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Abstract— This paper deals with network controlled systems.
A state predictor is used to stabilize such system as in [1], [2].
The full characterization of the prediction horizon is provided,
which allows to prove the stability of the closed-loop system with
the state predictor (using an estimated horizon).

Index Terms— Network controlled system, time-delay systems,
predictive control.

The importance of time-delay in practice, particularly con-
cerning networked control systems, is now understood as
shown for instance in [3], [4].
In most study concerning stabilization of network controlled
systems, the time-delay is treated as a constant or time-varying
one, but the delay dynamical behavior corresponding to the
network characterization is in general not taken into account.
This paper deals with the stabilization of such systems, as-
suming the knowledge of the transmission protocol dynamics,
i.e. a ”delay model”. We aim to provide criteria which ensure
stabilization of the network controlled system using a predic-
tive approach. This work follows the previous authors’ studies
[1], [2], and goes further into details in the characterization of
the prediction horizon.
The outline is as follows. In section 2 the considered models
for the plant and time-delay behavior are described. In section
3, the state predictor is presented, and the computation of the
prediction horizon is detailed in section 4. Section 5 concerns
the stabilization proof of the predictive state feedback control
law using the estimated horizon. The proof of stability of the
complete scheme (which uses the time-delay model) is given
in section 6. Some concluding remarks end the paper.

I. PROBLEM STATEMENT

The aim of this paper is to explore how the transmission
protocol dynamics can be explicitly used in the design of the
control feedback. These dynamics can be described by the
general class of systems that write as

ż(t) = f(z(t), ud(t)), z(0) = z0 (1)

τ(t) = h(z(t), ud(t)) (2)

where z(t) is the internal state of the network (with ini-
tial state z0), ud(t) is the exogenous input to the system,
f(z(t), ud(t)) describes the internal dynamics of the network
and h(z(t), ud(t)) gives the resulting delayτ(t) from the
whole model. Note that the description of the network dynam-
ics with a model based on an ordinary differential equation is
arbitrary: the proposed results can be applied with a discrete

or hybrid model of the network as well. In the specific case of
Internet networks, where the emission is regulated by a transfer
protocol and a router stores and manages the data packets, we
have the following description

• z(t) describes the time evolution of the emitters window
size Wi(t) (for i = 1 . . . N sources connected to the
network) and the router’s queue lengthq(t). In that case,
the state writes asz(t) = [W1(t) . . . WN (t) q(t)]T ,

• ud(t) is the number of usersN and possibly the router’s
output capacityCr, if both are time-varying; we then have
ud(t) = {N, Cr},

• f(z(t), ud(t)) is set by the TP on the windows sizes and
by the queue management scheme (i.e. TCP and AQM
policy),

• h(z(t), ud(t)) determines the delay occurring between the
sender and the receiver from network parameters such as
the round trip timeRi(t).

Note that (1)-(2) describe an autonomous system with an
exogenous inputud(t). This input is assumed to be known
over a certain range of time ahead of the present time (equal to
the maximum delay expectedτmax). This would be the case if
the subsystems of a supply chain act in a predetermined order
or if the transfer protocol is set to declare to the network that
its source will emit and wait duringτmax before starting the
emission.
An example of such dynamics is the TCP model described
by [5], where a fluid flow model was developed using Pois-
son counter driven differential equations, with a proportional
Active Queue Management (AQM) policy set on the router’s
site. The AQM is introduced with a packet discard function
p(·) and acts as a feedback from the router on the emitter’s
window size; the proportional scheme is shown to be stable
in [6]. The network equations then write as

dWi(t)
dt

=
1

Ri(t)
− Wi(t)

2
Wi(t−Ri(t))
Ri(t−Ri(t))

pi(t), (3)

dq(t)
dt

= −Cr +
N∑

i=1

Wi(t)
Ri(t)

, q(t0) = q0 (4)

τi =
Ri(t)

2
, where Ri(t)

.=
[
q(t)
Cr

+ Tpi

]

where pi(t) = Kpq(t − Ri(t)) and Tpi is the constant
propagation delay.
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The remotely controlled system has the form:

ẋ(t) = Ax(t) + Bu(t− τ(t)) (5)

y(t) = Cx(t) (6)

where x ∈ Rn is the internal state,u ∈ R is the control
input, y ∈ Rm is the system output, andA, B, C are matrices
of appropriate dimensions. The pairs(A, B) and (A,C) are
assumed to be controllable and observable, respectively, but
no assumption is made on the stability ofA. We assume that
all solutions of model (1)-(2) lead to the following properties
∀t ≥ 0

0 ≤ τ(t) ≤ τmax (7)

τ̇(t) ≤ ν < 1 (8)

where τmax is an upper bound on the time-delay. Note that
these conditions are a direct consequence of the lossless
property of the network considered.

II. BACKGROUND ON THESTATE PREDICTOR

Due to the inherent time-variation of the delay considered
when dealing with networks, it is not possible to design
a controller that imposes an invariant closed-loop spectrum.
Instead, under certain weak conditions, we are able to set the
eigenvalues of atime-varying shiftedsystem, or equivalently
we transform the time-invariant delayed unstable open-loop
system, into a stable time-varying linear system. The control
design proposed here is similar to the one used in [7] in an
adaptive control scheme.
The system transformation is done by replacing the current
time t by the shifted time coordinatet + δ(t) in (5), which
results in

x′(t+ δ(t)) = Ax(t+ δ(t))+Bu(t+ δ(t)− τ(t+ δ(t))), (9)

where x′(·) is the derivative ofx(·) with respect to its
argument (i.e.t + δ(t)) and δ(t) is a bounded and positive
time-depending function. Definingδ(t) as

δ(t) = τ(t + δ(t)) (10)

and considering first the problem of state feedback stabiliza-
tion, the eigenvalues of the time-varying shifted system (9) are
set with the control input

x(t + δ) = eAδ
[

x(t) + eAt

∫ t+δ

t

e−AθBu(θ − τ(θ))dθ
]

u(t) = −Kx(t + δ(t)). (11)

The resulting closed-loop equation is then

x′(t + δ(t)) = (A−BK)x(t + δ(t)) = Aclx(t + δ(t)) (12)

whereAcl is the closed loop state matrix, that can be made
Hurwitz from the controllability hypothesis on(A,B). The
stability of this system is established in [8] and reconsidered
in [2], where a Lyapunov-based analysis in the time-shifted
coordinatest + δ(t) is proposed. This last result connects the
conditions (7)-(8) to the stability of (12).

III. C OMPUTATION OF THEPREDICTOR’ S HORIZON

We are now focusing on the solution of theimplicit equation
(10) used to establish the control law. The dynamic computa-
tion proposed in [2], allowing for anexplicit use of the delay
dynamics, is detailed here to show that this approach results
in the exponential convergence of the predictor’s horizon
estimation. We exploit the fact that the scalar differential
equationδ̇(t) = −δ + g(δ) has only one globally attractive
fixed point if the applicationg has only one fixed point. This
is a continuous version of the discrete iterationδn+1 = g(δn).
This approach has the advantage of proposing an explicit
solution, where the delay occurs in the state of the controller,
and to be more powerful on the level of the computing time
necessary to the resolution of the implicit equation (10). We
describe how the dynamics ofδ(t) is defined in order to
guarantee an asymptotic convergence towards the solution of
the implicit equation. Note that this approach motivates the
need of a dynamic model of the delay but could also be
developed with a discrete or hybrid model of the delay.
First define the functional

ŝ(t) .= δ̂(t)− τ(t + δ̂(t)) (13)

whereδ̂(t) is the estimated value ofδ(t). The underlying idea
of the proposed approach is to find a variation law forδ̂(t)
such that the surfaces(t) = 0, wheres(t) is the required value
of ŝ(t) (corresponding to an exact solution of the implicit
equation), is rendered attractive and invariant. The result of
such a dynamics guarantees the exponential convergence of
δ̂(t) towardsδ(t). Therefore, we build an open loop estimator
of δ(t), solution of the Cauchy’s system

{
ṡ(t) = 0

s(t = 0) = 0

To prevent the numerical instabilities induced by this approach,
the dynamics of̂s(t) is defined by

˙̂s(t) + σŝ(t) = 0 (14)

whereσ is a positive constant. Deriving (13) with respect to
time and substitutinġ̂s in (14), we obtain

˙̂
δ(t)− τ ′(ζ̂)(1 + ˙̂

δ(t)) + σ(δ̂(t)− τ(ζ̂)) = 0

where ζ̂(t) .= t + δ̂(t) andτ ′(·) is the derivative ofτ(·) with
respect to its argument. The previous equation implies that

(14) is satisfied ifτ ′(·) 6= 1 and if the variation law˙̂
δ(t) is

established with

˙̂
δ(t) = − σδ̂

1− τ ′(ζ̂)
+

τ ′(ζ̂) + στ(ζ̂)

1− τ ′(ζ̂)
(15)

This explicit expression of the dynamics of̂δ(t) ensures that
the estimatêδ(t) converges towards the desired valueδ(t), and
that the functionŝ(t) converges exponentially towards zero.
We thus directly use dynamics ofτ(ζ̂) given by (1)-(2). It
remains to show that the estimation error onδ(t) induced by
the proposed method has the same stability properties asŝ(t),
for the type of functions considered. This is established with
the following lemma.
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Lemma 3.1:Let x(t) ∈ X ⊂ R be the solution of the im-
plicit equationx(t) = f(x(t)), wheref(x(t)) is a continuous
and differentiable function onX with a Lipschitz coefficient
M < 1. If x̂(t) is the estimate of this solution, computed from
the dynamics

{ ˙̂s(t) = −σŝ(t)
ŝ(t) = x̂(t)− f(x̂(t))

whereσ is a positive constant, then the estimation errorε(t)
defined by

ε(t) .= x(t)− x̂(t)

satisfies the inequality

|ε(t)| ≤ |ŝ(t)|
1−M

(16)

and converges exponentially to zero.
Proof: The estimation error1 ε is first expressed as a

function of f and ŝ with

ε = f(x)− ŝ− f(x̂) = −ŝ + f(x)− f(x− ε)

The continuity and differentiability properties off on X as
well as the mean-value theorem then make it possible to
establish that there is onec in the interval [x − ε, x] such
that

f(x)− f(x− ε) = f ′(c)ε

This implies
ε(1− f ′(c)) = −ŝ

and consequently

ε = − ŝ

1− f ′(c)

The assumption on the Lipschitz coefficient off makes it
possible to establish that

sup
x∈R

f ′(x) = M < 1 ⇒ f ′(c) < 1

thus justifying the inequality (16). Finally, the exponential
convergence ofε(t) is directly obtained from the dynamic
equation definings(t), which has as the solution̂s(t) =
ŝ(0)e−σt.

Remark 3.1:The preceding result shows equivalently that
the tracking error

e(t) = s(t)− ŝ(t)

obeys the law of exponential decaye(t) = e(0)e−σt. This
is a direct consequence of the fact that the functions(t) is
described by a Cauchy’s system.

The previous lemma is now be applied to the horizon
estimation problem with the following theorem.

Theorem 3.1:The solution δ(t) of the implicit equation
(10) can be estimated by the variableδ̂(t), solution of the
dynamic equation (15), witĥδ(0) = δ̂0 ∈ [0, τmax] and τ(t)
satisfying the conditions

P1) 0 ≤ τ(t) ≤ τmax,
P2) supt∈R+ τ̇(t) = ν < 1.

1for simplicity sake, the temporal indices ofε(t) are omitted in this proof,
the suggested solution remaining true for allt.
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Fig. 1. Control with the estimation ofδ(t).

The error induced by this approximation converges exponen-
tially towards zero and is bounded in the following way:

|ε(t)| = |δ(t)− δ̂(t)| ≤ |δ̂0 − τ(δ̂0)|e−σt

1− ν
(17)

whereσ is a positive constant.
Proof: This theorem is a direct consequence of the

proposed dynamic computation and the properties of the
network considered, which make it possible to apply Lemma
3.1. Indeed, the domain considered is onR+, from the
definition ofδ (10) and the boundness condition onτ(t) (P1).
The condition on the delay’s derivative(P2) ensures that
the condition on the Lipschitz coefficient of Lemma 3.1 is
satisfied. Finally, the variablesε(t) ands(t) are substituted by
their expression in terms ofδ(·), δ̂(·) andτ(·).

IV. PREDICTOR WITH AN ESTIMATED HORIZON

This section is dedicated to the synthesis of a predictive
control law based on an estimated horizon for the stabilization
of network controlled systems. We first describe the influence
of the horizon estimation on the closed-loop system. Then,
the computation method proposed in the previous section
is validated by guaranteeing the exponential stability of the
closed-loop system. The estimate of the predictor’s horizon
δ̂(t) induces a new dynamics which influences the closed-loop
system. Indeed, the control law based on the state predictor
is now established using the estimate ofδ(t), as presented in
Figure 1, and writes as

u(t) = −KeAδ̂(t)

[
x(t) + eAt

t+δ̂(t)∫

t

e−AθBu(θ − τ(θ))dθ

]

(18)
or, equivalently,

u(t) = −Kx(t + δ̂(t))

with δ̂(t) defined by its dynamics (15). Using the change
in coordinatest 7→ t + δ(t) and (18), the system dynamics
considered is2

x′(t + δ) = Ax(t + δ) + Bu(t)
= Ax(t + δ)−BKx(t + δ̂) (19)

2the temporal dependence ofδ(t), δ̂(t) and ζ(t) is omitted in the sequel
for simplicity sake.



4

Adding and subtractingBKx(t + δ) on the right side of the
previous equality, we obtain the system

Σo : x′(ζ) = (A−BK)x(ζ) + BK(x(ζ)− x(ζ − ε))

whereζ(t) = t+δ(t) andε(t) = δ(t)− δ̂(t) has the properties
described by Theorem 3.1.Σo can be rewritten, by arithmetic
equivalence using the formula of Leibniz-Newton,

x′(ζ) = (A−BK)x(ζ) + BK

∫ 0

−ε

x′(ζ + θ)dθ

The dynamics (19) is then substituted into the integral term to
obtain the transformed system

Σt : x′(ζ) = (A−BK)x(ζ) + BKA

∫ 0

−ε

x(ζ + θ)dθ

−(BK)2
∫ −ε

−2ε

x(ζ + θ)dθ

with the initial conditions

x(θ) = φ(θ), θ ∈ [t0 − 2εM , t0], (t0, φ) ∈ R+ × Cυ
n,−2εM

whereεM
.= supt ε(t), Cυ

n, τ = {φ ∈ Cn, τ : ||φ||c < υ}, υ is
a positive real number,||φ||c = sup−τ≤t≤0 ||φ||, || · || refers
to the Euclidian norm andCn,τ = C([−τ, 0],Rn) denotes
the Banach space of continuous vectorial functions mapping
[−τ, 0] into Rn with a uniformly convergent topology (see [9]
for more details).

Note that the stability ofΣt implies that of Σo but the
reverse is not true (comparison principle), because of the
initial conditions prolongation on the temporal space[δ(0)−
2ε, δ(0) − ε]. The stability of the transformed system is
guaranteed by the following lemma, which is an application
of the results of [10] to the problem considered.

Lemma 4.1:Consider the systemΣt with appropriate dis-
tributed initial conditions. If the following conditions hold

i) Acl is Hurwitz,
ii) ε(t) satisfies (17) and is such that

0 < ε̇M
.= sup

t
ε̇(t) <

1
2

then the trajectories ofx(ζ(t)) are asymptotically bounded.
Proof: Consider the Lyapunov-Krasovskii functional

established forΣt

V (x(ζ)) = x(ζ)T Px(ζ)

+
1

1− ε̇M

∫ 0

−ε

[∫ ζ

ζ+θ

x(µ)T Sx(µ)dµ

]
dθ

+
α

1− 2ε̇M

∫ −ε

−2ε

[∫ ζ

ζ+θ

x(µ)T Sx(µ)dµ

]
dθ

with P andS some positive definite symmetric matrices, and

0 < α <
1− 2ε̇M

ε̇M
(20)

Deriving V (·) along the trajectories ofΣt and using the
relationships

d

dt

[∫ b(t)

a(t)

∫ t

t+θ

f(µ)dµdθ

]
= (b− a)f(t)

−(1 + ḃ)
∫ b

a

f(t + θ)dθ + (ḃ− ȧ)
∫ 0

a

f(t + θ)dθ

and
2uT v ≤ uT S−1

i u + vT Siv

for i = 1, 2, we obtain the inequality

dV (x(ζ))
dζ

≤ x(ζ)T
[
PAcl + AT

clP + εa1S
]
x(ζ)

+
∫ 0

−ε

a2x(ζ)T PBKAS−1(PBKA)T x(ζ)dθ

+
∫ −ε

−2ε

1
α

x(ζ)T P (BK)2S−1(P (BK)2)T x(ζ)dθ

≤ x(ζ)T

[
PAcl + AT

clP + εa1S (21)

+ εa2PBKAS−1(PBKA)T

+ ε
1
α

P (BK)2S−1(P (BK)2)T

]
x(ζ)

where

a1
.=

1 + α(1− ε̇M )
(1− ε̇M )(1− 2ε̇M )

, a2
.=

1− 2ε̇M

1− (2 + α)ε̇M
(22)

are some positive constants. Defining the matrices

R
.= a1S + a2PBKAS−1(PBKA)T

+
1
α

P (BK)2S−1(P (BK)2)T

Q
.= −(PAcl + AT

clP )

which are positive definite by construction and by the assump-
tion i), respectively, the previous inequality writes as

dV (x(ζ))
dζ

≤ −x(ζ)T Qx(ζ) + εx(ζ)T Rx(ζ)

≤ (−λm(Q) + |ε|λM (R))||x(ζ)||2

The convergence of the functionε(t) ensures that there is a
time tc such as

|ε(t)| < λm(Q)
λM (R)

for all t > tc, and thus that the Lyapunov-Krasovskii func-
tional converges for allx(ζ) ∈ {x(ζ(t)) : t > tc}. From the
fact that the system considered is linear and cannot diverge in
finite time, we conclude that the trajectories of the functional
differential equationΣt are asymptotically stable.

Remark 4.1:Although the method used to establish the pre-
vious lemma can seem conservative, in particular concerning
the bounds imposed on the error variation, it remains suitable
to support the matter of this section. Indeed, these limits are
determined by an appropriate choice of the constantσ, which
must be selected such that

σ <
1− ν

2|δ̂0 − τ(δ̂0)|
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This limits the possible convergence speed of the estimation
error.

Remark 4.2:The maximum acceptable variation of the er-
ror ε̇M is given by the precision of the network model or can
be set with the transfer algorithm if a buffer is introduced at
the receiver’s input (use of the transfer protocol for the control
requirements).

V. EXPLICIT USE OF THENETWORK MODEL

The last step aims at describing the control law with an
explicit use of the network model and at showing that the
stability is ensured for a delay satisfying (7)-(8). This is
established by the following theorem.

Theorem 5.1:Consider the system described by

ẋ(t) = Ax(t) + Bu(t− τ(t))

where (A,B) is a controllable pair. Suppose that the delay
dynamics described by (1)-(2) and the positive constantσ are
such that the following conditions hold for allt

A1) 0 ≤ τ(t) ≤ τmax,
A2) τ̇(t) ≤ ν < 1,
A3) 0 < ε̇M

.= supt ε̇(t) < 1
2

then the state feedback control law

u(t) = −KeAδ̂(t)

[
x(t) + eAt

t+δ̂(t)∫

t

e−AθBu(θ − τ(θ))dθ

]

˙̂
δ(t) = − σ

1− dτ(ζ̂)/dζ̂
δ̂ +

dτ(ζ̂)/dζ̂ + στ(ζ̂)

1− dτ(ζ̂)/dζ̂
dτ

dζ̂
(ζ̂) =

dh

dζ̂
(z(ζ̂), ud(ζ̂))

dz

dζ̂
(ζ̂) = f(z(ζ̂), ud(ζ̂)), z(0) = z0

with ζ̂ = ζ̂(t) = 1 + δ̂(t) and δ̂(0) = δ̂0 ∈ [0, τmax], ensures
that the closed-loop system trajectories are asymptotically
stable.

Proof: This theorem directly follows from the results
obtained in the previous sections. The assumptions(A1) to
(A3) allow
• to guarantee the exponential convergence of the esti-

mation error since the conditions of Theorem 3.1 are
satisfied,

• to satisfy the condition(ii) of Lemma 4.1.
The fact that the pair(A,B) is controllable ensures that there
exists a gainK such thatA − BK is Hurwitz. We can thus
apply Lemma 4.1 and conclude on the asymptotic convergence
of the system trajectories.

Remark 5.1:This control law requires to keep in memory
the control signals emitted during the time interval[t−τmax, t].
Moreover, the calculation of the predictor horizon implies a
knowledge of the delay on the interval[t, t + τmax]. This last
assumption is most restrictive; it is satisfied
• for periodic systems, thanks to the knowledge of the

system behavior during the following period,
• for entirely deterministic systems, by using a state pre-

dictor on the delay (possibly nonlinear),

• in a more general way, by combining an observer and a
predictor on the delay.

Note that the transfer protocol algorithm can be used on
this level to make an aperiodic network totally deterministic.
Indeed, let us suppose that a source emits a preliminary signal,
of negligible size, informing of its intention to use the network
and waits during a timeτmax before emitting. The number of
sources planing to use the network is thus known in advance
and a model of the emission protocols and of the queue
management can be used in order to precisely predict the delay
behavior.

VI. CONCLUSIONS

In this paper, a state predictive approach has been used
to deal with network controlled system in the case where
the transmission protocol dynamic is explicitly used in the
model formulation. We have proved that such a system can be
stabilized with a state predictor, and have mainly focused on
the characterization of the prediction horizon.

Most part of this work are developed in [11], where an
application to the stabilization of an inverted pendulum is
presented. In this application, an observer is also needed to
estimation the state variable, in order to implement the state
predictive control law. The design of this observer, in the
framework of varying time-delay, and in connection to the
considered control scheme, is currently studied.
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dissertation, INPG/Laboratoire d’Automatique de Grenoble, Grenoble,
France, september 2005.


