,ss

−
∂ρair/∂z
ρair

)

⇒ Need to identify the firn diffusivity D !
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Validation on isotopic indicators: δ15N (δ40Ar , δ86Kr)

Fick only (blue ‘—’), QSS (exact in blue ‘- - -’ and gas speed set by air speed
in red), QSS with forced LIZ (pink ‘—’),

QSS with zconv = 4 m: hydrostatic ρo
α,ss (green), + max D set by the one in

free air + gas-indep term (pink ‘- - -’), + zconv = zeddy (turquoise),
Ref case (black): simplified QSS with zconv = 4 m and a max mol. diffu.

corrected with the porosity
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Advective and diffusive flows in firn
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Relative importance of diffusion and advection for CO2 transport in 1990:
velocity due to advection and firn sinking v + wair , molecular diffusion

(wα − wair ), molecular diffusion at steady-state −(w̄α − w̄air), Péclet number
and CO2 diffusivity.
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Optimal diffusivity identification [Ieee Med’10]
Final-cost optimization problem with dynamics and inequality
constraints

min
D
J(D) = Jmeas +Jreg , under the constraints

{

C(ρ,D) = 0
I(D) < 0

Considering N gas and including the constraints in the cost
(Lagrange param.):

min
D
J(D) �

N
∑

i=1

[Jmeas (ρi , ρmeas) +Jtrans(C(ρi ,D))] +Jineq(D) +Jreg(D)

with:


























































Jmeas =
1
2

∫ zf

0
ri(ρmeas − ρi |t=tf )

2δz dz Measurement cost

Jtrans =

∫ tf

0

∫ zf

0
λiC(ρi ,D) dzdt Transport constraint

Jreg =
1
2

∫ zf

0
s(z)D2 dz Regularization function

⇒ Gradient-descent from analytical adjoint computation using
the linearized PDE dynamics.
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Preliminary results
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Source reconstruction from
(sparse) measurements

∂ζ

∂t
+ ∇ · A(ζ, x(, t)) + ∇D(∇ · ζ, ζ, x(, t))

= So(u, x, t) − Si(ζ, x)

y = g(ζ, x, tf (, t))

• Use the identified transport to determine the “optimal”
input

• Under-constrained problem: need for regularization

• How to estimate the information content?
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A “deconvolution” approach for atmospheric
scenario reconstruction [Rommelaere et al., JGR, 1997]

• Green function = impulse response of the firn⇒ age
probabilities

ρfirn(z, tf) = G(z, t) ∗ ρatm(t) convolution

• Deconvolution:

ǫ(z) = G(z, t)ρatm(t) − ρfirn(z, tf)

ρ∗atm(t) = arg min
ρatm

[

ǫT (diag{1/σ2
mes(z)})ǫ + κ2ρT

atmRρatm

]

• Under-constrained pb⇒ add extra information with
rugosity characteristic matrix R > 0 (i.e. d2/dt2) + κ.

• 2 parameters largely control model behavior: κ (rugosity
factor) and σ2

mes(z)

⇒ Extension to a multi-site analysis:
G(z, t)→ [GT

1 GT
2 . . .GT

Nsites
]T
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Reconstruct CO isotopic ratios history and CO budget
[Wang et al., ACP’12]

“Fossil fuel CO emissions decreased as a result of the
implementation of catalytic converters and the relative growth of
diesel engines, in spite of the global vehicle fleet size having grown
several fold over the same time period”
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Finally solving the tokamak ne source id
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Conclusions

• A global methodology is hard to define

• General trends from advective versus diffusive behavior

• Model toward solving the control/identification problem

• i.e. time-delay approaches (Lyapunov-Krasovskii) versus
adjoint-based optimization or Lyapunov functionals

• Modeling is an art . . . which necessitates a broad scientific
knowledge!
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