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Analytical Framework

Physics

« Aerodynamics Mathematics
* Conservation laws * Distributed systems (EDP-FDE)
* Thermodynamics * Algebra/LMI

=> transport with time/space-varying
diffusion/convection/sink

* Variational calculus
* Inverse problems
=> Dynamics optimization

Engineering
* Control/Identification
* Distributed sensing/WSN

* Numerical analysis — CFD
=> Feedback / RT algorithms

FV ALK )+ VDV -4, 0%, 1) = So(u, X, 1) = Si(£ X, 1)
y=9({x,t)
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Conservation laws

Model from physics: subatomic, atomics or molecular,
microscopic, macroscopic, astronomical scale

l.e. fluid dynamics = study of the interactive motion and
behavior of a large number of elements

System of interacting elements as a continuum

Consider an elementary volume that contains a sufficiently
large number of molecules with well defined mean velocity
and mean kinetic energy

At each point we can thus infer, e.g. velocity, temperature,
pressure, entropy etc.
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Generalform of a

e Conservation: the variation of a conserved (intensive) flow
S quantity U in a given volume results from internal sources
and a quantity, the flux, crossing the boundary

¢ Fluxes and sources depend on space-time coordinates, +
on the fluid motion
¢ Not all flow guantities obey conservation laws. Fluid flows
fully described by the conservation of
@ mass
@® momentum (3-D vector)

® energy
= 5 equations

¢ Other quantities can be used but will not take the form of a

Multivariable

conservation law

Decoupling

Complex models
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Scalar conservation law [Hirsch 2007]

Consider:
- a scalar quantity per unit :
volume U, ’ /
- an arbitrary volume Q fixed in 13-:'. Os
space (control volume) ‘
bounded by
- a closed surface S (control i
surface) crossed by the fluid (/P 0
flow L L, e N

e Total amount of U inside €2: fQ Ud$2 with variation per unit
; 9
time £ [, UdQ

e Flux = amount of U crossing S per unit time:
F,dS = F - dS with dS outward normal, and net total
contribution — fé F - dS (F > 0 when entering the domain)

e Contribution of volume and surface sources:
J, QvdQ + . Qs - dS
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Scalar conservation law (2)
Provides the integral conservation form for quantity U:

e valid ¥ fixed S and €2, at any point in the flow domain

e internal variation of U depends only of fluxes through S,
not inside

e no derivative/gradient of F: may be discontinuous and
admit shock waves

= relate to conservative numerical scheme at the discrete
level (e.g. conserve mass)
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Differential form of a conservation law
Obtained using Gauss’ theorem §_F - dS = [,V - F dQ as:

ou o ou >
8t+V F Qv+V Qs@a—'i‘v (F QS):QV

e the effective flux (ﬁ - (35) appears exclusively in the
gradient operator = way to recognize conservation laws

e more restrictive than the integral form as the flux has to be
differentiable (excludes shocks)

o fluxes and source definition provided by the quantity U
considered
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Convection-diffusion form of a convection law
Flux = convective transport + molecular agitation (even at rest)
e Convective flux:
e amount of U carried away or transported by the flow
(velocity V): Fc = vU
o for fluid density U = p, local flux through dS is the local
mass flow rate: F¢ - dS = pvV - dS = dm (e.g. kg/s)
o forU=pu (u the quantlty per un|t mass, e.g.
concentration), Fc-dS = puv - dS = udm
¢ Diffusive flux:
e macroscopic effect of molecular thermal agitation
o from high to low concentration, in all directions,
proportional to the concentration difference
e Fick's law: Fp = —«xpVu, where « is the diffusion
coefficient (m?/s)
¢ Provides the transport equation:
(9 u - - - =
==+ V- (pvu) = V- (ko¥u) + Qv + V- s
= Backbone of all mathematical modeling of fluid flow
phenomena
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Euler and Navier-Stokes equations

Turbine
& heater

Xtan AT 3

Velocity 3

3 \&}\L /;/,

JTemperature

e From the conservation of mass,
momentum and energy:

p PV 0
— | oV [+V| pVTe@V+pl-7 [=] 0 |,
ot pE PVH—1-V—-kVT q

with shear stress (Navier-Stokes
only)

Txx A Ux
A Vy

and viscosity [Stokes & Sutherland]

2 M
A=—--p and — =
3" (

Msl

¢ Discrete boundary conditions
(potential numerical instabilities).

TV¥2 14+ 110
Ty) T+110°
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Motivating example: Firn inverse modeling and polutant
emissions tracking

Trace gas measurements in interstitial air b
from polar firn

¢ allow to reconstruct their atmospheric
concentration time trends over the last / §
50 to 100 years

e provides a unique way to reconstruct
the recent anthropogenic impact on
atmospheric composition

¢ extends to hundreds of thousands of
years in ice (e.g. Vostok =~ 800 000 y)
Converting depth-concentration profiles in

firn into atmospheric concentration histories
requires models of trace gas transport in firn
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CHy, transport at NEEM (Greenland) in firn
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l.e. CH, from NEEM and EUROCORE (Greenland) in ice

Natural and anthropogenic variations in methane sources
during the past two millennia [Sapart et al., Nature 2012]

T T T T T T T T T I T T T T_T 1T
2
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Years (AD)
Reflect changes in both pyrogenic
and biogenic sources.

Correlated with both natural climate

variability and changes in human

population, land-use and important

events in history: decline of the

Roman Empire & Han dynasty, and

Medieval period.
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Solving the air continuity for bubbles in polar firns and ice
cores [Witrant, Martinerie et al., ACP 2012, IFAC SSSC 2013]

From poromechanics, firn =
system composed of the ice
lattice, gas connected to the
surface (open pores) and gas

trapped in bubbles (closed pores).
Air transport is driven by:

[pice(1 = €)] >
— s + Vipice(1 —€)¥V] =0

9pgasf] o o o e
# + V]ogasf(V 4 Wgas)] = —1°
a[p;as(e_ f)]

ot + VLO;as(e - f)\7] =r°

with appropriate boundary and
initial conditions.
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Scheme adapted from [Sowers
et al’92, Lourantou’08].
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Firn example: from distributed to lumbed dynamics

* Defining g = pgas(e — f) and considering the 1-D case, we

have to solve

oq B
i —Z[qv] =r

e Approximate d[qv]|/dz, i.e. on uniform mesh:
* backward difference: (u,); = %282 + £2(uy,);

U1~ U/ 1 AZ

o central difference: (u); = 555 — S5 (Uzzz)i
e other second order:
U +H3U=5Ui 14U, AZ2 . AZ .
(uz)i* = AAZ,.I ==+ 12 (UZZZ)I_ 8 (Uzzzz)l

. 2u; 3u;—6uj_ = 3
o third order: (u,); = 245 SUathe _ B2 (u,,,,);

e Provides the computable lumped model:

0—C

dq

=A ro—°¢
At

e The choice of the discretization scheme directly affects the
definition of A and its eigenvalues distribution: need to
check stability and precision!
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e.g. eig(A) for CH, at NEEM with dt = 1 month

Real part of eigenvalues

Imaginary part of eigenvalues

3
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e.g. eig(A) for CH, at NEEM with dt ~ 1 week

Real part of eigenvalues

Imaginary part of eigenvalues
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e.g. eig(A) for CH, at NEEM with dt ~ 1 week, zoom
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Imaginary part of eigenvalues
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e.g. Impulse response (Green'’s function) for CH, at
NEEM with dt ~ 1 week
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Conclusions on the firn example

¢ Solution obtained from classical CFD (computational fluid
dynamics) analysis

e Purely advective below the bubbles closure — physically,
we want to reflect pure information transport, i.e. delay

e Dynamics represented as an /O map with the Green
function

e The high precision + large sampling time objective is
difficult to meet with a direct numerical approach

¢ Need to extend the result to variable advection speed

= An analytical approach using time-delays (kernel) for the
I/O map could solve the problem
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CERN example: combined advection and diffusion in

travelling wave modeling

Modeling of the very low pressure helium flow in the LHC
Cryogenic Distribution Line (QRL) after a quench [Bradu,

Gayeta, Niculescu and Witrant, Cryogenics 2010]
LHC sector 5-6 with the main cooling loops for the
superconducting magnets:

1.8 K refrigeration unit

45K
@ @ " Refrigerator
Warm [ cold
Sector 56 =3351 m
RM M
—~ QRL - Header B Gaseous helium, Very Low Prossure : 16 mbar / 4 K
sor0
b 18K 35K 3.5K 35K 35K 3.5K 3.5K 35K 3.5K 3.5K P
g Lo 8gls 07gs  [24g/s  [08gls |0.8gis 08ys [08gls  [1.3g5s |38gs 6
QRL - Header C Sugercritcal helium :3 bar | 46 K
; iz = [
auaz/ Jumper/DFB/ u
s a8 QS/FoBa/ ARC : 23 cells Q504 |
LSS5R=269m  DS5R=184m ARG=2450m DS6L=170m  LSS6L=269m

DS = Dispersion Suppressor
LSS= Long Straight Section
RM = Return module

Clelalel=]al] .4

D : Dipole magnet
Q' Quadripole magnet

tribution Feed Box

QUI = Cryogenic interconnection box Astandard cell = 106.9m
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Method
Assumptions:

e model using Euler equation

gl » PV 0
— | oV |+ V| pV"®V+pl |=|0],
ot| e OVH — KV T g

¢ flux according to the x direction only (the main flow
direction) : V= Vyand M =p - Vy

e straight line: neglect QRL curvature (rad. of curv. 4.3 km)
e neglect kinetic component:
P IVE<<P=p-VIQV+P-I~P-I
Euler equation expressed as a quasilinear 1D hyperbolic PDE:

IX(x,t) oX(x,t)
T F(X) - = Q(x,t)

where X =[ p M E |7 is the state vector, F is the Jacobian
flux matrixand Q =[ 0 0 gq ] is the source vector.
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CERN example

Method (2): space discretization
From the Jacobian (empirical formulation for the helium internal
energy)

0 1 0

-3)V? N o

F=| 3 ~tof (8- ¥
JVE-I= B33+ w) yV

we obtain the state-space matrices from:

Ai(Xi)
AX

Ci(Xi)

Xi(t) + Xi(t) + lA—Xifl(t) + Txi—&-l(t) = Qi(t)

where i denotes the value at x; and Xj = [ pi M E; ]
+ add the interconnections with external inputs in Q;



Time-delays in
Physics

E.Witrant

Conservation
laws

Generalform of a
conservation law

Convection-diffusion

Euler and
Navier-Stokes

Firn example

CERN example

1-direction
transport

Volume-averaged
model

Parameter estimation
Characteristics
Time-delays

Mine example

Information
transport

Communication
models

WSN

Finite-spectrum
assignment

Multivariable

regulation
Travelling
waves

Decoupling

Complex models

Conclusions

Temperature transport: Impact of convection heat,
hydrostatic pressure and friction pressure drops

107 m after quench 535 m after quench 856 m after quench
5 4 4
© Measurements
1:hc=0;dP=
4.5
4] 35
< £
F 35 =
3
3
P
25
25
0 200 400 €00 800 1000 0 200 400 600 800 1000 0 200 400 600 800 1000
time(s) time(s) time(s)
4 1283 m after quench 1711 m after quench p 2122 m after quench

9 3
28 0 200 400 600 800 1000 & 0 200 400 600 800 1000 0 200 400 600 800 1000
time(s) time(s) time(s)
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Conclusions on the CERN example

¢ Quasilinear hyperbolic system with 3 states = 3 travelling

waves, one in the opposite direction
e The diffusive effect is mostly numerical and should be
avoided

e Essential role of mass flow rate & pressure gradient =
advection (time-delay) if we consider the temperature
transport

e Multiple interconnections = set of interconnected
time-delay systems
AX

>
M, T T T T 07 T T T T T T T T 1 Mg
;,,: 1 : 2 : 3:4:5:5: ?: a: 9:19:11:12:13:14=15}_.
r_ ‘I | |‘ T | ] ‘L |‘ | I I
MEA“_ Mé)ﬂs M.".A‘l‘ &
E&ﬂ: Eexlh Eéﬂ-‘
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Suppose that we want to control a unidirectional, mostly

advective, process through the boundary: can a time-delay

. approach help?

Ldrecion Proposed strategy:

canoass @ starting from Euler's equation, isolate the variable of
o interest

® simplify the model to define an observer/estimation
structure

@ use the estimated parameter for a lumped control-oriented
model with transport as a delay

@ choose a stabilizing feedback
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From energy conservation in Euler & phys. hypoteses:
op 0 (M R R .
L 1 —
ot 0x ( * )p] * Cy q

P\

Volume-averaged impact of momentum and density:

X(t) = 5 ¢, X(v, t)dv, for X = {M, p}

Energy losses = pressure losses (friction and exhausts),
e.d. g(x,t)R/c, = s(x,t) + r(t)p(x, 1)

Leads to the PDE model with boundary (controlled) input:

{ pr = c(t)px + r(t)p + s(x, 1),
p(0, t) = pin(t), B(x, 0) = Po(X)

= Given distributed measurements, estimate transport
coefficients and set feedback pin(t)
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Marchand’08]

Theorem (parameter estimation for affine PDE)
Consider the class of systems, affine in the parameter

= A(p, Px» Pxx» U, )
a;px(0,t) + a;p(0,t) = a3
aspx(L,t) + asp(L,t) = as

with distributed measurements of p(x, t) and for which we

model

peneesnet want to estimate . Then
lip(x, t) = B(x. D)IE = e+ p(x,0) - p(x, 0)II3

= (ijs ijx, ijxxv U7ﬂ)ﬂ+7(p_ij)
a1px(0, 1) + ap(0, 1) = as
ﬁ(,)+aSP(L t)—ae

= AP, Be> x> U 3) [P + A(p = )]

models

Decoupling

Complex models
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Example: comparison with gradient-descent algorithm

pr = d(t)pxx + c(t)px + r(t)p + s(t)Pext(x; 1)

s
i
-09 1 oesp
= "
5. 12 oo}
c ! ° it
o vyl < ]
Faih 7S oss
o h a
> 0 £
E1af! 1E o
O
13 1 oss
3
N " P—
- - Gradient-based estimation
0 50 100 10 200 250 300 350 10 200 250 300 350 400 450 500
05 . . —| = - -Reference
06 —— Observer—based estimation
=7 Dgi?'
Thos = osspt
0] ESRNIN
So9 @ osp Ty
8 1 Somp N
7] 5 B
z, 3 o
9 (%}
s 065
13 06
14 055
Et
500 ) 50 100 150  200__ 250 300 350 400 450 500
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= accurate results & decoupling, singularities when the
gradients are zero (in pseudoinverse) - need to add a filter.
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Method of characteristics, some background [J. Levandosky
course?]

Solve linear, quasilinear and nonlinear first-order PDEs.
E.g. for the first order linear equation:

a(x,y)ux + b(x,y)uy, = c(x,y)
& [a(x,y), b(x,y), c(x,y)] - [ux(x,y), uy(x,y),=1] = 0
T(x.y) N(x.y)

e the surface S = {x, y, u(x, y)} has a normal vector N and
is defined by the tangent plane 7 (x, y)

Nx.y)

http://www.stanford.edu/class/math220a/handouts/firstorder.pdf


http://www.stanford.edu/class/math220a/handouts/firstorder.pdf
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Method of characteristics (2)

e construct a curve C (= integral or characteristic curve)
parameterized by s s.t. it is tangent to 7 (x(s), y(s)) at
each point (x, y, z):

dy dz

dx
75 = ax(s).¥(s)). g = bx(s).y(s)). o = clx(s).¥(s))

= Form the surface S = {x, y, z} (integral surface) by solving
the set of ODE




Time-delays in

Physics Characteristics for a time-delay model [w, Niculescu'10]
Consider the advective-resistive flow:

E.Witrant

(% 1) + Ax()x(x, 1) = =Sia(t)¢(x. 1)

: with £(0, t) = u(t), £(x,0) = ¥(x). Applying the method of
characteristics with the new independent variable 6 as

£(6) = £(x(6). 1(6))

It follows that (solution including time axis)

ch

Time-delays

£t = u(e - aewp - {8t ) it L ~ [ Ay

The line-average state /(t) = fOL £(n,t) dnis provided by the
Delay Differential Equation

9z= A [u(r)—u(r—ef)exp(— f 'Sl dn)]—éf,l(r)z
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Tracking feedback controller design
Control problem: design a feedback such that the average
distributed pressure: Z(t) = £ fo X, t)dx tracks the reference

Zi(1).

Achieved if (solving a robustified Cauchy system):

2(t) - 4(t) + AZ(1) - (1) =0

— ensures exponential convergence |£(t) — Z;| = |£(0) — Z/|e™"
Using the previous DDE and solving for u(t), it follows that (e.g.

with £, = 0):

22 = LAW|u(0) - u(t - ek S| - 5,02

u(t) = ———[-S1 (20 + A0 - )] + (L)



Time-delays in
Physics

E.Witrant

Volume-averaged
model

Paran

Characteristics
Time-delays

Mine example

Communication
models

WSN
Finite-spectrum
assignment
Multivariable
regulation

Decoupling

Complex models

Mining ventilation example: reference model

Pallutant
injection

Simulator properties:

e ventilation shafts ~ 28 control volumes
(CV), 3 extraction levels

e regulation of the turbine and fans

o flows, pressures and temperatures
measured in each CV

e Computation 34x faster than real-time
Case study:

o 15! |evel fan not used (natural airflow), 2"
operated at 1000 s (150 rpm) and 3 runs
continuously (200 rpm)

e CO pollution injected in 3" level

e measurement of flow speed, pressure,
temperature and pollution at the surface
and extraction levels
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Feedback control results for mine ventilation

Reference and effective turbine output pressure:

Reference 1
1ol . . . . . . I . .
200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)
— 10" T T T T T T T T T
L0 B
§ 10° B
o
Z 102t 4
[ 200 400 600 800 1000 1200 1400 1600 1800 2000
Time (s)

= Sensible to initial conditions and some numerical integration
errors but exponential convergence verified!
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Physical models
Telegrapher’s equation for homogeneous transmission line:

Vi Vv,
I } t [ I,

e The wave propagation is 2 ways and characterized by the
line impedence Z = VL /C, propagation velocity

: v = 1/ VLC and time-delay = VLC (supposing unit

Information |ength)

transport

0 1/C

1/L 0 =0

¢ The scattering variables (orthogonal) S, = f(t + z/v) and
S_ = g(t - z/v), for some continuous functionals f and g,
describe the incident and reflected waves, from:

0Sy _ 0S. _ 0S. 0S

ot 0z ot + Va_z =0
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Physical models (2)

Consider the heterogeneous Telegrapher’s equation [Witrant,
van der Schaft, Stramigioli, Ph.D.05].

v, o ycl|lv
MNP b

|

— of r)ﬂ o -1cllv].
B 2| 1L 0 !
where local L and C
variations are captured with
«(t) in the elementary cell £
[Ph.D.05]: 3
l—0—MIF—C
Py 1 0Py, g
Induce wave reflections and

time-varying delays.
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I.e. Fluid-flow model for the network [Misra et al. 2000, Hollot
and Chait 2001]: TCP with proportional active queue
management (AQM) set the window size W and queue length
g variations as

dt R() 2 R(t-R())™”
dq(t) o Wi(t)
— - _C L g(t) =
i=1
Communcan ) ; o .
where R;(t) = < + Tpi is the round trip time, C; the link

capacity, pi(t) = Ir<pq(t — R;(t)) the packet discard function and
Tpi the constant propagation delay. The average time-delay is
Ti = %R,‘(t)
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£ Witrant Wireless Sensor Networks
[Park, di Marco, Soldati, Fischione, Johansson’09...]

PAN coordinator

CERN example

Volume-averaged
model

Sensor

Mine example

Communication
models

- e |EEE 802.15.4, Markov chain model, network & control
codesign

e Communication constraints = time-delay + packet loss

Decoupling

Complex models
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Delays characterization [w, Park and Johansson, Springer'10]

Periodogram Power Spectral Density Estimate e node1
T 0.6}| = node 2
=3 —node 3
] 05 node 4
2 —
3 z
= Bos
k=) 3

k]
g Foo
3 g
g 02
g 04
3
c
107 10° 0 05 15 2

107 107 1
Normalized Frequency (xrtrad/sample) time (s)

e Three-frequencies jitter & KUMSUM Kalman estimation
e Synchronous/async. cases
e Packet losses as time-delays



™ Feedback design

E.Witrant l.e. finite-spectrum assignment [Michiels, Ph.D."02] with online
adaptation of the horizon of a MPC feedback scheme with
robust gain design [Witrant et al., Ph.D.05, TAC'07]

Linear System

u(t —7(t) #(t) = Ax(t) + Bu(t — (1))
Time-Delay y(t) = Cx(t)
0 < 7(t) < Tmaw
T(t) <1

Network Model
£(t) = f(z(t),ua(t)), 2(0) = 20
7(t) = h(z(t), ua(t))

Predictor Horizon

Communication

models o(t) —T(t+4(t) =0
WSN
Finite-spectrum
assignment
Multivariable
regulation

Time-Varying Predictive Control

AS(t) A 0 Af <

Decoupling u(t) = —KeA5®) | z(2) + At -~ 40 B (0 — 7(0))dO
Complex models u(t) ® () +e [ ¢ (6—(6) x(t)
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Experimental results for the inverted pendulum
Control over a network with 2 users (LQR gain design):

L — = L

B
10 20 30 40

time (s)

Predictor with fixed horizon.

State Predictor with Time—Varying Delay
2

reference
‘ wio delay
10 20 30 40 50
0
0

(b) Predictor with time-varying hori-

zon.
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Example 2: room temperature control over multi-hop
WSN in intelligent buildings [w, Mocanu and Sename, TdS'09]

dx
dt

(AL + Ax(u))x + (By + Bo(u))u + Byw+PP(x — UX) + s + H(Y,x)
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Simulation results [w, Di Marco, Park and Briat, IMA'10]

Tracking error |Td|_T\| (°C)

Tracking error [T,~T,[ (°C)

Time (s) Time (s)

(@ Synchronous mode (Mixed- (b) Asynchronous mode (Mixed-

sensitivity Hs,) sensitivity Hy,)
= e
= =
5 g3
£ E
E g1
[ [
0 50 100 15 200 N
Time (s) Time (s)

(c) BRL with weights, post check for (d) Delay constraint during the design
TD stability (Skelton et al., 1997) (Seuret, 2009), scale x 2
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Conclusions on 1-direction and information transport

Direct equivalence between time-delays and advective
transport for single-directional transport and homogenous
(possibly time-varying) coefficients

Equivalence obtained for two waves in homogeneous
transmission lines from the scattering variables

Time-delay with router feedback in communication
networks

Possible online addaptation of the controller’s size
according to the delay variations with the predictor
architecture

Strong impact of signal distorsion in WSN may call for
robustness rather than time-delay compensation
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Travelling waves modeling
The conservative form of Euler equations:

fox %
0 \7T®V+P/
o V.

0

9 3
ot +

m™

writes in 1-D for a straight line topology and neglecting the
kinetic effects (V?) as:

0
—{ +ﬂ1(§ X, t)V{ =u
ot
where/=[p M E]T,u=[0 0 g ]"and A; is the
Jacobian flux matrix [Hirsh’90] (ideal gas hyp.):

0 1 0
—3)Vv2 N
A= B-y)V 3

N VE E 39V?
y\/B_Y_ Ye _ ¥V©

P P 2 144
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Decoupled model

e The eigenvalues of the Jacobian define the traveling
waves, going into two directions:
M()=V-c 2()=Vand 23({) =V +c

« Using a change of coordinates ¢ given by the Riemann
invariants, we obtain a quasi-linear hyperbolic formulation
with (isentropic case):

Ax

Il
o
o
N
~—~~
Nl
N—
o

= For linear systems with appropriate boundary conditions,
can be analyzed as a set of time-delay systems

Decoupling
Complex model
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Dynamic Boundary Stabilization of Quasi-Linear
Hyperbolic Systems [Castillo, W, Prieur and Dugard, CDC'12]

Consider the system
(X, t) + N(€)0xé(x, 1) =0 V¥xe[0,1,t>0

where £ € ©, Ais a diagonal matrix function A : © — R™" such
that A(¢) = diag(1(€), 22(£), ..., An(§)) with

A(€) < oo < An(€) <0 < Aps1(€) < ... < Ap(€), VE€O
& &t
with BC
Xe=AXc+BKYs | ( £(1,t) )_G( £.(0,t) )
Ye = Xc ' f+(0’ t) B §+(1, t)
Ye Ye

and IC £(x,0) = &%(x), Xc(0) = X2, V¥xelo,1].



T Consider the Lyapunov function candidate (P > 0):
ysics

E.Witrant

1
V(£ Xe) = X PXe + f (67Pe) e ax
0

Theorem
Assume that there exists a diagonal Q € R™" > 0 and a matrix
Y € R™" such that, Vi € [1, ..., N,]

QAT + AQ + A(w))Q BY

Y87 Ao | *°

where A(w;) is a polytopic representation of A(¢)

Let K = YQ1, then there exist two constants @ > 0 and M > 0
such that, for all continuously differentiable functions

&0 1[0, 1] — = satisfying the zero-order and one-order
compatibility conditions, the solution of satisfies, for all t > 0,

IXe (DI + €(X. Dll2(0,2) < Me™ (IXIIP + 1E°(¥)l2(0,1))



Time-delays in
Physics

E.Witrant

Conservation
laws
Generalform of a
conservationlaw
Convection-diffusion

Euler and
Navier-Stokes

Firn example

CERN example

1-direction
transport

Volume-averaged
model

Parameter estimation
Characteristics
Time-delays

Mine example

Information
transport

Communication
models

WSN

Finite-spectrum
assignment

Multivariable

regulation
Travelling
waves

Decoupling

Complex models

Conclusions

Example on flow dynamics: Video

A change of reference from V = [1.16,20,100000]" to
V = [1.2,30,105000]" is introduced.
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Complex models with spectral decomposition for
Magnetohydrodynamics (MHD) stabilization

l.e. Resistive-wall mode physics in RFP: from MHD instability
to perturbed ODE

e Linear stability investigated by
periodic spectral
decomposition 5

b(r,t) = Z B o () @1 m019)
mn

unstable

stable

Fourier eigenmodes b mn(r) >F
with growth-rate ymn = jwmn,
¢ Ideal MHD modes: ---5

. -40 -20 0 20 40
r r__ prext n
Tm”bmn - Tmﬂymﬂbmn - bmn

bf,: radial component of Growth-rates 7w ymn. *:

- r,ext.
perturbed f'?ldv brpn : Integer-n non-resonant
external active coil, Tpp:

penetration time.

positions (RWMs) for m = 1.
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Stability analysis and delay effects [Olofsson, W, Briat,
Niculescu and Brunsell, CDC’08, IOP PPCF'10]

Closed-loop dynamics with multiple delays and time-scales:
¢ Infinite spectrum of the Delay Differential Equation

n
det A(s) = det| sl — A — ) Ae™"| =0
i=1

¢ Mode-control and perfect decoupling: SISO dynamics
(fixed gains)

1 1 1
Gmn(s) = e st
mn( ) Tmns - Tmn'}/mn Tcs + 1 Tas + 1

— fictitious but useful for disturbance rejection and
resonant-field amplification analysis
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Experimental results

— Direct Eigenvalue Optimization

— Two different parameterizations,
implicitly assigning the
closed-loop performance and
control-input norm

— Robust: convergence within
10 — 30 iterations

-5000 ~4000

= 44 % reduction of average field energy at the expense of
higher input power (+28 %).
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£ Witrart Conclusions

¢ Physical delay is often a major issue in transport
phenomena; Time-delay systems can often be usefull

e |ts proper inclusion in the feedback architecture
compensates advection and losses can be dealt with an
integral action

¢ Information transport strongly affected by information
losses and needs robustness

e Capturing the traveling wave requires finer modeling

Conclusions
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