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Abstract— In this paper we investigate the problem of remote law that explicitly takes into account an estimation of thes
stabilization via communication networks involving some ime- delays. We consider also that the remotely controlled syste
varying delays of known average dynamics. This problem ares 5y he ynstable, as the teleoperation of open-loop unstable
when the control law is remotely implemented and leads to . ! . .
the problem of stabilizing an open-loop unstable system wit systems with time-varying delays has bee_n scarcely studied
time-varying delay. We use a time-varying horizon predicto  Yet. Airplane drone and tele-operated vehicles are example
to design a stabilizing control law that sets the poles of the of open-loop unstable and remotely controlled systems.
closed-loop system. The computation of the horizon of the  An interesting survey on time delay systems is proposed in
predictor is investigated and the proposed control law exptitly [7], where different control laws are compared. The control
takes into account an estimation of the average delay dynams. ’ - . . ’ .

The resulting closed loop System robustness with respect to @PProach developed in this paper is based on the design of
some uncertainties on the delay estimation is also consicemt. @ State predictor. Compared to other latency compensation
Simulation results are finally presented. methods, such as the one proposed in [8] (based on output
_ Index Terms—Networked control systems, stabilization with feedback and GPS synchronization), the advantage of aatontr
time-varying delays, state predictor. strategy based on the use of a state predictor is to allow for a
“pole-placement” on the closed-loop system.

. INTRODUCTION The state predictor is used in [9], [10], [11] to achieve a

fg}ite spectrum assignment on systems with delayed output,

The networked control systems constitute a new class ‘ out. Th . K lized in 11 X
control systems including specific problems such as delaféae or input. The previous works are generalized in [1H#) wi

loss of information and data process. The problem studied n{e_concept of system reductiqn (infini'Fe fo finite _spectrgm
this paper concerns the remote stabilization of unstabwlopass'gnmem)' The problem of time-varying delays is studied

loop systems. The sensor, actuator and system are assuméj e specifically in [13], which predictor is included in a

L : L
be remotely commissioned by a controller that interchang control scheme in [14]. The explicit use of the latency

measurements and control signals througbsaless commu- V”"%mic.s in the computation of the predictor's horizon is
nication network (all lost packets are re-emitted). We assu detailed in [15], [16], where we supposed that a network rhode

that the communication network has its own dynamics, a s available. These results are first summarized to describ

that an estimator or a model for the average induced tim e 'de‘?" case and then extendgd to t.he case where only an
delay is available. As an example, the CUMSUM Kalmaﬁsumat_'or_] of the network latency is a""’?"ab'_e to S?t thetm:ﬂ)n
filter proposed in [1] can be used to estimate the delay fro w. This is done thanks to an app_roprlate investigatiorhef t
some measurements of the round-trip time or of a sing(f osed-loop system robustness with respect to some latency

channel delay. Another possibility is to estimate the delaﬁﬁt'mat'on errors. )
from some established model, such as those proposed in ZTh_'S paper 1S organized as follows. The coqt_rql prob_lem
[3], which are derived for local networks where the transf nsidered is formulated as the problem of stabilizing atim

protocol (TP) is set by the users and where a router (Whigﬁlay system with a state predictor which has a time-varying

can possibly inform the emitters of the instantaneous que Qrizon in section I. The computation of the horizon and the

length) manages the packets explicit use of the average network dynamics is investigated

Some experimental results [4], [5], [6] on control ovein, section Ill. The robustness. of the resulting control petu.
networks llustrate the fact that latency and jitter have With réspect to some uncertainties on the network model is
crucial effect on the closed-loop performances, while ficat presented in the section, along with a simulation example.
solutions can be used to reduce the effect of packet losses to
an acceptable level. Our work is then focused on the compen- Il. PROBLEM FORMULATION

sation of the delays induced by the network with a control . . . —
y y Before dealing with a particular transmission protocol dy-
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u(t — 1) x(t) 1(b), then we can set the control law

= Linear System— ¢
ult) = —K et —n(t) + eAt/ e 9 Bu(6)db
t—11
I~ Network ] — _Ka(t)
] wherer; (t) is estimated or directly measured. Keeping track
| State Predictor of the control input during the timé — 7, ¢], the resulting
u(t) Copat\roller closed-loop system has the dynamics
() i(t) = (A — BK)a(t)

—| Linear System

and the remote stabilisation problem reduces to a tradition
pole placement problem. An error in the predictor compatati

[ Network |71 (t) only introduces a consideration on the robustness withegtsp

to some disturbances on the input signal. A setup with two

S Predi delays is studied in an observer-based control scheme |n [15
tate Predictor__ but will not be presented here.
u(t) Controller | x(t —m)

A. Control design

Due to the inherent time-variation of the delay considered

here, it is not possible to design a controller that imposes a
. invariant closed-loop spectrum. Instead, under certainakwe
At = G0 uab), 2(0) =z 3) conditions, we are aEIeEcJo set the eigenvaluestaie-varying
shifted system, or equivalently we transform the time-invariant
_ _ _ delayed unstable open-loop system, into a stable timeingry
wherez c R" is the internal statey € R is the control jinear system. The control design proposed here is simolar t
input,y € R™ is the system output, and, B, C' are matrices he one used in [13] in an adaptive control context.
of appropriate dimensions. The paifd, B) and (4,C) are The system transformation is done by replacing the current

assumed to be controllable and observable, respectivlyl b time ¢ by the shifted time coordinate+ &(¢) in (1), which
may be unstable. The signa)(t) and the functiong(-) and (esyits in

h(-) are assumed to be some known continuous functions in

this nominal case. These hypothesis will be relaxed later ofi’ (t+0(t)) = Ax(t+5(t)) + Bu(t+0(t) —7(t+4(t))), (7)
the paper (section IV), where only the estimated dynamies here 2
taken into account. Equation set (3)-(4) describes therate
delay dynamics representing the transmission channel.
assume that all solutions of model (3)-(4), have the foliayvi
properties for allt > 0 5(t) =7(t+ (1)) (8)

and considering first the problem of state feedback stabiliz

Fig. 1. Time-delay on the actuator (a) and measurement ¢bpls.

(1) = h(z(t),ua(t)) (4)

(1) is the derivative ofxz(-) with respect to its
ar%ument and(t) is a bounded and positive time-depending
unction. Definingd(t) as

Tmaz = (1) Z 0 ) tion, the eigenvalues of the time-varying shifted systejra(e
1—v>17() (6) set with the control input
t+6
where .4, > 0 is an upper bound of the time-variation of;(¢ + 5) = ¢4 [x(t) + eAt/ e 9 Bu(6 — 7(6))do
7(t) andl > v > 0 is an arbitrarily small constant determined t
by the delay dynamics. These two conditions on the delay u(t) = —Kz(t+4(t)). 9)

are a direct consequence of the fact that we consider reliag, resulting closed-loop equation is then
transmission networks. To understand this, first note thet t
time-delay considered is the latency experienced by thestra 2'(¢t +6(t)) = (A — BK)z(t + 0(t)) = Aqx(t +46(t)) (10)

;nr:tt;]de Ség?vil;ind[:rrg;y t?]?s dp;g?nrfgtf f\:%r\:;tie fﬁ:?;nrget?]sal:“\:?v ere A is the closed loop state matrix, that can be made

the signal considered is blocked in the communication IinHkurWItZ by the controllability hypothesis on tifel, ) parr

indefinitely since the latency grows as fast as the currem ti . )

t, which contradicts the lossless data property. B. Sability analysis

The control setup is presented on Figure 1(a). This specificThe stability analysis of the time-varying system (10) and
location of the delay, between the control setup and thesyst the resulting constraints on the dynamicsi@) is detailed in

is motivated by the fact that most of the destabilizing dffethe following Lemma, which proof is given in [16].

and technical difficulties to solve the problem come frons thi Lemma 2.1: Assume thaBi(¢) satisfying (8), such that the
delay location. Indeed, if we consider an induced delgy) control law (9) applied to system (7) leads to the closegloo
located between the system and the control setup, as ingFigiarm (10). Then if the following conditions hold:



1) All the real parts of the eigenvalues of.; are in the 4 converges asymptotically t6. In order to prevent for the

open left hand side of the complex plane, numerical instabilities, the dynamics eft) is defined as
ii) 00> dp > 6(t) >0
i1) oo > p > S(t) > —1 with p an arbitrarily large positive $(t) + As(t) =0 (12)
constant.

then,lim; . [[z(t +6(¢))|| =0 V ¢+ 46(t) > do with 6o = where X is a positive constant. Taking the derivative of (11)
6(0) and for all bounded values af(d). Furthermore, the with respect to time and substitutingin (12), we obtain
statex(t + 6(¢)) is exponentially stable.
The stability result of the pervious lemma is applied to the N 1 : S A 13
system considered thanks to the following proposition. 0= (A +0)+A0=7(¢) =0 (13)
Note that the hypothese@i) and (iii) of the previous
Lemma are always satisfied for the delay models defined B
(3)-(4) and satisfying the conditions (5)-(6). Indeed, byyesis
(i) is clearly satisfied from the definition éf¢) and (5) while Satisfied if’(-) # 1 and the variation lawd (1) is set with
(7i7) is obtained from (6). More precisely, taking the time- A R )
. . . . /
sv?irtl(\e/atlve of (8) and from the fact that(t) # 1V, we can 5ty = — M T () +A7(¢) (14)

hereg( ) =t +6(t) and7'(-) is the derivative ofr(-) with
é’spect to its argument. From the previous equation, (12) is

1—7(¢) 1=7'(¢)

L —dr(¢)/d¢ This explicit expression for the dynamics étt) then ensures
Hypothesis(iii) is then satisfied if that the approximate?(t) converges to the desired value
dr(¢)/d¢ 4(t), and that the functiors(t) exponentially converges to
-1< m zero. The convergence speed can be set arbitrarily fast by

choosing sufficiently small, and we directly use the delay
The left part of this inequality clearly always holds since dynamics €(¢) and7'(¢) are given by (3)-(4)). To illustrate

dr(¢)/d¢ the computation 05 consider the case wherdt) = z(t):
dr(¢)/d¢ —1 < dr(¢)/d¢ < -1 < T=dr(¢)/dc (14) is then set using(¢) = z({) and 7/ ({) = 2/({) =
| _ o F((8), ua(d)).
and the right part is also satisfied since (6) implies The influence of the dynamics aft) introduced in (11) on
1 1 dr(¢)/d¢ 1—v the closed-loop system is studied with the following lemma,
o 2 W and 1— dr(¢)/dC B which is a synthesis of the results presented in [17].

Lemma 3.1: Consider the closed-loop system described by
. 1—v s
Choosingp = —— finally ensures thap is finite, from the R
properties ofv. v 2 (t+0) = Aqz(t+0)+BK[z(t+0)—z(t+9)], x(0) = z0

We can then conclude on the stability of the closed loop (15)
system with the following corollary, which summarizes thavith 4 obtained from (14). If

previous discussion. _ « 7(t) satisfies the properties (5)-(6),
Corollary 2.1: The control law (9) applied to the system | 4 'is a Hurwitz matrix

(2)-(4), where the delay satisfies (5)-(6), has a bounded so- \ 1—v
lution and the system trajectories exponentially decregase ¢ 0 <A < ———7"—,
Sore, Y ) P Y 216(0) — 7(3(0))|
then the trajectories of(t + J) are asymptotically stable.
[1l. COMPUTATION OF §(t) AND USE OF THE TIME-DELAY Proof: (Outline) The previous lemma is established from
MODEL the fact that the stability of the transformed system
The computation of the control law implies to continuously
solve (8) ford(t) and to keep a history of the past control 0
inputs during a time-interval — 7(t),t]. The existence of a %,:2/(¢) = (A— BK)z(¢) + BKA/ (¢ +0)do
solution to this equation implies that-) satisfies (5)-(6). It is —es
solved analytically (for specific delay models) or numdtjca g [T
(time consuming) in [16]. A more convenient and efficient way —(BK) C2es #(C + 0)dd
to computei(t) is to use directly the delay dynamics. This is
achieved by first defining the function wherees(t) = 6(t) — 6(t) and ((t) = ¢ + 4(t), implies the
s(t) = S(t) ot + S(t)) (11) stability of (15). This transformed system is obtained gsin

the Leibniz-Newton formula
where §(t) is the computed estimate @ft). The idea is to
find a variation law ford such that the manifold(t) = 0 is
rendered attractive and invariant, consequently ensuhag

0
2 (¢) = (A— BK)z(¢() + BK z'(¢+0)do

—€s



The behaviour of, is then investigated thanks to thewheref.(:) andh.(-) are some continuous functionsjs the
Lyapunov-Krasovskii functional [18] internal state of the model ang,. is an exogenous input to
B T this model, possibly including some network measurements.
V() = 207 Px() An example of such dynamics is provided by the Kalman

1 0 ¢ T filter updates in [1], determined by the combination of Katima
+1 — € /_55 [/G@ () Sx(mdu] 40 filtering and CUMSUM change-detection that sets the delay
s ¢ estimation strategy. Another possibility is to use somevoset
+ @ _ / [/ I(M)TSCU(M)CZM] do models, such as the one provided in [2], which relate the
L =26 J ae, |Jeto dynamics of the emitters window size and of the routers queue

with P, S some positive definite matrices; = sup, é(t) length to the network protocol (the TCP case is investigated
1 — 2&s ) . — . in the referred work).

and0 < a < & Taking the time-derivative of this — tp¢ egtimated delay satisfies the conditiops, > 7(t) >

functional along the system trajectories of (14)-(15) @esy 0 and sup %(t) = © < 1. Considering that such a model

if the hypotheses of the lemma are satisfied, the stability ekists and is compared to the actual network induced delay

the system considered. B with the error parameteks,, ande, defined aseys, ex} =
The previous lemma is now applied to the proposed contilp, {¢(t), é(t)}, wheree(t) = 7(t) — 7(t), the aim of this
scheme in the following theorem. section is to determine if, for a chosen feedback g&inthe

Theorem 3.1: Consider the system (1) withd, B) a con-  closed-loop system remains stable wHen;, ey} # {0, 0}.
trollable pair. Assume that the delay dynamics (3)-(4) ishsu The predicted state feedback is computed from the delay

that (5)-(6) hold for all#, then the feedback control lawmodel and the resulting closed-loop system writes as
(9) based on the estimated predictor's horiziym) which

dynamics are described by (14) with #(t) = Axz(t) + Bu(t — 7(t))
() = ‘;}g (2(€), uq(C)) ut) = —KeM® |zt
Z‘E@ = (0, ualQ), 2(0) =2 +elt /t T a0 o #(0))as

and )\ satisfying the conditions stated in lemma 3.1, ensures . A . ) o )
that the trajectories af(t) decrease asymptotically to zero. Whered(t) = 7(t + (1)) is the prediction horizon computed

Proof: First note that the time-shifted system from (16)-(17) ¢ # 7 = 0 # 0). _
The controller output:(t) can be expressed, equivalently,
z'(t +6) = Az(t + 0) + Bu(t) as
with u(t) = —Ka(t + d) writes as (15) by adding and ut) = —Kz(t+6t)+ Aut) (18)

subtractingBKz(t + §) to the previous dynamic equation.

Thanks to Lemma 3.1 and conditions (5)-(6), the propos¥diere

control law then allows for a pole placement on the time- . t45(¢)

shifted system described by the statg + §) and A, in (10)  Du(t) = —KeA(t+5(t))/ e Y Blu(f — #(0))
is made Hurwitz with a proper choice df. Therefore, the t —u(f —7(0))]do
time-shifted state converges asymptotically with the psmul
control law. Finally, the stability of:(¢) is deduced from the The resulting closed-loop system is then defined by the func-
fact that the system (1)-(2) is linear and its states canrtanal differential equation

diverge in finite time. " Y(t+0() = An(t+6(t) — BK(t+5() + BAL(t) (19)

IV. ROBUSTNESSANALYSIS While a direct Lyapunov-Krasovskii analysis (similar toeth
The aim of this section is to study the robustness of tie used in the previous section) of this problem is very con-
system (1)-(4) stabilized by the state feedback (9) witpees servative [19], some more interesting results can be oédain
to some delay uncertainties. These uncertainties are dihe toby neglecting the effect of\,, in the previous dynamics.
difference that may exist between the delay model (3)-(4) an Indeed, (18) can be expressed equivalently wds) —

the true delay induced by the communication channel.  A.(t) = —Ka(t + 4(t)), which can be considered as a
functional equation with:(-) as an input. If the delay is small,
A. Problem formulation |[AL(®)]/|u(t)] is small, and the dynamics of the functional

In order to study the robustness of the control setup wi
respect to delay uncertainties, we investigate their inflee L 4 I si
on the dynamics of the closed-loop system. The dynamics‘:("ﬁt"”n"’lt'on error1s small, since

Fﬁquation is stable and fast converging. The effect\qf can
then be easily ignored. The same conclusion holds when the

the estimated delay is obtained from « A, is proportional to the difference( — 7(6)) — (6 —
. . . R 7(6)) and is bounded since there is no singularity in
2(t) = [fe(2(t),uqe(t)), 2(0) =2 (16) the system and the integration is carried on a finite-time
7(t) = he(2(t), ude(t)) 17) horizon,



2(¢) = Ax(gi) — BKxz({ — €4) + eaBKus(¢)
— G G ynt) = Tng(ﬂ (22)
€a) €dy €M y2(t) = Azx(t) — BKus(t)
[Zl} {yl} uq (t) Aryi(t) = V1 —enyi(t —€(t))
2 Y2 A - B 1 t=€a (23)
uz(t) = Agyo(t) = —/ y2(0)do
— < €d Jt—es(t)
€ar €dy €0y €5(1) wheree; = max{en — €q; €4 — €m + @nde,, = infy(e(t)). The

interconnection betwee& and A is presented in figure V-

B. Note that this specific formulation aims at separating the
expressions with constant (i) and time dependent (ifh)
values ofes(t). The stability of the interconnected system is
obtained by showing that the gain of both subsystémand
ARG ) i ] A are less then one. The main advantage of this formulation is
which implies tha{A.,| is proportional to the distande(6) — ¢ the stability of the closed loop system is inferred friwe
2(0—7(0)+5(0—7(0)))|, whered € [t, i+0(¢)]. If we SUPPOSe gapility of (7, which is a system with aonstant time-delay.

that this distance is sufficiently small to ensure the ralest \1ore precisely, we first consider the following result [21]
of the origin stability, or if the delay is sufficiently smathen

the stability of (19) can be deduced from the stability of ~ 7Yo(Arx,) < 1, for all nzn-singular matrices, € R™"*",
—1,2,

Fig. 2.  Small gain formulation.

o |u(t)| is proportional to|z(t + 4(t))],

, B B .
(t+0() = Ax(t +0(t)) — BKx(t +0(t)) (20) where~y(+), the gain of the system considered, akgy, are

Note that this is a qualitative result based on the vanishif§fined respectively as

perturbation theory [20]. From a physical point of view,st i vo(H) = inf{~| ||H f||2 < ~||f]|, and
equivalent to consider that the main disturbing effect @& th Apx, | = XpAr(X, 1), for all f €Ly}

delay estimation error acts on the fundamental dynamics of _ _ —

(19). Ly denotes the set of functionfs: R, — R”, R being the

closed set of square integrable reals, ifg, || f(t)||* is well
defined and finite. We can then conclude on the stability of
B. Proposed solution (21) by applying the following proposition.
Proposition 4.1: [21] The input-output stability of system
(21) is ensured if the scaled small gain problem
’YQ(GX) <1for X = dzag(Xl XQ),
2 (¢) = Ax(¢) — BKz(( —e5(t)) (21) X1,X2 € R non singular,
_ -~ _ has a solution, wheré& is described by (22).
(4= BE)z(Q) + BK [¢(Q) = (¢ = 5(1))] Consequently, we have to find the sufficient conditions that
where es(t) = §(t) — S(t) and ¢ = t 4 46(t). The previous the estimation error has to fulfil in order to ensure that the
equation is first written as a function of the average, camistegain of G is bounded by one. This is done with the following
value of the erroe, (i.e.e, = [maxe(t) —min e(t)]/2) thanks Proposition

We consider here themall gain approach for time-delay
systems proposed in [21], applied to the stability analgsis

to the relationship Proposition 4.2: Consider the syster@ described by
C—€a z(t) = Aox(t)+ A1z(t —r) + Eu(t)
/
z(C —€s5(t) = x(C — €a) — /gem '(6)do y(t) = Gox(t) + Giz(t —r) + Du(t),

. a given set of non-singular matricas andZ = { X7 X|X ¢
Note that the average and maximum valuesgf) are the X}. There exists aX € X' such thatye(Gx) < 1 if there

same as those af(t). The dynamics of the resulting SyStemexists aZ € Z and real matrice® — PT, Q,, S,, Ry —

is then Rl,p=0,1,...,N,q=0,1,..., N such that the following
2(¢) = Az(¢)— BK2(C — €) LMIs are satisfied:
(—€a @ -D -D p 0
$BK [ [An(0) = BKa(6 — cs(6)] df DT Ry+S: 0 | >o0 ( 2 oads ) >0
C—es(t) _paT 0 35,
with :v(@) = (]5(9), 0 e [to — €M, to], (to, ¢) e Rt x CZ,EM. where
The integral term in the previous equality is consideredras a _ 1
uncertainty and the closed-loop system writes as Q = (Qo Q1 ... Qn), S= 7 diag(So S1 ... Sn)
Ysg = Glusg), usg = A(Ysg) Roo Ron
D - RT . h = L
where ys, = [y1y2]?, usg = [u1u2)”, and G and A are 01 ’ N

defined as : RyNn
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ET(QP _ prl) Fig. 3. Influence of the delay estimation error.
Ra11 Rai2
Ry = RL., . is used to compute the predictor horizon. The time evolstion
: of the pendulum anglé(t) and positionz(¢) illustrate the
_ Rann sensitivity of the system to the estimation error.

Rapg = h(Rp-1,4-1 — Rpq) This simulation result illustrates the capability of th@posed
Sa = diag(Sa1 Saz ... San), Sap=Sp-1— 5, control law to stabilize the system considered when thererro
This result is applied to the system considered by usisgtisfies the conditions established in this section. No¢ t

h= and the closed-loop system fails to stabilizeejf is increased by

2ms.
Ao = A, Al = —BK, FE = [Oan EdBK]
1
= B V. CONCLUSIONS
Go=| V1 _jM » G1=02,xn (24)

In this paper we have investigated the problem of remote
D= [ Onxn  Onxn ] stabilization via communication networks, which is formed
—BK  Opxn as the problem of stabilizing an open-loop unstable system

from which we can compute the maximum average estimati$fth @ time-varying delay with known dynamics. The proposed
error on the delay, for a given maximum variation of this errocontroller results in an exponentially converging closeals

Example 4.1: Consider the “T” shape inverted pendulun§y5tem’ under weak assumptions. The controller is based on
described by the dynamics a d(t)-step ahead predictor, wheé¢t) is the solution of the

implicit equationd — 7(¢ + §) = 0, which is shown to be

0 1 0 0 0 solved if the time delay is bounded. A dynamic solution of
_ | —1878 0 1482 0 z+ 7.52 u(t —7) this equation is detailed, allowing for the explicit use bét
0 0 0 1 0 average network dynamics in the control law. The robustness
56.92 0 -15.18 0 —8.82

of the control law with respect to time-delay uncertaini®s
The controller gainK is chosen such that the poles of th@lso studied and a LMI formulation allows to compute the
matrix A.; are[—8 + 0.54; —8 — 0.5i; —16; —32]. The results maximum admissible bounds on the delay estimation error.
obtained in proposition 4.2 are applied with the relatiogpsh We have presented a simulation showing the capability sf thi
(24) andey = 2¢,. The estimated delay averagé) is based controller to robustly stabilize a system when the averageyd

on the model proposed in [2] and depicted in figure 3(a). is estimated and the actual delay satisfies some computed err
This example aims at illustrating the fact that the closeapl bounds.
system remains stable if the error fits within the bounds esti
mated in this section. We suppose that the error and estimate
delay maximum variations are the samag;i = v = 0.6167,

which givese, = 5.9ms. The error trial function ise(t) =  [1] K. Jacobsson, N. Maller, K. H. Johansson, and H. Hjaksan, “Some

. €M modeling and estimation issues in traffic control of hetermus

€q + €g 81N o t ] and we study the system response when - networks,” in Proc. of the 16 Int Symp. on Math. Th. of Net. and
a . . Syst., Leuven, Belgium, July 2004.

the actual delay is(t) = T(t)+€(t_) or T(t) = f(t)fe(t)- The [2] V. Misra, W.-B. Gong, and D. Towsley, “Fluid-based arsily of a

system response to a non zero initial condition is preseinted network of AQM routers supporting TCP flows with an applioatito

figure 3(a) in the first case and in figure 3(b) in the secong RED."in Proc. of ACM SGCOMM'Q0, Stockholm, Sweden, Sept. 2000.
[3] H. Mounier and G. Bastin, “Compartmental modelling farngestion

case. The oscillating dela7y(t) applies tO. the data.trav.elling control in communication systems,” Rroc. of the IFAC NOLCOS Conf.,
from the control setup to the system, while the estimatitn St Peterburg, July 2001.
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