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Remote Stabilization via Communication Networks
with a Distributed Control Law

Emmanuel Witrant, Carlos Canudas-de-Wit, Didier Georges and Mazen Alamir

Abstract— In this paper we investigate the problem of remote
stabilization via communication networks involving some time-
varying delays of known average dynamics. This problem arises
when the control law is remotely implemented and leads to
the problem of stabilizing an open-loop unstable system with
time-varying delay. We use a time-varying horizon predictor
to design a stabilizing control law that sets the poles of the
closed-loop system. The computation of the horizon of the
predictor is investigated and the proposed control law explicitly
takes into account an estimation of the average delay dynamics.
The resulting closed loop system robustness with respect to
some uncertainties on the delay estimation is also considered.
Simulation results are finally presented.

Index Terms— Networked control systems, stabilization with
time-varying delays, state predictor.

I. I NTRODUCTION

The networked control systems constitute a new class of
control systems including specific problems such as delays,
loss of information and data process. The problem studied in
this paper concerns the remote stabilization of unstable open-
loop systems. The sensor, actuator and system are assumed to
be remotely commissioned by a controller that interchanges
measurements and control signals through alossless commu-
nication network (all lost packets are re-emitted). We assume
that the communication network has its own dynamics, and
that an estimator or a model for the average induced time-
delay is available. As an example, the CUMSUM Kalman
filter proposed in [1] can be used to estimate the delay from
some measurements of the round-trip time or of a single
channel delay. Another possibility is to estimate the delay
from some established model, such as those proposed in [2],
[3], which are derived for local networks where the transfer
protocol (TP) is set by the users and where a router (which
can possibly inform the emitters of the instantaneous queue
length) manages the packets.

Some experimental results [4], [5], [6] on control over
networks illustrate the fact that latency and jitter have a
crucial effect on the closed-loop performances, while practical
solutions can be used to reduce the effect of packet losses to
an acceptable level. Our work is then focused on the compen-
sation of the delays induced by the network with a control
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law that explicitly takes into account an estimation of these
delays. We consider also that the remotely controlled system
may be unstable, as the teleoperation of open-loop unstable
systems with time-varying delays has been scarcely studied
yet. Airplane drone and tele-operated vehicles are examples
of open-loop unstable and remotely controlled systems.

An interesting survey on time delay systems is proposed in
[7], where different control laws are compared. The control
approach developed in this paper is based on the design of
a state predictor. Compared to other latency compensation
methods, such as the one proposed in [8] (based on output
feedback and GPS synchronization), the advantage of a control
strategy based on the use of a state predictor is to allow for a
“pole-placement” on the closed-loop system.

The state predictor is used in [9], [10], [11] to achieve a
finite spectrum assignment on systems with delayed output,
state or input. The previous works are generalized in [12] with
the concept of system reduction (infinite to finite spectrum
assignment). The problem of time-varying delays is studied
more specifically in [13], which predictor is included in a
H∞ control scheme in [14]. The explicit use of the latency
dynamics in the computation of the predictor’s horizon is
detailed in [15], [16], where we supposed that a network model
was available. These results are first summarized to describe
the ideal case and then extended to the case where only an
estimation of the network latency is available to set the control
law. This is done thanks to an appropriate investigation of the
closed-loop system robustness with respect to some latency
estimation errors.

This paper is organized as follows. The control problem
considered is formulated as the problem of stabilizing a time-
delay system with a state predictor which has a time-varying
horizon in section II. The computation of the horizon and the
explicit use of the average network dynamics is investigated
in section III. The robustness of the resulting control setup
with respect to some uncertainties on the network model is
presented in the section, along with a simulation example.

II. PROBLEM FORMULATION

Before dealing with a particular transmission protocol dy-
namics, we aim at exploring how the control design can
be elaborated for a system where the transmission delay is
considered as an autonomous stable system. More precisely,
we consider systems of the form:

ẋ(t) = Ax(t) + Bu(t − τ(t)), x(0) = x0 (1)

y(t) = Cx(t) (2)
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Fig. 1. Time-delay on the actuator (a) and measurement (b) signals.

ż(t) = f(z(t), ud(t)), z(0) = z0 (3)

τ(t) = h(z(t), ud(t)) (4)

where x ∈ Rn is the internal state,u ∈ R is the control
input,y ∈ Rm is the system output, andA, B, C are matrices
of appropriate dimensions. The pairs(A, B) and (A, C) are
assumed to be controllable and observable, respectively, but A
may be unstable. The signalud(t) and the functionsf(·) and
h(·) are assumed to be some known continuous functions in
this nominal case. These hypothesis will be relaxed later on
the paper (section IV), where only the estimated dynamics are
taken into account. Equation set (3)-(4) describes the internal
delay dynamics representing the transmission channel. We
assume that all solutions of model (3)-(4), have the following
properties for allt ≥ 0

τmax ≥ τ(t) ≥ 0 (5)

1 − ν ≥ τ̇ (t) (6)

whereτmax ≥ 0 is an upper bound of the time-variation of
τ(t) and1 > ν > 0 is an arbitrarily small constant determined
by the delay dynamics. These two conditions on the delay
are a direct consequence of the fact that we consider reliable
transmission networks. To understand this, first note that the
time-delay considered is the latency experienced by the trans-
mitted signal and may be different from the delay measured
on the network. From this point of view,̇τ = 1 means that
the signal considered is blocked in the communication link
indefinitely since the latency grows as fast as the current time
t, which contradicts the lossless data property.
The control setup is presented on Figure 1(a). This specific

location of the delay, between the control setup and the system,
is motivated by the fact that most of the destabilizing effect
and technical difficulties to solve the problem come from this
delay location. Indeed, if we consider an induced delayτ1(t)
located between the system and the control setup, as in Figure

1(b), then we can set the control law

u(t) = −K

[

eAτ1x(t − τ1(t)) + eAt

∫ t

t−τ1

e−AθBu(θ)dθ

]

= −Kx(t)

whereτ1(t) is estimated or directly measured. Keeping track
of the control input during the time[t − τ1, t], the resulting
closed-loop system has the dynamics

ẋ(t) = (A − BK)x(t)

and the remote stabilisation problem reduces to a traditional
pole placement problem. An error in the predictor computation
only introduces a consideration on the robustness with respect
to some disturbances on the input signal. A setup with two
delays is studied in an observer-based control scheme in [15]
but will not be presented here.

A. Control design

Due to the inherent time-variation of the delay considered
here, it is not possible to design a controller that imposes an
invariant closed-loop spectrum. Instead, under certain weak
conditions, we are able to set the eigenvalues of atime-varying
shifted system, or equivalently we transform the time-invariant
delayed unstable open-loop system, into a stable time-varying
linear system. The control design proposed here is similar to
the one used in [13] in an adaptive control context.
The system transformation is done by replacing the current
time t by the shifted time coordinatet + δ(t) in (1), which
results in

x′(t+ δ(t)) = Ax(t+ δ(t))+Bu(t+ δ(t)− τ(t+ δ(t))), (7)

where x′(·) is the derivative ofx(·) with respect to its
argument andδ(t) is a bounded and positive time-depending
function. Definingδ(t) as

δ(t) = τ(t + δ(t)) (8)

and considering first the problem of state feedback stabiliza-
tion, the eigenvalues of the time-varying shifted system (7) are
set with the control input

x(t + δ) = eAδ
[

x(t) + eAt

∫ t+δ

t

e−AθBu(θ − τ(θ))dθ
]

u(t) = −Kx(t + δ(t)). (9)

The resulting closed-loop equation is then

x′(t + δ(t)) = (A − BK)x(t + δ(t)) = Aclx(t + δ(t)) (10)

whereAcl is the closed loop state matrix, that can be made
Hurwitz by the controllability hypothesis on the(A, B) pair.

B. Stability analysis

The stability analysis of the time-varying system (10) and
the resulting constraints on the dynamics ofδ(t) is detailed in
the following Lemma, which proof is given in [16].

Lemma 2.1: Assume that∃δ(t) satisfying (8), such that the
control law (9) applied to system (7) leads to the closed-loop
form (10). Then if the following conditions hold:
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i) All the real parts of the eigenvalues ofAcl are in the
open left hand side of the complex plane,

ii) ∞ > δM ≥ δ(t) ≥ 0,
iii) ∞ > ρ > δ̇(t) > −1 with ρ an arbitrarily large positive

constant.

then, limt→∞ ||x(t + δ(t))|| = 0 ∀ t + δ(t) ≥ δ0 with δ0 =
δ(0) and for all bounded values ofx(δ0). Furthermore, the
statex(t + δ(t)) is exponentially stable.
The stability result of the pervious lemma is applied to the
system considered thanks to the following proposition.

Note that the hypotheses(ii) and (iii) of the previous
Lemma are always satisfied for the delay models defined by
(3)-(4) and satisfying the conditions (5)-(6). Indeed, hypothesis
(ii) is clearly satisfied from the definition ofδ(t) and (5) while
(iii) is obtained from (6). More precisely, taking the time-
derivative of (8) and from the fact thaṫτ(t) 6= 1 ∀t, we can
write

δ̇(t) =
dτ(ζ)/dζ

1 − dτ(ζ)/dζ

Hypothesis(iii) is then satisfied if

−1 <
dτ(ζ)/dζ

1 − dτ(ζ)/dζ
< ρ.

The left part of this inequality clearly always holds since

dτ(ζ)/dζ − 1 < dτ(ζ)/dζ ⇔ −1 <
dτ(ζ)/dζ

1 − dτ(ζ)/dζ

and the right part is also satisfied since (6) implies

1

ν
≥ 1

1 − dτ(ζ)/dζ
and

dτ(ζ)/dζ

1 − dτ(ζ)/dζ
<

1 − ν

ν

Choosingρ =
1 − ν

ν
finally ensures thatρ is finite, from the

properties ofν.
We can then conclude on the stability of the closed loop

system with the following corollary, which summarizes the
previous discussion.

Corollary 2.1: The control law (9) applied to the system
(1)-(4), where the delay satisfies (5)-(6), has a bounded so-
lution and the system trajectories exponentially decreaseto
zero.

III. C OMPUTATION OFδ(t) AND USE OF THE TIME-DELAY

MODEL

The computation of the control law implies to continuously
solve (8) for δ(t) and to keep a history of the past control
inputs during a time-interval[t − τ(t), t]. The existence of a
solution to this equation implies thatτ(·) satisfies (5)-(6). It is
solved analytically (for specific delay models) or numerically
(time consuming) in [16]. A more convenient and efficient way
to computeδ(t) is to use directly the delay dynamics. This is
achieved by first defining the function

s(t) = δ̂(t) − τ(t + δ̂(t)) (11)

where δ̂(t) is the computed estimate ofδ(t). The idea is to
find a variation law forδ̂ such that the manifolds(t) = 0 is
rendered attractive and invariant, consequently ensuringthat

δ̂ converges asymptotically toδ. In order to prevent for the
numerical instabilities, the dynamics ofs(t) is defined as

ṡ(t) + λs(t) = 0 (12)

whereλ is a positive constant. Taking the derivative of (11)
with respect to time and substitutinġs in (12), we obtain

˙̂
δ − τ ′(ζ̂)(1 +

˙̂
δ) + λ(δ̂ − τ(ζ̂)) = 0 (13)

whereζ̂(t) = t + δ̂(t) andτ ′(·) is the derivative ofτ(·) with
respect to its argument. From the previous equation, (12) is

satisfied ifτ ′(·) 6= 1 and the variation law˙̂
δ(t) is set with

˙̂
δ(t) = − λδ̂

1 − τ ′(ζ̂)
+

τ ′(ζ̂) + λτ(ζ̂)

1 − τ ′(ζ̂)
(14)

This explicit expression for the dynamics ofδ̂(t) then ensures
that the approximatêδ(t) converges to the desired value
δ(t), and that the functions(t) exponentially converges to
zero. The convergence speed can be set arbitrarily fast by
choosingλ sufficiently small, and we directly use the delay
dynamics (τ(ζ̂) and τ ′(ζ̂) are given by (3)-(4)). To illustrate

the computation of˙̂δ, consider the case whereτ(t) = z(t):
(14) is then set usingτ(ζ̂) = z(ζ̂) and τ ′(ζ̂) = z′(ζ̂) =
f(z(ζ̂), ud(ζ̂)).
The influence of the dynamics ofs(t) introduced in (11) on
the closed-loop system is studied with the following lemma,
which is a synthesis of the results presented in [17].

Lemma 3.1: Consider the closed-loop system described by

x′(t+δ) = Aclx(t+δ)+BK[x(t+δ)−x(t+ δ̂)], x(0) = x0

(15)
with δ̂ obtained from (14). If

• τ(t) satisfies the properties (5)-(6),
• Acl is a Hurwitz matrix,

• 0 < λ <
1 − ν

2|δ̂(0) − τ(δ̂(0))|
,

then the trajectories ofx(t + δ) are asymptotically stable.
Proof: (Outline) The previous lemma is established from

the fact that the stability of the transformed system

Σt : x′(ζ) = (A − BK)x(ζ) + BKA

∫ 0

−ǫδ

x(ζ + θ)dθ

−(BK)2
∫

−ǫδ

−2ǫδ

x(ζ + θ)dθ

where ǫδ(t) = δ(t) − δ̂(t) and ζ(t) = t + δ(t), implies the
stability of (15). This transformed system is obtained using
the Leibniz-Newton formula

x′(ζ) = (A − BK)x(ζ) + BK

∫ 0

−ǫδ

x′(ζ + θ)dθ
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The behaviour ofΣt is then investigated thanks to the
Lyapunov-Krasovskii functional [18]

V (x(ζ)) = x(ζ)T Px(ζ)

+
1

1 − ǭδ

∫ 0

−ǫδ

[

∫ ζ

ζ+θ

x(µ)T Sx(µ)dµ

]

dθ

+
α

1 − 2ǭδ

∫

−ǫδ

−2ǫδ

[

∫ ζ

ζ+θ

x(µ)T Sx(µ)dµ

]

dθ

with P , S some positive definite matrices,̄ǫδ
.
= supt ǫ̇δ(t)

and 0 < α <
1 − 2ǭδ

ǭδ

. Taking the time-derivative of this

functional along the system trajectories of (14)-(15) ensures,
if the hypotheses of the lemma are satisfied, the stability of
the system considered.
The previous lemma is now applied to the proposed control
scheme in the following theorem.

Theorem 3.1: Consider the system (1) with(A, B) a con-
trollable pair. Assume that the delay dynamics (3)-(4) is such
that (5)-(6) hold for all t, then the feedback control law
(9) based on the estimated predictor’s horizonδ̂(t) which
dynamics are described by (14) with

τ ′(ζ̂) =
dh

dζ̂
(z(ζ̂), ud(ζ̂))

dz

dζ̂
(ζ̂) = f(z(ζ̂), ud(ζ̂)), z(0) = z0

and λ satisfying the conditions stated in lemma 3.1, ensures
that the trajectories ofx(t) decrease asymptotically to zero.

Proof: First note that the time-shifted system

x′(t + δ) = Ax(t + δ) + Bu(t)

with u(t) = −Kx(t + δ̂) writes as (15) by adding and
subtractingBKx(t + δ) to the previous dynamic equation.
Thanks to Lemma 3.1 and conditions (5)-(6), the proposed
control law then allows for a pole placement on the time-
shifted system described by the statex(t + δ) andAcl in (10)
is made Hurwitz with a proper choice ofK. Therefore, the
time-shifted state converges asymptotically with the proposed
control law. Finally, the stability ofx(t) is deduced from the
fact that the system (1)-(2) is linear and its states cannot
diverge in finite time.

IV. ROBUSTNESSANALYSIS

The aim of this section is to study the robustness of the
system (1)-(4) stabilized by the state feedback (9) with respect
to some delay uncertainties. These uncertainties are due tothe
difference that may exist between the delay model (3)-(4) and
the true delay induced by the communication channel.

A. Problem formulation

In order to study the robustness of the control setup with
respect to delay uncertainties, we investigate their influence
on the dynamics of the closed-loop system. The dynamics of
the estimated delaŷτ is obtained from

˙̂z(t) = fe(ẑ(t), ude(t)), ẑ(0) = ẑ0 (16)

τ̂(t) = he(ẑ(t), ude(t)) (17)

wherefe(·) andhe(·) are some continuous functions,ẑ is the
internal state of the model andude is an exogenous input to
this model, possibly including some network measurements.
An example of such dynamics is provided by the Kalman
filter updates in [1], determined by the combination of Kalman
filtering and CUMSUM change-detection that sets the delay
estimation strategy. Another possibility is to use some network
models, such as the one provided in [2], which relate the
dynamics of the emitters window size and of the routers queue
length to the network protocol (the TCP case is investigated
in the referred work).

The estimated delay satisfies the conditionsτ̂max ≥ τ̂ (t) ≥
0 and sup ˙̂τ(t) = ν̂ < 1. Considering that such a model
exists and is compared to the actual network induced delay
with the error parametersǫM and ǭM defined as{ǫM , ǭM} .

=
supt{ǫ(t), ǫ̇(t)}, where ǫ(t)

.
= τ(t) − τ̂ (t), the aim of this

section is to determine if, for a chosen feedback gainK, the
closed-loop system remains stable when{ǫM , ǭM} 6= {0, 0}.
The predicted state feedback is computed from the delay
model and the resulting closed-loop system writes as

ẋ(t) = Ax(t) + Bu(t − τ(t))

u(t) = −KeAδ̂(t)

[

x(t)

+eAt

∫ t+δ̂(t)

t

e−AθBu(θ − τ̂ (θ))dθ

]

where δ̂(t) = τ̂ (t + δ̂(t)) is the prediction horizon computed
from (16)-(17) (̂τ 6= τ ⇒ δ̂ 6= δ).

The controller outputu(t) can be expressed, equivalently,
as

u(t) = −Kx(t + δ̂(t)) + ∆u(t) (18)

where

∆u(t)
.
= −KeA(t+δ̂(t))

∫ t+δ̂(t)

t

e−AθB[u(θ − τ̂(θ))

−u(θ − τ(θ))]dθ

The resulting closed-loop system is then defined by the func-
tional differential equation

x′(t+δ(t)) = Ax(t+δ(t))−BKx(t+ δ̂(t))+B∆u(t) (19)

While a direct Lyapunov-Krasovskii analysis (similar to the
one used in the previous section) of this problem is very con-
servative [19], some more interesting results can be obtained
by neglecting the effect of∆u in the previous dynamics.

Indeed, (18) can be expressed equivalently asu(t) −
∆u(t) = −Kx(t + δ̂(t)), which can be considered as a
functional equation withx(·) as an input. If the delay is small,
|∆u(t)|/|u(t)| is small, and the dynamics of the functional
equation is stable and fast converging. The effect of∆u can
then be easily ignored. The same conclusion holds when the
estimation error is small, since

• ∆u is proportional to the differenceu(θ− τ̂(θ))− u(θ−
τ(θ)) and is bounded since there is no singularity in
the system and the integration is carried on a finite-time
horizon,
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Fig. 2. Small gain formulation.

• |u(t)| is proportional to|x(t + δ̂(t))|,
which implies that|∆u| is proportional to the distance|x(θ)−
x(θ−τ(θ)+δ̂(θ−τ(θ)))|, whereθ ∈ [t, t+δ̂(t)]. If we suppose
that this distance is sufficiently small to ensure the robustness
of the origin stability, or if the delay is sufficiently small, then
the stability of (19) can be deduced from the stability of

x′(t + δ(t)) = Ax(t + δ(t)) − BKx(t + δ̂(t)) (20)

Note that this is a qualitative result based on the vanishing
perturbation theory [20]. From a physical point of view, it is
equivalent to consider that the main disturbing effect of the
delay estimation error acts on the fundamental dynamics of
(19).

B. Proposed solution

We consider here thesmall gain approach for time-delay
systems proposed in [21], applied to the stability analysisof

x′(ζ) = Ax(ζ) − BKx(ζ − ǫδ(t)) (21)

= (A − BK)x(ζ) + BK [x(ζ) − x(ζ − ǫδ(t))]

where ǫδ(t)
.
= δ(t) − δ̂(t) and ζ = t + δ(t). The previous

equation is first written as a function of the average, constant
value of the errorǫa (i.e. ǫa = [max ǫ(t)−min ǫ(t)]/2) thanks
to the relationship

x(ζ − ǫδ(t)) = x(ζ − ǫa) −
∫ ζ−ǫa

ζ−ǫδ(t)

x′(θ)dθ

Note that the average and maximum values ofǫδ(t) are the
same as those ofǫ(t). The dynamics of the resulting system
is then

x′(ζ) = Ax(ζ) − BKx(ζ − ǫa)

+BK

∫ ζ−ǫa

ζ−ǫδ(t)

[Ax(θ) − BKx(θ − ǫδ(θ))] dθ

with x(θ) = φ(θ), θ ∈ [t0 − ǫM , t0], (t0, φ) ∈ R
+ × Cν

n, ǫM
.

The integral term in the previous equality is considered as an
uncertainty and the closed-loop system writes as

ysg = G(usg), usg = ∆(ysg)

where ysg = [y1 y2]
T , usg = [u1 u2]

T , and G and ∆ are
defined as

G :











x′(ζ) = Ax(ζ) − BKx(ζ − ǫa) + ǫdBKu2(ζ)

y1(t) =
1√

1 − ǭM

x(t)

y2(t) = Ax(t) − BKu1(t)

(22)

∆ :







u1(t) = ∆1y1(t) =
√

1 − ǭMy1(t − ǫ(t))

u2(t) = ∆2y2(t) =
1

ǫd

∫ t−ǫa

t−ǫδ(t)

y2(θ)dθ
(23)

whereǫd
.
= max{ǫM − ǫa; ǫa− ǫm} andǫm

.
= inft(ǫ(t)). The

interconnection betweenG and ∆ is presented in figure IV-
B. Note that this specific formulation aims at separating the
expressions with constant (inG) and time dependent (in∆)
values ofǫδ(t). The stability of the interconnected system is
obtained by showing that the gain of both subsystemsG and
∆ are less then one. The main advantage of this formulation is
that the stability of the closed loop system is inferred fromthe
stability of G, which is a system with aconstant time-delay.
More precisely, we first consider the following result [21]

γ0(∆kXk
) ≤ 1, for all non-singular matricesXk ∈ R

n×n,
k = 1, 2,

whereγ0(·), the gain of the system considered, and∆kXk
are

defined respectively as

γ0(H) = inf{γ| ||Hf ||2 ≤ γ||f ||2, and
∆kXk

f = Xk∆k(X−1
k f), for all f ∈ L2+}.

L2+ denotes the set of functionsf : R+ → R
n, R being the

closed set of square integrable reals, i.e.,
∫

∞

0 ||f(t)||2 is well
defined and finite. We can then conclude on the stability of
(21) by applying the following proposition.

Proposition 4.1: [21] The input-output stability of system
(21) is ensured if the scaled small gain problem

γ0(GX) < 1 for X = diag(X1 X2),
X1,X2 ∈ R

n×n non singular,
has a solution, whereG is described by (22).

Consequently, we have to find the sufficient conditions that
the estimation error has to fulfil in order to ensure that the
gain ofG is bounded by one. This is done with the following
proposition

Proposition 4.2: Consider the systemG described by

ẋ(t) = A0x(t) + A1x(t − r) + Eu(t)

y(t) = G0x(t) + G1x(t − r) + Du(t),

a given set of non-singular matricesX , andZ .
= {XT X |X ∈

X}. There exists aX ∈ X such thatγ0(GX) < 1 if there
exists aZ ∈ Z and real matricesP = PT , Qp, Sp, Rpq =
RT

qp, p = 0, 1, . . . , N , q = 0, 1, . . . , N such that the following
LMIs are satisfied:




∆̃ −D̃s −D̃a

−D̃sT Rd + Sd 0

−D̃aT 0 3Sd



 > 0,

(

P Q̃

Q̃T R̃ + S̃

)

> 0

where

Q̃
.
= (Q0 Q1 . . . QN), S̃

.
=

1

h
diag(S0 S1 . . . SN )

R̃
.
=









R00 R01 . . .

RT
01

. . .
... RNN









, h =
r

N
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∆̃
.
=





∆00 QN − PA1 − GT
0 ZG1 −PE − GT

0 ZD
(∗) SN − GT

1 ZG1 −GT
1 ZD

(∗) (∗) Z − DT ZD





∆00
.
= −PA0 − AT

0 P − Q0 − QT
0 − S0 − GT

0 ZG0

D̃s .
=

(

Ds
1 . . . Ds

N

)

Ds
p

.
=

















h

2
AT

0 (Qp−1 + Qp) +
h

2
(R0,p−1 + R0,p)
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This result is applied to the system considered by using
h =

ǫa

N
and































A0 = A, A1 = −BK, E = [0n×n ǫdBK]

G0 =





1√
1 − ǭM

In

A



 , G1 = 02n×n

D =

[

0n×n 0n×n

−BK 0n×n

]

(24)

from which we can compute the maximum average estimation
error on the delay, for a given maximum variation of this error.

Example 4.1: Consider the “T” shape inverted pendulum
described by the dynamics

ẋ =









0 1 0 0
−18.78 0 14.82 0

0 0 0 1
56.92 0 −15.18 0









x +









0
7.52
0

−8.82









u(t − τ)

The controller gainK is chosen such that the poles of the
matrix Acl are [−8 + 0.5i;−8 − 0.5i;−16;−32]. The results
obtained in proposition 4.2 are applied with the relationships
(24) andǫd = 2ǫa. The estimated delay averageτ̂ (t) is based
on the model proposed in [2] and depicted in figure 3(a).
This example aims at illustrating the fact that the closed-loop

system remains stable if the error fits within the bounds esti-
mated in this section. We suppose that the error and estimated
delay maximum variations are the same:ǭM = ν̂ = 0.6167,
which givesǫa = 5.9ms. The error trial function isǫ(t) =

ǫa + ǫa sin

(

ǭM

ǫa

t

)

and we study the system response when

the actual delay isτ(t) = τ̂ (t)+ǫ(t) or τ(t) = τ̂ (t)−ǫ(t). The
system response to a non zero initial condition is presentedin
figure 3(a) in the first case and in figure 3(b) in the second
case. The oscillating delayτ(t) applies to the data travelling
from the control setup to the system, while the estimationτ̂ (t)

(a)

τ (t) = τ̂(t) + ǫ(t)

τ̂(t)

θ(t)

z(t)

time (s)

E
st

.
&

re
al

de
la

ys
(m

s)
S

ys
.

re
sp

on
se

(b)

τ (t) = τ̂(t) − ǫ(t)

τ̂(t)

θ(t)

z(t)

time (s)
Fig. 3. Influence of the delay estimation error.

is used to compute the predictor horizon. The time evolutions
of the pendulum angleθ(t) and positionz(t) illustrate the
sensitivity of the system to the estimation error.
This simulation result illustrates the capability of the proposed
control law to stabilize the system considered when the error
satisfies the conditions established in this section. Note that
the closed-loop system fails to stabilize ifǫa is increased by
2 ms.

V. CONCLUSIONS

In this paper we have investigated the problem of remote
stabilization via communication networks, which is formulated
as the problem of stabilizing an open-loop unstable system
with a time-varying delay with known dynamics. The proposed
controller results in an exponentially converging closed-loop
system, under weak assumptions. The controller is based on
a δ(t)-step ahead predictor, whereδ(t) is the solution of the
implicit equationδ − τ(t + δ) = 0, which is shown to be
solved if the time delay is bounded. A dynamic solution of
this equation is detailed, allowing for the explicit use of the
average network dynamics in the control law. The robustness
of the control law with respect to time-delay uncertaintiesis
also studied and a LMI formulation allows to compute the
maximum admissible bounds on the delay estimation error.
We have presented a simulation showing the capability of this
controller to robustly stabilize a system when the average delay
is estimated and the actual delay satisfies some computed error
bounds.
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