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Abstract: In this paper we investigate the problem of remote output stabilization
via two channels with time-varying delays. This problem arises when the control
law is remotely implemented. The exchange of data between the controller and the
system is done via two different transmission channels introducing time-varying
delays with known dynamics. Assuming a known model for each of the time-
delay dynamics, the work in (Witrant et al., 2003) is extended to the case of two
different delays appearing: (1) in the output measurement channel and, (2) in the
transmission of the control law. This result is extended to output stabilisation by
introducing a state observer built upon the delayed output of the plant. Simulation
results are also presented.
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1. INTRODUCTION

The networked control systems constitute a new
class of control systems including specific prob-
lems such as delays, loss of information and data
process. The problem studied in this paper con-
cerns the remote stabilization by output injection
of unstable open-loop systems. The control setup
is shown in Figure 1. The sensor, actuator and sys-
tem are assumed to be remotely commissioned by
a controller that interchange measurements and
control signals through a communication network.
We assume that this communication network has
its own dynamics, including the communication
channel as well as the coder and decoder, and that
we have a known model for it (as the one devel-
oped in (Misra et al., 2000) for a TCP network).
In addition, it is postulated that the transmission
dynamic is not symmetric in the sense that the
model dynamics for the channel transmitting the
system output to the controller, is different to the

one of the channel transmitting the control signal
from the controller to the system.

The impact of such network is to introduce a
time-varying delay in the data transmission be-
tween the system and the controller. An inher-
ent difficulty of this type of system is that the
time-translation operation is not reversible, i.e.
y(t) 6= y(t + τ(t)− τ(t + τ(t))), unless the delay τ
is constant.

Most of the the existing control methods (like the
Lyapunov-Krasovskii approaches) either assume
a constant time-delay, or a known upper bound
on it (Niculescu et al., 1998). For constant time-
delays, methods like the “pole-placement” allows
to cope with stable and unstable open-loop plants
(Manitius and Olbrot, 1979). The constant delay
has also been successfully treated in the context
of teleoperation systems in (Anderson and Spong,
1989) and (Niemeyer and Slotine, 1991).



Fig. 1. Two channel delay closed-loop network
controlled system.

The case of time-varying or state-dependent de-
lays can be treated along the solutions presented
in (Yu, 1999), and (Verriest, 2002) as long as
the system is open-loop stable. The variable time
delay characterized by a probabilistic distribution
or a Markov chain was studied and included in an
optimal LQG control in (Nilsson, 1998).

This work presents an extension of (Witrant et
al., 2003), where we addressed the problem of
remote stabilisation via a network modeled as
a time-varying delay from the controller to the
plant. The main contribution of this paper is to
extend the previous results to a two channels
varying delay, meaning that the signal going from
the plant to the controller also experiences a delay.
The second contribution concerns the design of
an observer-based controller, allowing for remote
output stabilisation

The aim of this paper is then to explore how
the transmission protocol dynamics of the two
channels can be explicitly used in the design of the
control feedback. Before dealing with a particular
transmission protocol dynamics, we aim at explor-
ing how the control design can be elaborated for
a system where the transmission delay is given by
a particular autonomous stable system for each
of the transmission channel . More precisely, we
consider systems of the form:

ẋ(t) = Ax(t) + Bu(t− τ2(t)) (1)

y(t) = Cx(t) (2)

żi(t) = Wi(zi, t) + Fi(zi, t)τdiz(t), (3)

τi(t) = Ei(zi, t) + Ri(zi, t)τdiτ (t), i = 1, 2 (4)

where the pairs (A, B) and (A,C) are assumed
to be controllable and observable, respectively,
but no assumption is made on the stability of A.
We then allow for unstable open-loop systems as
well. The notation ẋ(t) stands for the derivative
with respect to time dx/dt. The signal τdi(t), zi(0)
and the matrices Wi, Fi, Ei, Ri are assumed to be
known, and W to be stable. Equations (3) and (4)
describe the internal delay dynamics representing

the transmission channel model, where τ1(t) is the
transmission delay from the plant to the control
and τ2(t) is the delay from the control to the plant.
The control can only use delayed information, that
is only

x(t− τ1(t))︸ ︷︷ ︸
state feedback

or y(t− τ1(t))︸ ︷︷ ︸
output feedback

are the available signals for feedback.

We assume that all solutions of model (3)-(4),
have the following property

τmax
i ≥ τi(t) ≥ 0 ∀t ≥ 0, ∀, i

This property, in the network framework, means
that even if a packet is lost it will be re-emited
until it reaches its target (the TCP protocol is an
example of such network).

2. SINGLE CHANNEL CASE

In this section we revisited the single channel
delay case studied in (Witrant et al., 2003) which
is used as a base for the subsequent developments.
Consider the equations (1)-(4), with τ1 = 0, and
the simple problem of state feedback stabilization,
with a full measurable state, i.e. y(t) = x(t).

Defining a new input v(t) as

v(t) = u(t− τ2(t)) (5)

and introducing a bounded time-dependent func-
tion∞ > δ(t) ≥ 0 (to be defined later), the system
(1) shifted by δ(t) is expressed as

dx

dt
(t + δ(t)) = Ax(t + δ(t)) + Bv(t + δ(t)) (6)

Assuming that the stabilizing control law achiev-
ing the pole placement on the time-shifted system
given by:

v(t + δ(t)) = −Kx(t + δ(t)) (7)

can be realized, then the resulting closed-loop
dynamics is:

dx

dt
(t+δ(t)) = (A−BK)x(t+δ(t)) = Aclx(t+δ(t))

(8)
where Acl = A − BK is the closed-loop state
matrix. The eigenvalues of Acl can be placed in
the open left-hand plane from the controllability
property of the (A,B) pair. Introducing ζ(t) = t+
δ(t), then, if δ̇ 6= −1, (8) gives

dx(ζ)
dζ

= γ(t)Aclx(ζ), γ(t) =
1

1 + dδ(t)
dt

Note that this equation describes a linear time-
variant system in the shifted time-coordinate ζ(t).
The stability of this system does not follows
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directly from the stability of the Acl matrix, but
depends on the properties of γ(t) as well. They
are given in the following Lemma.

Lemma 2.1. (Witrant et al., 2003) Consider the
following system

dx

dt
(t + δ(t)) = Aclx(t + δ(t))

for t ≥ 0 and δ(0) = δ0. Then, if the following
conditions holds:

i) all the real part of the eigenvalues of Acl are
in the open left hand side of the complex
plane,

ii) ∞ > δM ≥ δ(t) ≥ 0,
iii) 1 > δ̇(t) > −1.

then,

lim
t→∞

||x(t + δ(t))|| = 0, ∀t ≥ δ0

for all bounded values of x(δ0). Furthermore, the
converge rate is exponential.

Corollary 2.1. The control law (7) applied to the
system (1)-(2), has a bounded solution and expo-
nentially converges to zero.

Therefore, the implementation of the control
scheme depends on the possibility to predict x(t+
δ(t)), and the possibility of assign v(t + δ(t)) in a
causal way.

From (6) a predictor for x(t + δ(t)) can be con-
structed. Then using (5) and (7) yields:

u(t + δ(t)− τ2(t + δ(t))) = −KeAδ(t)x(t) (9)

−KeA(t+δ(t))

∫ t+δ(t)

t

e−AθBu(θ − τ2(θ))dθ

Control law causality holds if δ(t) is defined as:

δ(t)=̇max {δ ≥ 0 | ∀θ ∈ [t, t + δ], θ − τ2(θ) ≤ t}
(10)

which admits a solution δ(t) such that

δ(t)− τ2(t + δ(t)) = 0 (11)

The existence of such a δ(t) is ensured provided
that 0 ≤ τ2(t) ≤ τ2max (see proposition 2.1 of
(Witrant et al., 2003)).

Based on the previous definition, the control law
(9) can be written in the following computable
form

u(t) = −KeAδ(t)
[

x(t)

+eAt

∫ t+δ(t)

t

e−AθBu(θ − τ2(θ))dθ
]

(12)

The previous results leads to the following theo-
rem.

Theorem 2.1. (Witrant et al., 2003) Consider the
system

ẋ(t) = Ax(t) + Bu(t− τ2(t))

with (A,B) a controllable pair. Assume that the
delay dynamics (3)-(4) is such that the following
holds for τ2(t), and for all t ≥ 0

A1) ∞ > τmax
2 ≥ τ2(t) ≥ 0,

A2) There exists a bounded positive function δ(t)
satisfying (10) for all positive t and defined
as

δ(t)− τ2(t + δ(t)) = 0

A3) −1 < δ̇(t) < 1 ∀t ≥ t0, or equivalently
(when A2 holds) −1 < τ̇2(t) < 1 ∀t ≥ t0

Then, the feedback control law (12) ensures that
the closed-loop system is bounded, and that the
state x(t) converges exponentially to zero.

3. STATE FEEDBACK DESIGN FOR THE
TWO CHANNELS DELAYED

In this section we treat the case of state feedback,
the output stabilization case will be treated in
the next section in connection with the observer
design.

The previous result is now extended to the two-
channel delay problem by considering the delayed
state x(t− τ1(t)) as the feedback signal.

As before the control goal is to assign the state
feedback

v(t + δ(t)) = −Kx(t + δ(t))

such that the closed-loop system is of the form
(6). If this is feasible, then the stability properties
will be the same as the one stated by Lemma 2.1
and Corollary 2.1.

In the two-channel delay case, the prediction of
x(t+δ(t)) is done from t−τ1(t) to t+δ(t) (instead
of from t to t + δ(t) as in the one-channel delay
configuration). That is:

x(t + δ(t)) = eA(δ(t)+τ1(t))x(t− τ1(t))

+eA(t+δ(t))

∫ t+δ(t)

t−τ1(t)

e−AθBu(θ − τ2(θ))dθ

which together with (5), suggest the following
expression for the control law:

u(t + δ(t)− τ2(t + δ(t))) = −Kx(t + δ(t)) (13)

Assessing the same definition for δ(t) as in equa-
tion (10) we do fulfill the causality control require-
ment. The control law (13) can thus be rewritten
in the following computable form
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u(t) =−KeA(δ(t)+τ1(t))x(t− τ1(t)) (14)

−KeA(t+δ(t))

∫ t+δ(t)

t−τ1(t)

e−AθBu(θ − τ2(θ))dθ

This can be observed by noticing that the integral
uses past control information in the moving time-
window,

[{t− τ1(t)− τ2(t− τ1(t))} , {t + δ(t)− τ2(t + δ(t))}]
which after using (11) gives

[t− τ1(t)− τ2(t− τ1(t)), t]

Remark 3.1. During the implementation of con-
trol law (14), it is necessary to keep a history
of the past control inputs during a time-interval
[t−τ1(t)−τ2(t−τ1(t)), t] and to compute δ(t). For
this to be possible, it is necessary to have explicit
model for both delays allowing to compute their
solutions and predict τ2 to solve (11).

Remark 3.2. The main difference between this
result and the previous one concerning the single-
channel delay is the extension of the prediction
horizon range. This results in delaying the time
at which the control law can be fully implemented
by τ1(t). The closed-loop stability properties are
similar to those of the one-channel case.

The main contribution of this section is now
summarized in the following theorem.

Theorem 3.1. Consider the system

ẋ(t) = Ax(t) + Bu(t− τ2(t))

with (A,B) controllable pair. Assume that the
delay dynamics(3)-(4) is such that the following
holds for τi(t), i = 1, 2, t ≥ 0 :

A1) ∞ > τmax
i ≥ τi(t) ≥ 0,

A2) There exists a bounded positive function δ(t)
satisfying for all positive t

δ(t)=̇max {δ ≥ 0 | ∀θ ∈ [t− τ1(t), t + δ],

θ − τ2(θ) ≤ t} (15)

A3) τ1(t) and τ2(t) are such that for all δ(t)
obtained from (A2), the following inequality
holds:

−1 < δ̇(t) < 1 ∀t ≥ t0

Then, the feedback control law (14) ensures that
the closed-loop system is bounded, and that the
state x(t) converges exponentially to zero.

Proof. The proof of this theorem follows the
same lines than Lemma 2.1. The reader can see
(Witrant et al., 2003) for details. ♦♦♦

Remark 3.3. Note that for the particular case
when δ satisfies δ(t) − τ2(t + δ(t)) = 0, the
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Fig. 2. Time delays and δ(t) (top) and system response
(bottom) to initial conditions x0.

assumption (A3) collapses to −1 < τ̇2(t) <
1 ∀t ≥ t0.

Example 1: remote stabilisation Consider the
mass-spring-damper second order system:

ẋ(t) =
[

0 1
1 1

]
x(t) +

[
0
1

]
u(t− τ2(t))

y(t) =
[

1 0
0 1

]
x(t)

for which the controller gain is set to K = [−2 −1]
and the initial conditions to [1 0.5]T . The system
is simulated in continuous-time while the control
is implemented in the discrete form with a sam-
pling period of Ts = 10ms and the integral ap-
proximated using the backward rectangular rule.
The dynamics of the time delay is given by the
following equation:

ż1 =−1
5
z1 +

2
5
, τ(0) = 1

τ1 = z1

ż2(t) =−1
2
z2(t) + 1, z(0) = 4

τ2(t) = z2(t)− 1
2
sin(

1
2
πt)

The resulting delays time-evolution is shown at
the top of Fig.2 along with the time-evolution of
δ(t). The computation of δ(t) is done numerically
using dichotomy with a desired precision of 10−7.

The resulting system output response y(t) is pre-
sented at the bottom of Fig.2 together with the
output responses that would be obtained without
delay. The simulation shows the effectiveness of
the control to stabilise the system for a non-zero
initial condition, and the similarity of the dynam-
ics of the time-shifted system compared to those
of a system without delay.
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4. OBSERVER-BASED CONTROL

In order to release the assumption that the full
state is measurable, the aim of this section is to de-
sign an observer-based controller. This approach
allows us to extend the results to linear systems
with an observable (or at least detectable) pair
(A,C). The observer state x̂(t − τ1) 1 is used to
evaluate the state-dependent part of the control
law x(t − τ1). We introduce the following Luen-
berger state-observer for system (1)-(2):

˙̂x(t− τ1) = Ax̂(t− τ1) + Bu(t− τ1 − τ2(t− τ1))

+H{y(t− τ1)− Cx̂(t− τ1)}
The resulting observation error

ε(t− τ1)=̇x(t− τ1)− x̂(t− τ1)

has the dynamics

ε̇(t− τ1) = ẋ(t− τ1)− ˙̂x(t− τ1) = (A−HC)ε(t− τ1)

= Âclε(t− τ1)

The control law can then be expressed as a func-
tion of the delayed observation state x̂(t− τ1) as:

u(t) = −K
[
eA(δ+τ1)x̂(t− τ1) + I(t)

]

= −K
[
eA(δ+τ1)x(t− τ1)− eA(δ+τ1)ε(t− τ1) + I(t)

]

where I(t) is the integral part of the control law
and Âcl = A − HC is a matrix with assignable
eigenvalues (from the observability property of the
system).

Therefore, the complete closed-loop dynamics in-
cluding the observer is:

ẋ(t + δ(t)) = Aclx(t + δ(t)) + BKeA(δ+τ1)ε(t− τ1)

ε̇(t− τ1) = Âclε(t− τ1)

The stability of this closed-loop system is ensured
by the following Lemma.

Lemma 4.1. Consider the following system

ẋ(ζ1) = Aclx(ζ1) + BKeA(δ+τ1)ε(ζ2) (16)

ε̇(ζ2) = Âclε(ζ2) (17)

with ζ1 = t + δ(t), ζ2 = t − τ1, for t ≥ 0 and
δ(0) = δ0. Then, if the following conditions holds:

i) all the real part of the eigenvalues of Acl

and Âcl are in the open left hand side of the
complex plane,

ii) ∞ > δM ≥ δ(t) ≥ 0, and 1 > δ̇(t) > −1.

1 For simplicity sake, the time dependency of τ1(t), τ2(t)
and δ(t) will be omitted. In the sequel, the notation τ1, τ2
and δ, will be used instead.

iii) ∞ > τ1 ≥ 0, and 1 > τ̇1(t) > −1.

then,

lim
t→∞

||x(t + δ(t))|| = 0, ∀t ≥ δ0

and for all bounded values of ε(δ0). Furthermore,
ε(t) exponentially converges to zero.

Proof.(outline) The result follows from using
Lemma 2.1 in equations (16) and (17). This allows
to prove that both states in their corresponding
time-arguments ζ1 and ζ2 are upperbounded by
an exponentially decaying signal. Conditions (ii)
and (iii) ensures such a property. Then, stability
of the interconnected system follows from the well-
known stability property of cascade connected
linear systems.

The existence of the observer-based control is now
summarized in the following theorem.

Theorem 4.1. Consider the system

ẋ(t) = Ax(t) + Bu(t− τ2(t))

y(t) = Cx(t)

with (A,B) controllable pair and (A,C) an ob-
servable pair. Assume that the delay dynamics(3)-
(4) is such that the following holds for τi(t), i =
1, 2., and for all t ≥ 0

A1) ∞ > τi(t) ≥ 0,
A2) There exists a bounded positive function δ(t)

satisfying (15) for all positive t,
A3) τ1(t) and τ2(t) are such that for all δ(t)

obtained from (A2), the following inequality
holds:

−1 < δ̇(t) < 1 ∀t ≥ t0

A4) 1 > τ̇1(t) > −1

Then, the observer-based feedback control law

u(t) =−KeA(δ(t)+τ1(t)) ˆ̄x(t)

−KeA(t+δ(t))

∫ t+δ(t)

t−τ1(t)

e−AθBu(θ − τ2(θ))dθ

˙̄̂x(t) = Aˆ̄x(t) + Bu(t− τ1 − τ2(t− τ1))

+H{y(t− τ1)− C ˆ̄x(t)}
with ˆ̄x(t)=̇x̂(t − τ1(t)) ensures that the closed-
loop system is bounded, and that the state x(t)
converges exponentially to zero.

Example 2: remote output stabilisation
Consider the same second order system, initial
conditions, control gain and time delays as pre-
sented in Example 1, the only difference being the
system output

y(t) = [1 0]x(t)
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Fig. 3. System response (top) to initial conditions x0

using the observer-based control, and observer error
(bottom).

The observer gain H is chosen to place the poles of
Âcl both at −1000. The resulting system output
response y(t) is presented at the top of Fig.3
together with the observer error ε on both states
at the bottom, for a sampling period of 10 ms.

Comparing these results with the ones obtained
in Example 1, it appears that the observer error
affects the transient response of the system, as
could be forecast by the closed-loop shifted system
dynamics. Furthermore, the influence of the sam-
pling period on the observer error illustrates the
influence of the integral’s approximation on the
error and the transient dynamics. This problem
was already reported in (Mirkin, 2003), where a
solution for the case of constant delays was pro-
posed, but will not be further investigated here.
Finally, the simulation shows the effectiveness of
the observer-based control to stabilize the system
for a non-zero initial condition.

5. CONCLUSIONS

In this paper we have investigated the problem
of remote output stabilization via transmission
channels with time-varying delay, which is formu-
lated as the problem of stabilizing an open-loop
unstable system with two different time-varying
delay and known dynamics.

The proposed observer-based controller results in
an exponentially converging closed-loop system,
under relatively weak assumptions. The controller
is based on a δ(t)-step ahead predictor, where δ(t)
is the solution of the implicit equation δ − τ2(t +
δ) = 0, which is shown to be solved if the time
delay is bound.

We have presented a certain number of simula-
tions showing the capability of this controller to
stabilize the system and the impact of the nu-
merical approximation when the delayed state is
provided by an observer.
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