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Abstract— In this paper, the problem of remote output
stabilization of networked control systems is investigated. The
network is considered as a time-varying delay in the commu-
nication channel. An average model of the delay dynamics is
supposed to be known and the unpredicted events occurring
on the network are introduced as a random input in these
dynamics. We propose a constructive control scheme where
the deterministic aspect of the network is explicitly taken into
account in a predictor-based feedback law. A stochastic descent
algorithm is then introduced to set the controller gain according
to the non-deterministic part of the delay dynamics. Some
simulation results are also presented.

I. INTRODUCTION

The remote output stabilization of systems controlled
through a communication network is considered in this
work. The network induces a time-varying delay in the
communication channel and is supposed to be secured (the
lost packets are re-emitted). We assume that this delay can be
modelled as a dynamic system composed of a deterministic
part and a colored noise, i.e. a filtered stochastic signal.
The deterministic part represents the average network be-
havior, which can be evaluated using some existing models
(see [1], [2] and [3] for examples), some round trip time
measurements [4], or be directly set by the user through
the transfer protocol and the router’s queue management
scheme in the specific case of dedicated networks. In order
to account for the multiple-users interaction, the difficulty to
model large networks (such as internet) and other unplanned
events occurring in the communication channel, we introduce
a stochastic signal as an exogenous input in the average
dynamics, which results in a delay with colored noise. The
control setup considered is presented in Figure 1, where
the system and the controller interchange measurements and
control signals through a lossless communication network.

The control method used in this paper is a predictor-
based feedback approach, which sets a finite spectrum on
systems with a deterministic time-delay in the input ([5],
[6]...). More precisely, we are interested in the results of
[7] and [8], where the time-delay model is explicitly used
in the control design. This control scheme is set with the
average network dynamics (no stochastic input) and allows
to cope with the deterministic part of the time-delay. Few
constraints are set on the choice of the controller gain, which
can be used to adjust the closed-loop system bandwidth to the
complete network dynamics, including its stochastic nature.
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Fig. 1. Overview of the control setup.

After an analysis of the effects of the delay model uncer-
tainties on the closed-loop system, we propose a stochastic
approach which sets the controller gain according to the full
delay dynamics (deterministic and stochastic). The resulting
control gain minimizes a cost function on the output error
signal under some robustness constraints imposed by the
stochastic behavior of the network. The advantage of this
method is then to propose a constructive approach which
takes into account the difference between the modelled part
of the network and some real measurements of the time-delay
while minimizing a cost function.

We consider the remote stabilization of linear systems with
a delayed input. More precisely, this class of systems writes
as

ẋ(t) = Ax(t) + Bu(t − τ(t)), x(0) = x0 (1)
y(t) = Cx(t) (2)
ż(t) = f(z(t), ud(t)), z(0) = z0 (3)
τ(t) = h(z(t), ud(t)) (4)

where x ∈ Rn is the state, u ∈ R the control input, y ∈ Rm

the output, A, B, C are matrices of appropriate dimensions
and ud(t), f(·), h(·) are known class C1 functions. The
pairs (A,B) and (A,C) are assumed to be controllable and
observable in the usual sense, respectively, but no assumption
is made on the stability of the open-loop system. The internal
delay dynamics representing the transmission channel model
is described by (3)-(4). The deterministic behavior of the
network is modelled by f(·) and h(·), while the stochastic
perturbations ε(t) are introduced in the input ud(t). We sup-
pose that these perturbations satisfy the following conditions

H1) ε(t) is a sequence of independent random variables,
H2) E|ε(t)|p exists and is bounded in t for each p > 1.
We also assume that the solutions of (3)-(4) have the follow-
ing properties for all t ≥ 0

τmax ≥ τ(t) ≥ 0 (5)
1 − ν ≥ τ̇(t) (6)

where τmax ≥ 0 is an upper bound of the time-variation of
τ(t) and ν > 0 is an arbitrarily small constant. Note that the
first property is ensured from the secured characteristic of the



Fig. 2. Delayed output feedback control setups.

network while the second one is a causality issue introduced
to deal with the deterministic part of the delay model.

Remark 1.1: If we consider the case of a dedicated multi-
user network, some priority level can be attributed to the
systems with the fastest dynamics or requiring higher perfor-
mances. This will induce a reduced time delay and sensitivity
of the average delay model to unpredicted events (the bound
on the perturbation is reduced).

II. STATE PREDICTOR CONTROL

We recall in this section the main results of [7] and
[8], where the deterministic behavior of the network is
compensated using a state predictor with a time-varying
horizon. Under the hypothesis that the time-delay model
is known, the finite spectrum assignment method allows to
remove the delay from the loop by transforming the open-
loop time-invariant delayed system into a closed-loop time-
varying system without delay. The time variation of the
resulting linear system comes from the fact that the delay
is time-varying. Two control setups are considered: the state
feedback case (the full state is available to set the control
law) and the output feedback case (only the delayed system
output is measurable).

A. State feedback with one delay communication channel

We first consider the control setup where the full state x(t)
is available at the sensor side. Defining δ(t) as

δ(t)
.
= τ(t + δ(t))

and considering the problem of state feedback stabilization,
the finite closed-loop spectrum is set with the control input1

x(t + δ) = eAδ
[

x(t) + eAt

∫ t+δ

t

e−AθBu(θ − τ(θ))dθ
]

u(t) = −Kx(t + δ). (7)

The resulting time-shifted closed-loop system writes as

dx(t + δ)

d(t + δ)
= (A − BK)x(t + δ) = Aclx(t + δ)

where Acl is the closed loop state matrix. The previous
equation is equivalent to

dx(t + δ)

dt
= (1 + δ̇)Aclx(t + δ)

1For simplicity sake, the time dependency of τ(t) and δ(t) will be
omitted. In the sequel, the notation τ and δ, will be used instead.

which is a time-varying system without delay since the state
matrix is now (1+δ̇(t))Acl and time-dependent. The stability
of this system is ensured by the following theorem, where a
dynamic computation of δ(t) is also proposed.

Theorem 2.1 ([8]): Consider the system (1) with (A,B)
a controllable pair. Assume that the delay dynamics (3)-(4)
is such that (5)-(6) hold. Then the feedback control law (7)
with

δ̇(t) = −
λ

1 − dτ(ζ)/dζ
δ +

dτ(ζ)/dζ + λτ(ζ)

1 − dτ(ζ)/dζ
dτ

dζ
(ζ) =

dh

dζ
(z(ζ), ud(ζ))

dz

dζ
(ζ) = f(z(ζ), ud(ζ)), z(0) = z0

where ζ(t)
.
= t+δ(t), λ is a positive constant and δ(0) = δ0,

ensures that the closed-loop system is bounded, and that the
state x(t) converges asymptotically to zero.

Remark 2.1: This control setup explicitely takes into ac-
count the deterministic part of the delay dynamics. This
ensures a full use of the available information on the network
behaviour and a reduced conservativeness compared to most
of the other control methods, where only the bounds of the
delay are taken into account.

B. Output feedback with two delay communication channel

We consider the delayed output y(t − τ1(t)) as the feed-
back signal, where τ1(t) is the system to control delay,
and assume that τ1 also satisfies the properties (5)-(6) since
both delays are parts of the same network. The assumption
that the full state is measurable is released by introducing
an observer-based controller, as presented in Figure 2. The
observer state x̂(t−τ1) is used to evaluate the state-dependent
part of the control law. Its dynamics is set by the following
Luenberger state-observer for system (1)-(2):

˙̂x(t − τ1) = Ax̂(t − τ1) + Bu(t − τ1 − τ(t − τ1))

+H{y(t − τ1) − Cx̂(t − τ1)}

Defining the resulting observation error

εo(t − τ1)
.
= x(t − τ1) − x̂(t − τ1)

the control law can be expressed as a function of the delayed
observation state x̂(t − τ1) as

u(t) = −K
[

eA(δ+τ1)x̂(t − τ1) + I(t)
]

where

I(t)
.
= eA(t+δ)

∫ t+δ

t−τ1

e−AθBu(θ − τ(θ))dθ

is the integral part of the control law, and E = A − HC is
a matrix with assignable eigenvalues (from the observability
property of the system).
The complete closed-loop dynamics including the observer
is

ẋ(t + δ) = Aclx(t + δ) + BKeA(δ+τ1)εo(t − τ1)(8)
ε̇o(t − τ1) = Eεo(t − τ1) (9)



The stability of this closed-loop system (detailed in [7]) is
ensured if both delays satisfy (5)-(6), τ̇1 > −1∀t and the
matrices Acl and E are Hurwitz.

C. Trajectory tracking

The previous results are easily extended to the output
tracking case. Let yr(t) be the desired trajectory to be
followed and assume that ẏr(t), is bounded and known.
Consider the system (1)-(2) and the particular case of system
with a relative degree one2, i.e. CB 6= 0. Assume also that
the resulting zero-dynamics of dimension n − 1 is rendered
stable by a first state feedback, following the notation in (7).
Then the following control law,

u(ζ) = −Kx(ζ) +
1

CB
[−CAclx(ζ) − kỹ(ζ) + ẏr(ζ)]

with ỹ(t) = y(t)− yr(t) and k > 0, leads to the closed-loop
output error equation

˙̃y(ζ) = −kỹ(ζ)

The stability of this equation follows from Theorem 2.1. The
resulting zero dynamics (ỹ → 0)

ẋ(ζ) =

[

A −
BC

CB
(A + kI)

]

x(ζ) +
B

CB
(ẏr(ζ) − kyr(ζ))

is stable due to the boundedness of ẏr(ζ), and the assumption
on k. Finally, by following the procedure detailed in the
previous subsection, the control law can be written as

u(t) = −K̄x(t + δ(t)) + ȳr(t + δ(t))

with

K̄ = K + C
(Acl + kI)

CB
= C

(A + kI)

CB

ȳr(ζ) =
1

CT B
[kyr(ζ) + ẏr(ζ)]

III. PERTURBED CLOSED-LOOP EQUATIONS

Denote by τ(t) (respectively τ1(t)) the actual time-delay,
and by τ̂(t) (respectively τ̂1(t)) the estimated one (obtained
from the delay model prediction), used to compute the
predictor’s horizon δ(t) and the control law. Robustness with
respect to inaccuracies on the delay prediction can be asset
as follows.

A. State feedback

Using the delay estimate τ̂(t), the control law is set with

u(t) = −Kp(t)

p(t)
.
= eAδx(t) + eA(t+δ)

∫ t+δ

t

e−AθBu(θ − τ̂(θ))dθ(10)

δ(t) = τ̂(t + δ(t))

The predicted state dynamics is obtained by deriving (10)
with respect to time. This gives:

ṗ(t) = An(t)p(t) + Ad(t)[p(t − τ̂) − p(t − τ)] (11)

2the results can be easily extended to other system with different relative
degree under the appropriate assumptions

with An(t)
.
= (1 + δ̇(t))(A − BK) and Ad(t)

.
= eAδBK.

Note that (11) is a time-varying delayed system, written in
the classical form, with two delayed states. A proper choice
of the feedback gain K that renders the matrix A − BK
Hurwitz is sufficient to stabilize the system if τ̂ = τ .
Otherwise, we have to find the proper feedback gain K that
takes into account the effect of Ad(t) in order to render the
system robust to uncertainties on the time-delay.

B. Output feedback

The observer-based control law is designed using the time-
delay estimates τ̂1(t) and τ̂(t), and the observer state x̂(t−
τ̂1). The observer state is obtained from the dynamics

˙̂x(ζ̂1) = Ax̂(ζ̂1) + Bu(ζ̂1 − τ̂(ζ̂1))

+H{y(t − τ1) − Cx̂(ζ̂1)}

where ζ̂1(t)
.
= t− τ̂1(t). The corresponding observation error

ε̂o(t)
.
= x(ζ̂1) − x̂(ζ̂1)

has the dynamics

˙̂εo = (1 − ˙̂τ1)[Âclε̂o + HC{x(t − τ1) − x(ζ̂1)}

+B{u(ζ̂1 − τ(ζ̂1)) − u(ζ̂1 − τ̂(ζ̂1)}] (12)

The control law is now set as

u(t) = −Kpo(t) + KeA(δ+τ̂1)ε̂o(t) (13)

where

po(t)
.
= eA(δ+τ̂1)x(ζ̂1)+eA(t+δ)

∫ t+δ

t−τ̂1

e−AθBu(θ− τ̂(θ))dθ

and the dynamics of the predicted state is derived as

ṗo(t) = (1 + δ̇)[(A − BK)po(t) + BKeA(δ+τ̂1)ε̂o(t)]

+
˙̂
ζ1e

A(δ+τ̂1)B[u(ζ̂1 − τ(ζ̂1)) − u(ζ̂1 − τ̂(ζ̂1))](14)

The closed-loop dynamics is then obtained from (12) and
(14) with u(t) given by (13). Note that if τ̂ = τ and τ̂1 = τ1,
this dynamics is equivalent to (8)-(9).

IV. STOCHASTIC DESCENT APPROACH

The aim of this section is to propose a numerical approach
to the robustness problem formulated above. Time-delay
uncertainty is modelled as a random perturbation ε which is
introduced into the average delay model τ̂(t) to obtain the ac-
tual time-delay τ(t). Using some previous results established
in [9] for the stochastic approximation problem, an algorithm
based on the stochastic gradient is proposed. This algorithm
computes an optimal (in the mean square sense) parameter
vector κ. The stability of the perturbed system depends on the
convergence of the proposed algorithm, which is ensured by
the so-called ordinary differential equation (ODE) method,
first introduced in [10].



A. Output error minimization using a stochastic gradient

A classical control problem is to find the appropriate
controller that ensures a reference trajectory tracking. This
is done in this section by choosing a cost function EεJ
which reflects the variance of the system output from a given
reference trajectory on a given time interval [0, T ], where
ε is a random process defined on the same interval. The
time interval has to be chosen large enough to ensure that
there is no drift on the system. Consider the system with the
measured output ym(κ, t, ε) where κ is the design parameter
vector. We want to find κ such that the system output is as
close as possible to the desired trajectory yref (t) in the sense
of the minimum of the output error variance. The variance
of output error yref (t) − ym(κ, t, ε) writes as

EεJ(κ, ε)

where Eε is the expectation with respect to random process
ε, and

J(κ, ε) =
1

T

∫ T

0

||yref (t) − ym(κ, t, ε)||2dt

The output error is then minimized for κ∗ satisfying

κ∗ = arg min
κ

EεJ(κ, ε)

This optimization problem can be solved with a stochastic
descent algorithm (see [11] for example), using the sensitiv-
ity of ym(t) with respect to κ

S(κ, t, ε)
.
=

∂ym

∂κ

The stochastic gradient writes as

∇J(κ, ε) = −2

∫ T

0

(yref − ym)T Sdt (15)

and the optimal parameter κ∗ is obtained by moving along
the steepest slope −∇J(κ, ε) with a step α, which as to be
small enough to ensure that

κ̇ = −α∇J(κ, ε) (16)

converges to κ∗. This step is chosen according to the damped
Newton’s method [12] and writes as

α
.
= (ΨJ(κ, ε) + υI)−1

where υ is a positive constant introduced to ensure strict
positiveness and ΨJ(κ, ε) is the pseudo-Hessian, derived
using the Gauss-Newton approximation as

ΨJ(κ, ε) = 2

∫ T

0

S(κ, t, ε)S(κ, t, ε)T dt

Remark 4.1: The convergence of the previous algorithm,
commonly used in least square problems, is ensured when
ε = 0 from the fact that ΨJ(κ, ε) ≥ 0 and the use of
the positive constant υ to compensate the singularity point
ΨJ(·) = 0. The convergence speed of the algorithm is
inversely proportional to the design parameter υ but choosing
this parameter too small creates some oscillations in the
solution κ(t) of (16).

This problem can be related to an identification problem,
where the unknown parameters are the design parameters.
It is well posed if the design parameters satisfy some
identifiability conditions, such as those proposed in [13] for
the case of time-delay systems.

B. Application to perturbed dynamical systems

The previous method is now applied to dynamical systems
where the dynamics is perturbed by a stochastic process ε
(i.e. a process with uniform probability distribution). The
main idea is to minimize J(κl, εl(t)) for various error
scenarios of εl(t), where l = 1 . . . N is the scenario index,
defined on the interval [0, T ] (ideally an infinity to get
the minimization of the variance EεJ(.)), to determine the
robustness of the closed-loop system with respect to the
stochastic process ε.
The system considered for each scenario writes as

{

ẋm = fm(xm, κl, εl(t))
ym = gm(xm, κl)

where fm(.) describes the closed-loop dynamics of the
model state xm(t) and gm(.) sets the output; both functions
are continuous. Furthermore, we suppose that the model
dynamics is such that the system has a bounded state for a
bounded input. In order to minimize J , we use the stochastic
gradient (15) where the output sensitivity function Sl is given
by

Sl =
∂gm

∂xm

∂xm

∂κl

+
∂gm

∂κl

where
∂xm

∂κl

is the state sensitivity, which is obtained by

solving on [0, T ] the ODE






ẋm = fm(xm, κl, εl(t))
d

dt

[

∂xm

∂κ

]

=
∂fm

∂xm

∂xm

∂κl

+
∂fm

∂κl

(17)

The stochastic descent algorithm is now used with the
damped Newton’s method to find the optimal parameter
vector κ∗, which is the solution of

κl+1 = κl − αl∇J(εl) (18)
αl = (ΨJ(κl, εl) + υI)−1

for l sufficiently large. Note that l sets the corresponding
error scenario εl and αl is the algorithm step established
with the Newton’s method.

Remark 4.2: The initial value of the parameter κ1 has to
be chosen so that the system (17) has a continuous solution
on the time interval considered. The proposed algorithm then
ensures that this parameter converges to its optimal value for
the set of stochastic perturbations considered.
The bound on the perturbations appears implicitly in the
algorithm since its convergence implies that the proposed
control setup can stabilize the system for the considered set
of perturbations. This is a numerical stability result.



V. FEEDBACK GAIN DESIGN

We now apply the previous method to explore the ro-
bustness of (1)-(2) controlled by (7) with respect to some
uncertainties in the delay model (3)-(4). This problem is for-
mulated as in Section III-A: the closed-loop state considered
contains the dynamics of the variables {p, δ, ẑ, τ̂ , z, τ}
and the design parameter vector is the feedback gain K(l).
In order to simplify this system, we consider the specific
case where τ(t) = z(t) and τ̂(t) = ẑ(t) (the general case is
easily obtained by introducing h(.) and its derivative). The
system model is then described by xm = [p δ τ̂ τ ]T and its
dynamics writes as

d

dt









p
δ

τ̂
τ









=













Anp + Ad[p(t − τ) − p(t − τ̂)]
−λδ + f(τ̂(ζ), ud(ζ)) + λτ̂(ζ)

1 − f(τ̂(ζ), ud(ζ))
f(τ̂ , ud)

f(τ, ud, εl)













(19)

where λ is a positive real and τ̂ ′(ζ) = f(τ̂(ζ), ud(ζ)) is
directly introduced in the derivative of δ.
In order to study the robustness of the predicted state with
respect to ε and according to (2), the system output is
ym(t) = Cp(t). Noticing that p is the only state of xm

depending on K, the sensitivity function is then given by

Sl = C
∂p

∂K

which is computed by solving the set of ODEs

d

dt

[

∂p

∂K

]

=
∂ṗ

∂xm

∂xm

∂K
+

∂ṗ

∂K

=
∂ṗ

∂p

∂p

∂K
+

∂ṗ

∂K

= (1 + δ̇)(A − BK)
∂p

∂K
− (1 + δ̇)BpT

+eAδB[p(t − τ) − p(t − τ̂)]T (20)

The solution of the previous equation can now be used to
compute the stochastic gradient ∇J from (15) and to find
the controller gain in (18) that minimizes the output error.

Example 5.1: Consider the second order system

ẋ(t) =

[

0 1
1 1

]

x(t) +

[

0
1

]

u(t − τ(t))

y(t) =
[

1 0
]

x(t)

with the average and the actual time-delays dynamics given
by

˙̂τ(t) = −2τ̂ +
1

2
v(t, 0), τ̂(0) =

1

4

τ̇(t) = −2τ +
1

2
v(t, εl(t)), τ(0) =

1

8

with v(t, εl(t))
.
= 1 + sin(πt) + εl(t) and

εl(t)
.
= [0.4 − 0.8rand(l)]rand(t)

where rand(i) is a random number between 0 and 1 com-
puted at the instant i, and l is the scenario considered.
The reference output is chosen as yref = 1 and the initial

0 5 10 15 20 25 30
1

1.5

2

2.5

Scenario Index l

Fe
ed

ba
ck

G
ai

n
K K1(l)

K2(l)

Fig. 3. Convergence of the controller gain.

0 2 4 6 8 10
−0.4

−0.2

0

0.2

0.4

0 2 4 6 8 10
0

50

100

150

200

250

0 2 4 6 8 10
0

0.5

1

1.5

ε1(t)

ε2(t)

τ̂(t)
τ(ε1, t)

τ(ε2, t)

y(ε1, t)

y(ε2, t)

yref (t)

time (s)

Pe
rt

ur
ba

tio
n

Ti
m

e
de

la
y

(s
)

Sy
st

em
ou

tp
ut

Fig. 4. System response to a stochastic error.

controller gain is K(1) = [1 1]. For each error scenario
l, the dynamic equations (19) are evaluated along with the
sensibility function (20) to compute the stochastic gradient
(15). The corresponding gain is then obtained from (18) with
υ = 1 and its convergence is shown in Figure 3. This figure
shows the effectiveness of the proposed algorithm, which
converges in about 10 iterations and remains almost constant
afterward (small variations due to the stochastic process).
Setting the controller gain to the final value obtained from

the proposed algorithm K(30) = [2.0602 1.6693], the
time-delay and the corresponding system output are com-
puted for the maximum and minimum error average value
and presented in Figure 4. More precisely, we consider the er-
ror scenarios ε1(t) = 0.4 rand(t) and ε2(t) = −0.4 rand(t).
Note that the system output converges instantaneously since
the system considered here is the predicted state (the delay
effect doesn’t appear in the initial output response). This
simulation shows the effectiveness of the proposed controller
to stabilize a system when a random error is introduced in
the delay dynamics.

VI. OBSERVER GAIN DESIGN

The stochastic descent method proposed in Section IV
is applied here to the observer-based control scheme to



determine the optimal observer gain that ensures the ro-
bustness of the closed-loop system with respect to some
uncertainties in the time-delay model. In order to simplify
the proposed results, we assume that both channels are parts
of the same network and induce the same time-delay in the
transmitted signal. This implies the following simplification:
τ1(t) = τ(t) and τ̂(t) = τ̂1(t). The closed-loop system is
described by the state xmo = [x po ε̂o δ τ̂ τ ]T and its
dynamics (derived in the previous sections) writes as

d

dt





























x
po

ε̂o

δ

τ̂
τ





























=































Ax(t) + Bu(t − τ(t))

(1 + δ̇)[Aclpo(t) + BKeA(δ+τ̂)ε̂o(t)]

+
˙̂
ζeA(δ+τ̂)B[u(ζ̂ − τ(ζ̂)) − u(ζ̂ − τ̂(ζ̂))]

(1 − ˙̂τ)[Âclε̂o + HC{x(t − τ) − x(ζ̂)}

+B{u(ζ̂ − τ(ζ̂)) − u(ζ̂ − τ̂(ζ̂)}]
−λδ + f(τ̂(ζ), ud(ζ)) + λτ̂(ζ)

1 − f(τ̂(ζ), ud(ζ))
f(τ̂ , ud)

f(τ, ud, ε)































(21)
with ζ̂ = t − τ̂ and u(t) = −Kpo(t) + KeA(δ+τ̂)ε̂o(t).
In order to get the sensitivity function S, we first have to
compute the state sensitivity with respect to the observer
gain H. Note that the first three states of (21) are coupled
while the remaining ones do not depend on (x, po, ε̂, H); it
follows that

∂xm

∂Hl

=

[

∂x

∂Hl

∂po

∂Hl

∂ε̂o

∂Hl

0 0 0

]T

Introducing the reduced state x∗

m(t)
.
= [x po ε̂o]

T , we have
the dynamics

d

dt

[

∂x∗

m

∂Hl

]

=
∂f∗

m

∂x∗

m

∂x∗

m

∂Hl

+
∂f∗

m

∂Hl

with

∂f∗

m

∂x∗

m

=







A −BK BKeA(δ+τ̂)

0 An eAτ̂Ad +
˙̂
ζeA(δ+τ̂)BKΦ(t)

0 0 (1 − ˙̂τ)[Âcl + BKΦ(t)]







∂f∗

m

∂Hl

=
[

0 0 (1 − ˙̂τ)C[{x(t − τ) − x(ζ̂)} − ε̂o]
]T

where

Φ(t)
.
= eA[δ(ζ̂−τ(ζ̂))+τ̂(ζ̂−τ(ζ̂))] − eA[δ(ζ̂−τ̂(ζ̂))+τ̂(ζ̂−τ̂(ζ̂))]

The system output is ym = Cpo(t) and the resulting
sensitivity function writes as

Sl = C
∂po

∂Hl

which is computed from (21) with

∂po

∂Hl

= [0 1 0]
∂x∗

m

∂Hl

For a given controller gain, the system gradient and pseudo
hessian are finally computed from the previous equation to
set the algorithm (18). The resulting observer gain minimizes
the output error.

VII. CONCLUSION

We formulated the problem of remote stabilization through
communication networks as a time-delay problem, where
the delays are time-varying and modelled as a dynamical
system with stochastic inputs. A control law based on a state
predictor with a time-varying horizon is used to compensate
the deterministic behavior of the network. The effect of the
stochastic perturbations on the closed loop system is then
modelled to design a stochastic descent algorithm based on
the Newton’s method. This algorithm allows us the find the
optimal gain which minimizes the difference between the
system output and a reference output. The state and output
feedback cases are both considered and some simulation
results illustrate the state feedback case.
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