CONFIDENTIAL. Limited circulation. For review only.

A Nonlinear State Feedback Design for Nonlinear Systems with Input
Delay

D. Georges, G. Besancon, Z. Benayache and E. Witrant

Abstract— This paper is devoted to the design of a nonlinear In [4] a passivity-based control scheme is proposed for
feedback law based on state prediction for nonlinear systems the stabilization of SISO nonlinear systems with input delay.
with input time-delay. We successively consider the case of 4 yever distributed-delay control laws for nonlinear systems

known constant time-delay and the case of time-varying delay in . .
the input. In the case of constant delays and as in the linear case has not yet been extensively studied. Other approaches have

(under the finite-spectrum assignment assumption), a nonlinear been proposed for special cases [5], [6], [10]. The goal of this
distributed-delay control law is obtained. Since the computation paper is to propose a control law based on the state prediction
of delay-distributed control laws remain a difficult problem in a way very similar to the case of linear systems with both
as in the linear case, we discuss a control law approximation constant and time-varying input delays. In the case of time-

which is derived by using both a state prediction approximation . .
and the ”dynamicyinvergion” of a fixeg point prot[))lgm. Inthe Varying delays, we extend the approach proposed in [9] to

case of time-varying delays, we extend the approach proposed the nonlinear case.
in [9] by using a control law similar to the linear case one,

together with dynamic inversion of a fixed point problem. ~ The case of constant time-delay systems is first presented
Finally two illustrative examples are provided that demonstrate  in section Il. Then the case of time varying delay systems
the effectiveness of the approach. is discussed in section Ill. In section 1V, we illustrate

the effectiveness of the proposed feedback laws with two
Keywords: Nonlinear control, nonlinear time-delay sys-simulation examples. Finally, some conclusions are given in
tems, state feedback, state predictor. section V.

I[I. ASTATE FEEDBACK FOR NONLINEAR

| INTRODUCTION SYSTEMS WITH CONSTANT INPUT DELAY

A good motivation among others for the study of dynamic consider the following nonlinear system with input delay:
systems with input delays may be found in the fact that

input delays can strongly impact the performance of control &(t) = F(az(t), u(t — 7)) 1)
systems. The development of Networked Control Systemghere z(t) € R" is the stateu(t) € R™ is the control

(NCS) or djstributed control systems is one of the majornput’ T is a constant delay supposed to be known &his
sources of input delay occurrences [9]. a continuously differentiable function. The origin is supposed

Time-delay systems are known to be infinite-dimensiond be an equmbrlum point _Of the systen#’(0,0) = 0) and
systems. In the linear case, a time-delay system has e system is not necessarily stable. Furthermore, we suppose
general an infinite number of eigenvalues. Control laws ha\}Qaﬁ the sys(;cerr? doesdncl)t e)éh'b't any *finite escape time”
been proposed to assign a finite number of eigenvalues t?r? avior and the non delayed system
cloged loop [3]. This approa_lch is called t_hg finite spectrum (t) = F(z(t),u(t)) )
assignment problem. Solutions to the finite spectrum as- tabilizable via state feedback
signment problem are obtained in term of delay—distribute@ stabilizable via state feedback.
control laws. However, the implementation of distributed-
delay control laws is difficult due to the integral term whichA- PROBLEM STATEMENT

cannot be computed explicitly. In [3], it is suggested to ap- We seek for the design of a state feedback law in order

proximate the integral by a sum of point-wise delays by usin% stabilize the system in closed loop. Our goal is to extend

a quadrature rule. However this approach may fail due ) .
the occurrence of unstable poles introduced the discretizatit(t?gle so-called finite spectrum assignment approach already

procedure [8]. The use of block-pulse functions has also begﬁ/a"able for linear input-delayed systems.

proposed in [1]. More recently, a safe implementation of This approach is based on the following principle: firstly
delay-distributed control laws has been proposed by usingaaprediction of the state over one delay interva(t, t + 7)
low-pass filter in the control loop [7]. is computed from the available statét) at time¢ and input
controlsu(f), 6 € [t — 7,t]. Then the predicted state is
The authors are with Laboratoire d'Automatique de Gren0b|9used to Compute the control law. Consequently the effect of
UMR 5528 INPG-CNRS-UJF, ENSIEG, BP 46, 38402 Saint Mar- " ish 1 the closed- "
tin d’'Heres cedex{didier.georges, gildas.besancon, the delay vanishes and the closed-loop system Is no more a

zohra.benayache }@inpg.fr time-delay system.
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In order to illustrate this approach, consider a linear systethe origin and a continuously differentiable functidn :
with input delay D — R (resp. there exists a continuously differentiable
function V : R™ — R) such that
@(t) = Az(t) + Bu(t — 1) 3) — R

V(0)=0and V(z) >0, Vz € D — {0}

where the pair A, B) is supposed to be controllable ard (resp. Vo # 0) (10)

is not necessarily Hurwitz.

.oV
Clearly, if the state feedback(t) = K, (t,t + 7) is V=5 F@ &) <0, Vo € D — {0}
applied to the system, the closed-loop system is given y (resp. Vz # 0 and ||z|| — o0 = V(x) — o0). (11)
i(t) = (A+ BK)x(t) (4) Then the control law given by
which is no more a time-delay system. Since the system u(t) = (W (x(t), {u(®) }oeft—r.1) (12)

is controllable, K can be computed in order to assign aensures that the delayed system (1) is locally (resp. globally)
finite stable spectrum to the closed-loop system, using a pagymptotically stable around the origif’. is a Lyapunov
placement technique or any state feedback designi or function of the closed-loop system

He. design for example). b= F(a, ®(U(e(t), (u®}ocp—rg))-  (13)

Tp(t, ¢+ 7) Is formally given by Proof: Immediate from the previous discussion.

zp(t,t+ 1) = e a(t) +/ e’ Bu(t — 0)do.  (5) The computation of control law (9) remains a difficult

0 issue sincel is a very complicated integral operator (more
than in the linear case). We can observe that (9) can be
viewed as the on-line computation of a fixed point of the

u(t) = K{eATa(t) + / Byt — 0)dey.  (6) Torm ult) = I(u(t), z(t), {u(6)}oefi-r.s).
0

Then a distributed-delay control law is given by

. _ _ Now we focus our attention on the practical implementa-
A similar approach can be also applied to nonlinear systemson of control law (9), based on these observations.

If we suppose that a smooth state feedba@h = @ (z(t))
is available for the non delayed system (2) ensuring th&t- NUMERICAL APPROXIMATION OF THE FEEDBACK

the closed-loop systent = F(z,®(z)) is locally (resp. LAW

globally) stable, a prediction of the state at time 7 has to i ) i

be performed in order to cancel the effect of the time-delay 1€ @pproximated computation of the predicted state
(t,t + 7) can be performed with any consistent and

and to get a locally (resp. globally) stable finite-dimensional® Lt +7) , , O
closed-loop system also defined ty— F(xz,®(x)). The CONverging integration method in principle. However we

main issue remains the computation of the predicted stapgould only consider unconditionally stable methods, which
2,(t,t +7), which is given by are not sensitive to the integration step in term of stability.
p\™ '

Here we consider one step of the backward Euler method
(the implicit Euler method) which will give a approximation

t+7
p(tt+7) =2(t) +/t F(ay(,6),u(0 = ))db - (7) of the predicted state,(¢,¢ + 7) according to

wherex,(t1,t2) is the prediction ofr at timet = ¢, based Ep(t,t+7) =a(t) + TF(&p(t, t + 7), u(t)). (14)
on the values of botkk andw for ¢ < ¢;. The predicted state
zp(t,t+ 7) may also be defined in term of an operator The problem is now to compute on-line the fixed point
X)) = W), 2Tt t+1))7T, solution of
spltt 1) = V() (O oerg) (@) )= LIRS
Tp(t,t+7) =a(t) + TF(&p(t, t + 1), u(t)), (15)
Finally, the control law is given by u(t) = ®(x(t) + 7F (&t t +7),u(t))) (16)
u(t) = ®(V(x(t), {u(®) }oer—rn)) (9) Which is of the general forhn
X(t) = H(X(t),z(t)). 17)

which is very similar to (6).

Computation of a fixed point can be traditionally per-
formed by using a Newton-Raphson method, but this tech-
nique is time consuming and therefore not appropriate for on-
line computation. Here we propose another approach based
Theorem 1:Suppose that there exists a smooth state feedn "dynamic inversion”.

back ®(x) ensuring that the non delayed systei =
( ) g y y ar(t) 1We could also consider several steps of any implicit integration schemes.

F(x(t), u(t)) i$ I_ocaIIy (resp._ gIOba”y) asymptOtica”y_ S_table In that case, the fixed point vector will include additional discretization
around the origin: There exist a domaihC R™ containing states.

B. STABILITY RESULT

We are ready to state the following stability theorem:

Preprint submitted to European Control Conference 2007.
Received October 16, 2006.



CONFIDENTIAL. Limited circulation. For review only.

Suppose that we seek for the solution @fz,t) = 0, 7) = z,(¢,t+7) with £, (¢, t+7) here obtained from a simple
whereG is a nonlinearC*-function: R™ x [0, +00) — R™  implicit Euler integration scheme. We will now establish a
and the Jacobian matr% is supposed to be invertible. The technical result defining the structure of the erfQ(t,t +
main idea is now to compute the solution of the differentiar) — z, (¢, t + 7).

equation " i . .
Gt AG =0 (18) Proposition 2: The errorz,(t,t + 7) — z,(t,t + 7) is of
the form

whereA is any positive definite matrix ensuring the asymp- b (t 1 (bt _E " 23
totic stability of this equation. In the coordinates (18) is Bty 4 7) —ap(tyt +7) (7 2(t)), (23)
equivalent to with E(7,0) = 0.

oG . 0G Proof: From (15)-(16) and using the implicit function

ox T ot +AG(@,1) = 0. (19) theorem, we can prove that there exists a funciiguch that

Zp(t,t + 1) = ¥(x(t)). Furthermore, under the assumption

Since%—c has full rank, (19) is equivalent to , ) .
v that vector fieldF' is analytic,z,(t,t + 7) can be expressed

1 . .
s 96T [3£ +AG( )], 20) in Taylor series
ox ot i
The motivation may be found in the fact that if the initial p(t,t +17) )+ Z 5 dtt

statex, is solution of G(z,t = 0) = 0, then the trajectory
x(t) of (18), is solution ofG(x(¢),t) = 0, V¢t > 0. Since (18) We can conclude that, (¢, + 7) — xp(t, t+ 7) depends on
is asymptotically stable, even when the initial state is not hoth + and «(¢). Since F(0,0) = 0, E(r,0) = 0.

solution of G(z,t = 0) = 0, z(¢) will reach asymptotically Wi | h iv that the closed-l
the manifold G(z,t) = 0, since the solution of (18) is b € can asolls ow easily fa;t N Cd?j,S? -loop s;t/)st(?m
Gla, 1) = e=2MG(2(0),0) and lim G(x(t),t) = 0 for all ecomes a nonlinear system with an additive perturbation

term depending on the delayed statg¢ — 7). Indeed, the

A > 0. A can be used to control the speed of CONVergenceygad- _loop system can be expressed as

Application of this approach to (17) leads to the state-i,(t) = F(z(t),®W(z(t — 7))))
prediction-based control law given by — Pla(t), (2(?)))
X = - O ) ue - 7)) HF((t), B((a(t — 7)) — Fla(t), ®(x(1)))
CAX — H(X, 2(t)))] 1) = F(z(t),®(x(t))) + P(x(t),z(t — 7)) (24)
u(t) = ( Ia 0 )X(t) (22) We are now ready to state the following stability theorem:
with OF OF Theorem 3:If the following conditions hold:
T— T—
OH _ u Oz 1) There exists a smooth control laand a Lyapunov
0X 0P OF 8<I> OF function V(z) such that the following assumptions
Tor ou o oz hold [2], Vz € D, where D C R"™ is a domain that
and contains the origin:
I o allz]® < V(z) < e
OH
o | oo | o PO pe, a@)) < —elol?
0
) 1228 < oy
(21)-(22) is nothing else but a dynamic state feedback. wr.were Cax . —C 4and ¢, are some positives scalar
1, €2, €3 4
numbers.

D. DISCUSSION ON THE STABILITY OF THE APPROXI-

MATE FEEDBACK 2) The perturbation termP(x(t),z(t — 7)) satisfies

[P(x(t), z(t — 7)) < yll=(t — 1), va(t) € D (this
condition may be derived from proposition 2 together

An important issue is to establish that state feedback (21)- with a first-order Taylor development i)

(22) can stabilize the system in closed-loop.

Firstly we will consider the case when the fixed poin@nd if the perturbation is such that< =2, then the closed-

problem (15)-(16) is supposed to be solved at each timeloop system is locally asymptotically stable

without dynamic inversion. . .. .

Proof: We introduce the Lyi;tpunov-Krasovsku function

In this case, the main source of approximation comes from cand|dateW(a:t) V() + %3/ 2(0) 240, wherez, —
t—7

the fact that we only get an approximate prediction:(f+
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xz(t+0),0 € [—7,0]. The time derivative oW is given by This condition is used to ensure that a control inp(#)
can be computed since in this cagg—7(t+4(¢))+6(¢t)) =
. |4
W = oV (2) F(z,®(z)) + 9 (x)P(x(t),x(t —17)) u(t) [9].
ox ox
+ %[Hﬂﬂ(t)ﬂz — ||z (t — T)||2], (25) We will show that the stability of the closed-loop system

expressed in the time coordinate- 6(¢)
Tt + () = Fa(t +(t), D(z(t +6(t)))) (35)

can be guaranteed under some conditions, if there exists a
smooth feedback(z) ensuring the closed-loop stability of
the non delayed systen(t) = F(z(t), u(t)).

Using the two conditions, we get
W< —ella@®)) + carlle@)|l|z( =)l
C
+ Sl et = D)) (26)

W< —( [lz®l [zt —=7)I) The main issue also remains the computation of the

y %3 —@% < lz()] ) predicted stater,(¢,t + d(¢)), which is given by
C .
—04% 53 [t =7l

t+o(t)
2y (14 8(1)) = x(t)+/t Flay(t, 0), (6 — 7(8)))d6.

(36)
The predicted state,,(t,t + 6(t)) may also be defined in
"term of an operator

(27)

Using Sylvester’s criterion, we get a sufficient conditio
for W to be negative definite:

c3 Lp (tat + 5(t)) = ‘Il(x(t)a {u(e)}ee[tfr,t]) (37)
7 < )
that concludes the proof. Finally, the control law is given by
Now we have to establish closed-loop stability of the u(t) = ®(W(x(t), {u(f) oci—r)) (38)

dynamic control(21)-(22). For this goal, we can invokeWhich is very similar to (9)
Tikhonov's singular perturbation theorem [2]. Indeed, for y '

A = Mg, with A > 0 large enough, the system in closed-loop

with (21)-(22) is a singularly perturbed system: B. STABILITY RESULT

z(t) = F(z(t),ult—r1)) (28) In order to prove closed-loop stability, we need the fol-

X = (I 87H)_1[€87HF(x(t)7u(t _ ) lowing technical result:
0x O Theorem 4:Consider the following nonlinear system
—(X = H(X, z(1)))] (29) ‘ ¢ y

ut) = (1o 0)X(t) (30) 2'(¢) = f(=(C)) (39)

with e — & where'(¢) = f£2(¢), with ¢ = ¢+ 4(t) for ¢ > 0 and
A 5(0) = dp.
I1l. A STATE FEEDBACK FOR NONLINEAR If the three following conditions hold:

SYSTEMS WITH TIME-VARYING INPUT DELAY ) .
1) There exists a Lyapunov functidri(z) such that the

A. PROBLEM STATEMENT following assumptions hold [2)yx € D, whereD C
R™ is a domain that contains the origin:
In this section, we consider the following problem o ci|lz)? < V(x) < co|z|?
(1) = F(a(t). ult = 7(1)) (31) V) L) < ool
=Gt 7) (32) ' ox =
0<7(t) < Tinas (33) wherecy, co andcs are some positives scalar numbers.

sup 7(t) < 1. (34)

tert 2) co > b6y > 6(t) > 0 (this assumption holds if

Again we suppose that the system does not exhibit any 0<7(t) < Tmaz)

finite escape time” behavior. 3) 0 > 4(t) > —1 (this assumption holds if

In fact the idea of state prediction is still applicable in this sup,cp+ 7(t) < 1)
case. However the prediction horizon cannotrbanymore
but a time-varying prediction horizof(t) such thatj(t) = then, .
ot + 8(1). im [l (t +6(8))| =0,
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Yt > do. Zp(t,t + 6(t)) induces a perturbation depending on the
delayed state. The closed-loop system can be expressed as

w(t) = F(z(t), 2((z(t —7))))

Proof: Firstly we note that

d d .
Q) = O +5(0) 1 (0)) — Plt), d(x(1)
Then the time derivative of the Lyapunov function: HF(2(t), 2(¢(x(t = 7)) = Fa(t), (x(t))]
. v = F(z(t),2(x(t))) + P(z(t), z(t — 7)) (43)
V=010+ 5(t))37f($(0)' Theorem 6:1f the following conditions hold:

From the second assumption of condition 1), one gets 1) There exists a smooth control laiand a Lyapunov

V< —(145(1)es||z(O)]% function V() such that the following assumptions
B hold [2], V& € D, where D C R™ is a domain that
Substituting assumption 1 of 1) in the last inequality and contains the origin:

integrating fromoO to ¢, one gets . cllzl? < V(2) < ez

V(t) < V(0) exp(=¢(t)), OV (x

o P09 pra, o)) < sl
where: . 8bL( )
c : V(x
o =2 [ (@) N5 < el
) ) ) 0 S ) where ¢1, ¢, ¢3 and ¢4 are some positives scalar
Again using assumption 1 of 1), the following inequality numbers.
holds , e , 2) The perturbation termP(z(t),z(t — 7)) satisfies
[z(O" < allx(éo)ll exp(—a(1)). |P(z(t), z(t — )| < yllz(t — 1), Va(t) € D

One can establish that(t) — +oo, whent — +oo, since and if the perturbation is such that< vI — 7-2, then the
. .. C
o(t) = ;(f +4(t) — &), whered is positive and bounded ¢josed-loop system is locally asymptotically stable.

2,..
from condition 2). We can now conclude that, . . .
Proof: We introduce the Lyf;lpunov-Krasovsku function

Jim (e +3(6)] =0 candidateV () = V() + 5 [ [o(6)|d6, wheres, -
. t_T. . . -
This result may be applied to demonstrate the stability oaf(t +0),0 € [=7,0]. The time derivative ofV" is given by
the closed-loop system: W 3V($)F(I7 B(z)) + aV(z)P(g:(t), ot — 1))
. . Ox ox
Corollary 5: Under the conditions of theorem 4 and if the c3 2 . N 2
system does not diverge in finite time, the closed-loop system + E[Hx(tm = (@ =7@)lla(t =7 (44)

(31) with (38) has a bounded trajectory which converge

Bsing the t diti ne Ft) =7 <1 t
towards0. If the conditions of (4) hold globally, then the sing the two conditions andip,p+ 7(t) = 7 < 1, we ge

convergence property holds globally. W < —es|lz®)? 4 cayllz()|| ||zt — 7))
C .

Proof: Immediate. If the system does not diverge in finite + g[”x(f)\\z — (1 =7@®)|l=(t = 7)]*). (45)
time, 2(dy) is bounded for every bounded, then the result
holds. W< —(Nz@)ll =7 )

C3 i
C. NUMERICAL APPROXIMATION OF THE FEEDBACK [ 2“2, ( (@)l )
LAW 704% 1-1% la(t —7)]|

An extension of (17) is possible by including the fixed (46)

oint problemé(t) = 7(t + d(t
P P () =( ®) Using Sylvester's criterion, we get a sufficient condition

5(t) =7(t+4(t)), (40) for I to be negative definite:
Ep(t,t+0(t) =x(t) + () F(2p(t, t +0(2)),u(t)), (41) v < mci
u(t) = ®(x(t) + @) F(Tp(t, t +0(1)),u(t))). (42) C4
that ludes th f.
Then a dynamic feedback similar to (21)-(22) can be derive(ra concludes the proo
Stability of this feedback can be performed in a manner Again Tikhonov’s theorem can be invoked to prove stabil-

similar to the case of constant input delays. We can shoity of the dynamic inversion of the dynamic controller based
that the approximation of the predicted statetat 6(¢), on the so-called dynamic inversion.
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IV. SOME ILLUSTRATIVE EXAMPLES B. STABILIZATION OF THE SIMPLE PENDULUM WITH
TIME-VARYING INPUT DELAY
In order to demonstrate the effectiveness of the here-
proposed approach, we consider the control of a simple We consider the following control problem:
pendulum. We suppose that the control input is delayed.

ii(t) = x2(l)
The dynamics of the studied simple pendulum is given by:  @2(t) = —x2(t) —sin(z(t)) + u(t — 7(t)) 51)
. y = n
21(t) = 22(t) 7)) = 1+0.5cos(t
Ea(t) = —x9(t) —sin(zq1(t)) + u(t) 47) ®) ®)
y = 1 The dynamic feedback (21)-(22) based on both (48) and (40)-

(42) is simulated withA = 10, ky = 2, k; = 1 andz{ = I.
The nominal control (without input delay) is obtained fromThe figure 2 shows that the system is stabilized.
input-output linearization:

u = ®(x1,29)
= ,Ig(t) + Sin(l‘l(t)) — klzg(t) — kg(il(t) — If) 1'47
(48)

)

This control law renders the system equivalent to

pendulum angle (rad
o
>

§+ky+ko(y—af)=0 (49)

Obviously, the closed-loop system is asymptotically stable Fig. 2. Pendulum angle response
for any positivek; andk,. (48) will be used in what follows.

A. STABILIZATION OF A SIMPLE PENDULUM WITH V. CONCLUSIONS

CONSTANT INPUT DELAY -
A novel approach based on both state-prediction and the

We consider the following control problem: so-called "dyngmic inversion” has been propqsed for .the
) control of nonlinear systems with constant or time-varying
#i(t) = w2(t) _ input delay. The effectiveness of this approach has been
Ta(t) = —xa(t) —sin(z1(t)) + u(t —7) (50)  demonstrated on two illustrative examples.

y = 1

. Future works will be devoted to observer-based control
The dynamic feedback (21)-(22) based on both (48) and (13jesign using this approach and to state-dependent input
(16) is simulated withr = 1, A = 10, k; = 2, ko = 1 and delayed systems of the form:
d s

x{ = 3. The figure 1 illustrates the effectiveness of the

control. @(t) = F(x(t), u(t — 7(z(1))))- (52)
Again in this case it seems to be possible to introduce a

dynamic state feedback based on the solution of a fixed point
problem.

t=1s
1.4 T
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