
A control-oriented model of the current profile in Tokamak
plasma

E WITRANT 1, E JOFFRIN2, S BRÉMOND2, G GIRUZZI 2, D
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Abstract. This paper proposes a control-oriented approach to the tokamak plasma current
profile dynamics. It is established based on a consistent setof simplified relationships, in
particular for the microwave current drive sources, ratherthan exact physical modelling.
Assuming that a proper model for advanced control schemes can be established using the so-
calledcylindrical approximationand neglecting the diamagnetic effects, we propose a model
that focuses on the flux diffusion (from which the current profile is inferred). Its inputs are
some real-time measurements available on modern tokamaks and the effects of some major
actuators, such as the magnetic coils, Lower Hybrid (LHCD),Electron and Ion Cyclotron
Frequency (ECCD and ICRH) systems, are particularly taken into account. More precisely,
the non-inductive current profile sources are modelled as 3-parameters functions of the control
inputs derived either from approximate theoretical formulae for the ECCD and bootstrap terms
or from experimental scaling laws specifically developed from Hard X-ray Tore Supra data for
the LHCD influence. The use of scaling laws in this model reflects the fact that the operation
of future reactors will certainly depend upon a great numberof scaling laws and specific
engineering parameters. The discretisation issues are also specifically addressed, to ensure
the robustness with respect to discretisation errors and the efficiency (in terms of computation
time) of the associated algorithm. This model is compared with experimental results and the
CRONOS solver for Tore Supra Tokamak.
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1. Introduction

In the coming years the main challenge in the fusion community will be the development of
experimental scenarios for ITER, the International TokamakExperimental Reactor. Amongst
them, the so-called advanced tokamak steady-state ones will play a significant role, since
they will allow to reproduce and study (on a smaller scale), the conditions that are expected
to be obtained in a fusion plant of reduced size and costs [1].In these scenarios a particular
emphasis is given to the current density profile and to the wayof producing the plasma current
IP: due to the intrinsic limited availability of magnetic flux in the fusion devices, needed
to sustain a purely inductive current,IP will have to be mainly generated by non-inductive
sources. In particular, the importance of the real-time safety factor profile (q-profile) control
is emphasized in [2], where an interesting overview on recent advances and key issues in
real-time tokamak plasma control is provided. A Proportional-Integral (PI) feedback control
strategy, based on a simple linear model, is also proposed and its efficiency is illustrated by
experimental results, which motivate further research developments in this direction.

The control of so-called “advanced” plasma regimes [1, 3, 4]for steady state high
performance tokamak operation is a challenge, in particular because of the non-linear coupling
between the current density and the pressure profiles. In a burning plasma, the alpha-particle
power will also be a strong function of these profiles, and, through its effect on the bootstrap
current, will be at the origin of a large (though ultra-slow)redistribution of the current density.
The possible destabilization of adverse Toroidal Alfvén Eigenmodes (TAE) - such as the drift
kinetic modes that are anticipated to appear at high values of the central safety factor [5] -
as well as potential thermal instabilities due to the ITB dynamics will further complicate the
issue. This motivates the need for further investigation ofplasma profiles shaping to guarantee
and control steady-state operation of the plasmas.

As far as experiments are concerned, real-time control of the internal inductance
parameter (a measure of the current profile shape) has been achieved with LHCD on Tore
Supra [6]. Improvement of plasma performance through active modification of the current
density and pressure profiles in advanced plasma regimes with ITB’s, through heating
and current drive, or by inducing sheared plasma rotation, has also been the goal of
intense research for example on TFTR [7], JT-60U [8, 9, 10], DIII-D [11], Alcator C-Mod
[12] and JET [13, 14, 15]. Regarding the real-time (closed loop) control issues, some
experimental investigations were carried on JET, especially on the regulation of lumped
parameters characterizing the pressure profile in ITB discharges [16], for fixed magnetic
flux configuration, of the full safety factor profile during the ITB preforming phase [17, 18]
for non-inductive steady-state regime (using a linear relationship between theq-profile and
the actuators), and, more recently, of the fullq-profile during the main heating phase of the
discharges.

The former control approaches have shown the interest of appropriate control methods to
improve the plasma performances. Nevertheless, they are based on identified linear models of
the plasma and/or semi-empirical tuning of the gains of a proportional-integrator controller,
rendering the real-time control particularly sensitive tothe operating conditions. The aim
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of our work is then to propose a new, control-oriented model of the tokamak plasma that
best reproduces the main influence of power and voltage modulations on the dynamics of the
plasma profiles. This model does not pretend to have the accuracy of complex solvers (such
as CRONOS, EFIT or EQUINOX), but has to represent the main control inputs influences on
the plasma dynamics and to provide for some outputs of major interest for real-time control.
It is then a first step towards model-based control of the plasma profile.

We focus on the flux diffusion dynamics and include some key physical knowledge on
the tokamak plasma as well as the use of experimental results, which allows to represent
the plasma behaviour for a large range of operating conditions and provides for a simplified
and computationally efficient estimation of the main dynamics. Indeed, some approximate
formulas are used to compute the resistivity and bootstrap current while the temperature and
density profiles are estimated thanks to dedicated scaling laws. The non-inductive current
profile sources are modelled as Gaussian distributions depending on the control inputs derived
either from approximate theoretical formulas for ECCD or fromexperimental scaling laws
specifically developed from Hard X-ray Tore Supra data for the LH term. The input-output
relationships are detailed and special care is given to the discretisation issues. Such a model,
essential for the phase of controller design (similarly to the numerous works done on plasma
shape control), can then be used to quickly test some controllaws for various operating
conditions, to investigate the influence of specific parameters and to provide for a real time
indication of not directly measurable quantities (such as the currents andq-factor profiles).

In order to keep the proposed plasma description as general as possible and to allow
for advanced control methods, the model is presented as a non-linear system. Indeed, non-
linear control and stability analysis is a field on intense research that can be drawn back
to the end of the 19th century, with Lyapunov stability theory [19]. Numerous results have
been obtained during the 20th century, on stability analysis (i.e. absolute stability, passivity
and small-gains theorems, or input-output stability) as well as constructive control approaches
(i.e. backstepping, non-linear adaptive control, feedforwarding or non-linear model-predictive
control). An interesting historical survey of these topicsis presented in [20] and in [21], which
proposes an overview of non-linear model-predictive control (one of the most widely used
control method in industry). Nowadays, numerous textbooksare available, presenting non-
linear control from a global point of view [22, 23, 24] or focused on implementation issues
[25, 26], differential geometric analysis [27, 28] or specific control methods [29, 30, 31], to
cite some of the main references in this field. Our aim is then to propose a general input-
output simplified description that allows for different control strategies (including the non-
linear approaches) rather than focusing on a specific method.

This paper is organized as follows. First, the magnetic flux diffusion equation, with its
initial and boundary conditions, is presented in Section 2.The estimation of the temperature
and density profiles using some scaling laws based on experimental results is proposed in
Section 3. Section 4 details the influence of the previous profiles on the flux diffusion, through
the resistivity and the bootstrap current. The discretisation of the poloidal flux dynamics
is investigated in Section 5, where an implicit-explicit discretisation scheme in time with a
variable step in space is proposed. The inductive (magneticcoils) and non-inductive (ECCD
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Figure 1. Plasma coordinates and sign convention.

and LHCD systems) inputs are described in Section 6. Section 7details the computation
of some model outputs of main interest. Finally, the numerical results obtained with the
simulator associated with this model are compared with someexperimental data from Tore
Supra facility and with CRONOS code outputs in Section 8.

2. Magnetic flux diffusion

The notations and units of the main physical variables are summarized in Table 1. The
physical variable considered here is the fluxψ(R,Z) of the magnetic fieldB(R,Z) passing
through a disc centred on the toroidal axis at heightZ and with a surfaceS = πR2, whereR is
the large plasma radius, as depicted in Figure 1. It is definedin flux per radian as

ψ(R,Z) �
1
2π

∫

S
B(R,Z) · dS

The dynamics of the poloidal flux is set by a diffusion equation, obtained from [32, 33] as

∂ψ

∂t
(ρ, t) = D(ρ, t)

∂2ψ

∂ρ2
+G(ρ, t)

∂ψ

∂ρ
+ S(ρ, t) (1)

whereD(ρ, t) andG(ρ, t) are transport coefficients,S(ρ, t) is a source term andρ is the toroidal
flux coefficient indexing the magnetic surfaces, defined asρ = (2φ/Bφ0)

1/2, whereφ(ρ, t) is
the toroidal flux per radian andBφ0(t) is the central magnetic field. The transport coefficients
and the source term are given by‡

D(ρ, t) =
η∥C2

µ0C3
, G(ρ, t) =

η∥ρ

µ0C2
3

∂

∂ρ

(

C2C3

ρ

)

and S(ρ, t) =
η∥V′

FC3
〈jni · B〉 =

η∥V′Bφ0

FC3
jni

whereη∥(ρ, t) is the resistivity,µ0 = 4π × 10−7 H/m is the permeability of free space,jni(ρ, t)
is the non-inductive current source, including both the bootstrap effect and the microwave
current drive,F is the diamagnetic function,V(ρ, t) is the plasma volume andV′ = ∂V/∂ρ.

‡ In order to simplify the equations, the space and time dependencies are specified in the definitions of the
variables and omitted otherwise.
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Furthermore,

C2 = V′
〈

||ρ||2

R2

〉

, C3 = V′
〈

1
R2

〉

, jni(ρ, t) �
< jni · B >

Bφ0

and 〈A〉 �
∂

∂V

∫

V
A dV

where〈A〉 denotes the average ofA on the flux surface which containsV.

We suppose that the diamagnetic effect (due to the poloidal currents) can be neglected,
which implies thatρ can be considered as a geometric coefficient. We also assume that the
so-calledcylindrical approximationof the plasma geometry (large aspect ration) can be used
as a basis to establish some control schemes using this model. The former approximation
implies thatρ << R0, V = 2π2ρ2R0 andV′ = 4π2ρR0. Using both hypotheses, the transport
coefficients can be computed with

F �
µ0Itor

2π
≈ R0Bφ0 and C2 = C3 = 4π2 ρ

R0

wereItor is the toroidal coils current. Note that the cylindrical approximation could be relieved
using some approximate expressions forC2, C3 andV thanks to analytical formulas for shifted
circles or numerical computations based on the 2D equilibrium description.

Remark 1 A detailed analysis of this model, and more particularly concerning the choice
of the coordinates, is presented in [34]. Simulations of thediffusion equation expressed in
cylindrical and toroidal coordinates (taking into accountthe Shafranov shift) are compared
with some experimental results. This comparison is performed through the value of q(1, t)
and shows that the proposed model fits well with the experimentalresults (the cylindrical
approximation leads to a steady-state error of10% and the toroidal model has an error of
2%). Other results show that the geometrical coefficients C2 and C3 are identical for both
approximations up to a normalized radius of0.8 and differs when approaching the plasma
edge to reach a difference of15%.

With the previous approximations, the dynamics (1) ofψ simplifies to

∂ψ

∂t
(ρ, t) =

η∥

µ0

∂2ψ

∂ρ2
+
η∥

µ0ρ

∂ψ

∂ρ
+ η∥R0 jni

whereψ, η∥ and jni are both space (throughρ) and time dependent. The spatial index
ρ ∈ [0, a], wherea is the minor plasma radius corresponding to the Last Closed Magnetic
Surface (LCMS, constant if the diamagnetic effect is neglected) depicted in Figure 1, can be
replaced by the normalized variablex = ρ/a. The diffusion equation considered finally writes
as

∂ψ

∂t
(x, t) =

η∥(x, t)
µ0a2

(

∂2ψ

∂x2
+

1
x
∂ψ

∂x

)

+ η∥(x, t)R0 jni(x, t). (2)

The initial and boundary conditions of this equation are detailed in the next subsections.
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a radius of the LCMS m
Bφ toroidal magnetic field T
Bθ poloidal magnetic field T
Bφ0 toroidal magnetic field (at the centre of the plasma) T
CR conductivity reduction due to electron-electron collisions
c speed of light in free space, 3× 108 m/s
e electron charge, 1.6022× 10−19 C
ft fraction of trapped particles in the banana regime
F diamagnetic function T ×m
I plasma current atx A
Ip total plasma current A
Itor toroidal coils current A
jni non inductive effective current density A/m2

lnΛ Coulomb logarithm
M average ion mass
me electron mass, 9.1096× 10−31 kg
ne electron density profile m−3

n̄e electron line average density m−2

N∥ parallel refraction index
P loss power W
Pcd ECCD power W
Picrh ICRH power W
Plh LH power W
Ptot total input power W
R major plasma radius m
R0 magnetic centre location m
Te temperature profile eV
x normalized radius
Z̄ effective value of the plasma charge C
αe electron thermal speed m/s
αTi ratio of ion versus electron temperature
ǫ inverse aspect ratio (a/R0)
ǫ0 permittivity of free space, 8.854× 10−12 F/m
η∥ plasma resistivity Ω ×m
γi exponential peaking coefficient of the variablei
κ elongation
µ0 permeability of free space, 4π × 10−7 H/m
ν∗e electron collisionality parameter
φ magnetic flux of the toroidal field T/m2

ψ magnetic flux of the poloidal field T/m2

τe electron collision time s
τth thermal energy confinement time s

Table 1. Most relevant physical variables and units
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2.1. Initial value

The initial value of the poloidal fluxψ(x, t0) is determined from the initial safety factor profile
q(x, t0) as follows. Defining the toroidal fluxφ(x, t) as the magnetic flux per radians (to be
consistent with the definition ofψ) passing through a poloidal surface centered atR0 and with
radiusρ, we have that

φ(x, t) �
1
2π

∫

Spol

B · dSpol = −
1
2π

∫

Spol

Bφ · dSpol ≈ −
Bφ0a

2x2

2
.

The safety factor is consequently defined as

q(x, t) �
dφ
dψ
=
∂φ/∂x
∂ψ/∂x

= −
Bφ0a

2x

∂ψ/∂x

and, integrating∂ψ/∂ρ in space at timet0, we have that

ψ(x, t0) = a2Bφ0

∫ 1

x

r
q(r, t0)

dr + ψ(1, t0). (3)

The choice of the constant term is motivated by the fact thatψ(1, t) can be measured on the
LCMS and can also constitute a boundary condition. The initial safety factor profile is given
by

q(x, t0) = (q(0, t0) − q(1, t0)) (1− xγq) + q(1, t0)

whereq(1, t) is computed as follows. First, Ampere’s law is introduced to compute the plasma
currentI (x, t) andq-profile as

I (x, t) = − 2πx
µ0R0

∂ψ

∂x
⇒ q(x, t) =

2πa2x2Bφ0

µ0R0I
. (4)

The safety factor on the LCMS is thenq(1, t) =
(

2πa2Bφ0

)

/
(

µ0R0Ip

)

whereIp(t) � I (1, t) is
the total plasma current.

For simulation purposes, an arbitrary initial safety factor profile can be chosen and the
poloidal flux will converge to its actual value modulo a constant bias. The convergence
property is inherited from the stability property of the diffusion equation and the bias is of
minor importance since the variables of main interest (q and current profiles) depend on the
flux gradient∂ψ/∂x. Further developments of this model for estimation purposes may use the
real-time measurements ofψ(1, t) to minimize the error between the modelled flux value on
the LCMS and the real one (this is equivalent to design an observer for the flux profile that
uses the measurements on the LCMS).

2.2. Boundary conditions

Specific boundary conditions have to be considered both at the plasma centre and on the
LCMS. At the centre of the plasma, the spatial variation of theflux is zero:

∂ψ

∂x
(0, t) = 0. (5)

On the LCMS two exclusive conditions can be considered:
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• on the flux variation, from (4),

∂ψ

∂x
(1, t) = −

R0µ0Ip(t)

2π
(6)

• on the flux rate
∂ψ

∂t
(1, t) = Vloop(t). (7)

The last two boundary conditions are set by the tension applied to the coils, since a local
control loop on the poloidal coil allows to set this tension according to the desired plasma
currentIp or the desired loop voltageVloop. This will be detailed in subsection 6.1.

To summarize the main results of this section, under the hypotheses that

H1) the diamagnetic effect is neglected,

H2) the plasma is described in cylindrical coordinates (large aspect ratio approximation),

the dynamics of the poloidal flux is described by (2) with the initial condition (3), the central
boundary condition (5) and the edge boundary condition (6) or (7).

3. Temperature and density profiles

A first, classical approach to compute the temperature profile is based on the diffusion
equation (i.e. for the electron temperatureTe(ρ, t) expressed in cylindrical coordinates [35])

3
2
∂

∂t
[neTe] =

1
ρ

∂

∂ρ

(

ρneχe(ρ, t)
∂Te

∂ρ

)

− 3neTe

2τd
+ ST(ρ, t)

wherene(ρ, t) is the electron density,χe(ρ, t) is the electron thermal diffusivity, τd is a constant
damping time modelling the losses andST(ρ, t) is the source term. Denoting the electron
pressure profile aspe(x, t), a simplified model can be set thanks to the relationship [36]

χe = αB
Te

Bφ0

a∇pe

pe
q2

with αB = 2.5× 10−4. The source term has an amplitude such that

∫ 1

0
ST s(x, t)dx= Ps

where thes subscript refers to the heating system considered (LHCD or ICRH) andPs is the
associated power input.

Considering the high level of uncertainty induced by diffusion models, such as the one
presented above, to compute the temperature profile, we choose to use the empirical model
proposed in [37], based on some experimental measurements.This model is established for
Tore Supraoperating inL-Modebut could easily be extended to other tokamaks or operating
conditions by following the guidelines of the identification algorithm with appropriate
experimental data. The main idea is to first estimate the normalized (with respect toTe(0, t))
temperature profile shape with a set of sigmoid functions (these functions are close to 1 when
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x = 0 and close to 0 whenx = 1), which shape parameters are related to the tokamak
global parameters with scaling laws. The thermal energy confinement is then introduced
to compute the confinement timeτth with a scaling law similar to ITERL-96P(th) [38]. The
main advantage of this approach is to consider specifically the influence of LHCD and ICRH
systems on the profile shape, as well as to provide for a simplified and fast computation
method to estimate the global temperature behaviour. The resulting accuracy is sufficient for
the proposed control-oriented model. Indeed, from a physical point of view, the dynamics ofψ
(on which this paper is focused) has a time constant that is one order of magnitude larger than
the temperature one. This difference of time scales motivates the fact that the global energy
and steady-state variations are more important than the temperature transient behaviour in the
time-variation ofψ. ForTore Supratokamak operating inL-mode, the temperature estimation
is described as follows.

The electron temperature profile is estimated with a sigmoidfunction as

Te(x, t) ≈
α(t)

1+ e−β(t)(x−γ(t))
ATe(t)

where the normalized shape of the profileTe(x, t)/Te(0, t) is estimated with a sigmoid function
defined by its amplitudeα(t), dilatation β(t) and translation (inflection point)γ(t). The
amplitude of the profile isATe(t) and computed from the plasma thermal energy, as detailed
below. The extra degree of freedom introduced in the time-variation ofα (which would ideally
be 1) is motivated by the fact that, for the computation of theresistive properties of the plasma,
the minimization of the estimation error over the complete profile is more important than an
accurate estimation of the central temperature.

The shape parameters are set with the switched model

{α, β, γ} =














{αlh, βlh, γlh} if Plh , 0

{αω, βω, γω} else.

This model then distinguishes the LHCD heating effect from the ohmic and ICRH ones.
Selecting the most significant terms, the shape parameters are related to the global and
engineering parameters with























































αlh = e−0.87I−0.43
p B0.63

φ0
N0.25
∥

(

1+
Picrh

Ptot

)0.15

βlh = −e3.88I0.31
p B−0.86

φ0
n̄−0.39

e N−1.15
∥

γlh = e1.77I1.40
p B−1.76

φ0
N−0.45
∥

(

1+
Picrh

Ptot

)−0.54







































αω = e−0.37I−0.46
p B0.23

φ0
n̄0.22

e

βω = −e1.92I0.38
p n̄−0.33

e

γω = e−0.15I1.03
p B−0.51

φ0

(

1+
Picrh

Ptot

)−0.46
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where N∥(t) is the parallel refraction index,Picrh(t) is the ICRH power,Plh(t) is the
LHCD power, Ptot(t) is the total input power and ¯ne(t) is the electron line average density.
The units of the parameters used in the scaling laws are

[

s,MA, T, 1019 m−3, MW
]

for
[time, current, density, power]. Note thatN∥ andPicrh have more effect on the profile shape
associated with LHCD thanPlh, which still appears implicitly inPtot. Indeed, identifying the
exponent parameters with either (1+ Picrh/Ptot) or (1+ Plh/Ptot) in the scaling law leads to
the conclusion that the first term gives the minimum cost function. This can be physically
explained by the fact that the presence (or absence) of ICRH hasmore effect on the shape
than some modulations inPlh. A more accurate model could be obtained by distinguishing
the case when LHCD is operated alone from the case when both LHCDand ICRH are used.

To determine the central temperature, the plasma thermal energyWth(t) can be written as

Wth(t) =We(t) +Wi(t) =
3e
2

∫

V
(neTe+ niTi) dV =

3e
2

∫

V
(1+ αTiαni) neTe dV

whereni(x, t) ≈ αni(t)ne(x, t) is the ions density,Ti(x, t) ≈ αTi(t)Te(x, t) is the ions temperature,
andWth(t) andWe,i(t) are the electrons and ions energies, respectively. The density ratio is
givenαni(t) ≈ (7 − Z̄(t))/6, whereZ̄(t) is the effective plasma charge, averaged on the small
plasma radius. The ratio of ion to electron temperature is established from measurements
taken at the centre of the plasma and obtained from the scaling law

αTi(t) ≈ 1− 0.31

(

Ip

Bφ0

)−0.38

n̄−0.90
e

(

1+
Picrh

Ptot

)−1.62 (

1+
Plh

Ptot

)1.36

.

The electrons densityne(x, t) is approximated with

ne(x, t) ≈
γn + 1
γn

(1− xγn)n̄e(t)

where γn is the density peaking. From the previous approximations and the cylindrical
coordinates hypothesis, the temperature profile amplitudeis related toWth thanks to the
relationshipATe(t) = A(t)Wth(t) with

A(t) �

[

6π2a2R0e(1+ αTiαni)
∫ 1

0
ne(x, t)x

α(t)
1+ e−β(t)(x−γ(t))

dx

]−1

andWth is estimated with


































τth(t) = 0.135I0.94
p B−0.15

φ0
n̄0.78

e

(

1+
Plh

Ptot

)0.13

P−0.78
tot

dWth

dt
= Ptot −

1
τth

Wth, Wth(0) = Ptot(0)τth(0)

whereτth(t) is the thermal energy confinement time with the scaling law established in [37].
The scaling law ITERL-96P(th) is more general (based on measurements from different
tokamaks) and can also be used in this scheme. In that case,τth is given by

τth,IT ER = 0.14I0.96
p B0.03

φ0
n̄0.40

e P−0.73
tot .
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Remark 2 For a real-time use of this model, the temperature profile canalso be accurately
measured directly from the Electron Cyclotron Emission (ECE diagnostic) for x= 0 − 0.8
and the density profile can be obtained from combined interferometers (these measurements
were used to set the proposed scaling laws). In this case, the model can be used to provide, in
real-time, for physical quantities that can not be measureddirectly, such as the safety factor,
currents and current densities (associated with the different sources), and induced voltage
profiles. The normalized inductance, confinement efficiency and Grad-Shafranov shift would
also be available, as detailed in Section 7.

4. Resistivity and bootstrap current

The diffusion term in (2) is provided byη∥ and the bootstrap currentjbs(x, t) is an
autogenerated source that introduces a non-linearity in the diffusion equation. Both of them
introduce a coupling, which is varying in time and space, between the magnetic flux diffusion
presented in Section 2 and the temperature and density profiles of Section 3.

4.1. Resistivity model

This parameter is computed using the results on neoclassical conductivity proposed in [39],
where an approximate analytic approach is presented. Firstof all, the electron thermal velocity
and Braginskii time are computed from the temperature and density profiles as [40]

αe(x, t) =

√

eTe

me
and τe(x, t) =

12π3/2m1/2
e ǫ2

0

e5/2
√

2

T3/2
e

ne lnΛ

wheree= 1.6022×10−19C is the electron charge,ǫ0 = 8.854×10−12F/m is the permittivity of
free space,me = 9.1096×10−31kg is the electron mass and lnΛ(x, t) is the Coulomb logarithm,
obtained from lnΛ(x, t) = 31.318+ ln

(

Te/
√

ne

)

. The parallel conductivity is then given by

σ∥(x, t)

σ0
= ΛE

(

1− ft
1+ ξν∗e

) (

1− CR ft
1+ ξν∗e

)

with

σ0(x, t) =
nee2

me
τe, ΛE(Z̄) =

3.40

Z̄

(

1.13+ Z̄

2.67+ Z̄

)

, ν∗e(x, t) =
R0q

(xǫ)3/2αeτe
,

ft(x) = 1− (1− xǫ)2(1− (xǫ)2)−1/2(1+ 1.46
√

xǫ)−1, ξ(Z̄) = 0.58+ 0.20Z̄

and CR(Z̄) =
0.56

Z̄

(

3.0− Z̄

3.0+ Z̄

)

.

whereν∗e(x, t) is the electron collisionality parameter,ft(x) is the fraction of trapped particles
in banana regime andCR(Z̄) is the conductivity reduction due to electron-electron collisions.
The resistivity is finally inferred fromσ∥ asη∥(x, t) � 1/σ∥.

Remark 3 The validity of this approach is investigated in [41], where various models of
conductivity (Hirsmann analytic formula, Hirshman formulation and Shaing formulation) are
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compared with experimental results. The model presented here (Hirshman analytic formula)
is valid for low density, for arbitrary aspect ratio and banana regime (the collisionality goes
to zero), or for finite collisionality andǫ << 1.

4.2. Bootstrap current source

This current is generated by trapped particles and may be themain source of non inductive
current in specific scenarios (high bootstrap experiments). We present here the model derived
by Hirshman [42] and presented in a comparative perspectivein [43]. It is a single ion,
collisionless regime model, which writes in our framework as

< j · B >bs

< B · ∇φ >
=

pe

< 1/R2 >

{

A1

[

1
pe

dpe

dψ
+

pi

pe

(

1
pi

dpi

dψ
− αi

1
Ti

dTi

dψ

)]

− A2
1
Te

dTe

dψ

}

wherepi(x, t) is the pressure due to ions and

A1(x, t) = xt

[

0.754+ 2.21Z̄ + Z̄2 + xt

(

0.348+ 1.243Z̄ + Z̄2
)]

/De

A2(x, t) = xt

(

0.884+ 2.074Z̄
)

/De, αi(x) =
1.172

1.0+ 0.462xt

De(x, t) = 1.414Z̄ + Z̄2 + xt

(

0.754+ 2.657Z̄ + 2Z̄2
)

+ x2
t

(

0.348+ 1.243Z̄ + Z̄2
)

wherext(x) is the ratio of trapped to circulating particlesft/(1− ft). Considering the cylindrical
coordinates approximation and defining the bootstrap current as

jbs �
< j · B >bs

Bφ0

=
1
R0

< j · B >bs

< B · ∇φ >
we have

jbs(x, t) =
peR0

∂ψ/∂x

{

A1

[

1
pe

∂pe

∂x
+

pi

pe

(

1
pi

∂pi

∂x
− αi

1
Ti

∂Ti

∂x

)]

− A2
1
Te

∂Te

∂x

}

The relationshipspe = eneTe andpi = eniTi are introduced to express the bootstrap current in
terms of temperature and density profiles as

jbs(x, t) =
eR0

∂ψ/∂x

{

(A1 − A2)ne
∂Te

∂x
+ A1Te

∂ne

∂x
+ A1(1− αi)ni

∂Ti

∂x
+ A1Ti

∂ni

∂x

}

Another possibility is to estimate the fraction of the totalcurrent due to the bootstrap effect
with the fitting law proposed in [44].

5. Discretisation of the poloidal flux dynamics

Considering the dynamics obtained in (2), we wish to discretise

ψ̇(x, t) =
η∥(x, t)

µ0a2

(

ψ′′(x, t) +
1
x
ψ′(x, t)

)

+ η∥(x, t)R0 jni(x, t) (8)

whereψ̇ � ∂ψ/∂t andψ′ � ∂ψ/∂x. Applying the spatial and temporal discretisation methods
(A.1)-(A.3) described in Appendix A, the previous equationwrites as (i.e. in the explicit case)

ψ̇(xi , t)ex =
η∥ i, j

µ0a2

(

d2ψi+1, j − d3ψi, j + d4ψi−1, j

)

+
d1η∥ i, j

µ0a2xi

(

ψi+1, j − ψi−1, j

)

+ η∥ i, jR0 jni i, j

= η∥ i, j

(

e1ψi+1, j − e2ψi, j + e3ψi−1, j + R0 jni i, j

)
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with

e1(i) =
d2(i)xi + d1(i)

µ0a2xi
, e2(i) =

d3(i)
µ0a2

and e3(i) =
d4(i)xi − d1(i)

µ0a2xi

where the subscripti = 1 . . .N denotes the spatial discretisation points andj refers to the time
samples. Similarly, for the implicit case we have that

ψ̇(xi , t)im = η∥ i, j+1

(

e1ψi+1, j+1 − e2ψi, j+1 + e3ψi−1, j+1 + R0 jni i, j

)

.

Note that we usedjni i, j instead ofjni i, j+1 in the previous computation. This is motivated by
the fact that jni i, j is a non-linear function ofψ1...N, j (bootstrap effect and LH source when
the boundary condition is set onVloop). A formulation with jni i, j+1 would then prevent the
use of a linear computation method that takes the sources at time j as an input. Taking the
time step sufficiently small compared to the system dynamics, this approximation introduces
a negligible error that is worth the computation simplification and is compensated by the fact
that the dynamics considered is stable.

Substituting the previous equalities into
(

ψi, j+1 − ψi, j

δt

)

= h ψ̇(xi , t)ex+ (1− h) ψ̇(xi , t)im

whereh ∈ [0, 1] is the ratio of explicit to implicit time discretisation and δt is the sampling
time, a discretised version of (8) finally writes as

Ai,i+1, j ψi+1, j + Ai,i, j ψi, j + Ai,i−1, j ψi−1, j (9)

− Bi,i+1, j ψi+1, j+1 − Bi,i, j ψi, j+1 − Bi,i−1, j ψi−1, j+1 + Si, j = 0

whereAj andBj are time-varyingN×N matrices. The notationsAi,k, j andBi,k, j are introduced
to denote the values of the matrix elements (i, k) at the time samplej, and

Ai,i−1, j = η∥ i, j e3hδt, Ai,i, j = 1− η∥ i, j e2hδt

Ai,i+1, j = η∥ i, j e1hδt, Bi,i−1, j = −η∥ i, j+1 e3(1− h)δt

Bi,i, j = 1+ η∥ i, j+1 e2(1− h)δt, Bi,i+1, j = −η∥ i, j+1 e1(1− h)δt

Si, j = R0δt
[

hη∥ i, j + (1− h)η∥ i, j+1

]

jni i, j

for i = 2, . . . ,N − 1 (the values at 1 andN are given by the boundary conditions) and where
δt is the sampling time. Writing the poloidal flux and the sourcesterm in the vector form

ψ j = [ψ1, j ψ2, j . . . ψN, j]
T and Sj = [S1, j S2, j . . . SN, j]

T

(9) can be expressed, equivalently, in the matrix form

Aj ψ j − Bj ψ j+1 + S j = 0 ⇔ ψ j+1 = B−1
j Aj ψ j + B−1

j S j .

Note that the matrixBj is tridiagonal, by construction. An appropriate inversionmethod
such as the one proposed in [45] is therefore recommended to computeB−1

j with reduced
computational cost.

The boundary conditions presented in subsection 2.2 may induce some numerical
instability due to the discretisation scheme. Some appropriate specific discretisation methods
are described bellow.
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At the centre: the proposed discretisation method leads to an ill defined central value of the
flux dynamics whenx1 = 0 since

ψ′(x1, t)
x1

→ 0
0
.

Consequently, we use the fact that the diffusion term close to the origin can be approximated
by

1
x
∂

∂x

[

x
∂ψ

∂x

]

≈ 1
δx2/4

(δx2/2)× ψ′1/2
δx2/2

=
4
δx2

ψ′1/2 ≈
4

δx2
2

(ψ2 − ψ1)

with δxi = xi − xi−1 to set the central dynamics as

ψ̇(x1, t) ≈ η∥1(t)

[

4

µ0a2δx2
2

(ψ2 − ψ1) + R0 jni 1(t)

]

.

The central terms of (9) are then computed with

A1,2, j = ebc0hη∥1, j , A1,1, j = 1− ebc0hη∥1, j , B1,2, j = −ebc0(1− h)η∥ 1, j+1,

B1,1, j = 1+ ebc0(1− h)η∥ 1, j+1 and S1, j = δtR0

(

hη∥1, j jni 1, j + (1− h)η∥ 1, j+1 jni 1, j+1

)

whereebc0 = 4δt/
(

µ0a2δx2
2

)

.

At the edge, withψ′(1, t): the constraint on the flux variationψ′(1, t) = u(t) implies that

ψN, j+1 − ψN−1, j+1

δxN
= uj+1 ⇔ −

ψN, j+1

δxN
+
ψN−1, j+1

δxN
+ uj+1 = 0.

The corresponding matrix coefficients are then

AN,N−1, j = AN,N, j = 0, BN,N−1, j = −BN,N, j = −
1
δxN

and SN, j = uj+1.

The computation ofu(t) is directly obtained from (6) asu(t) = −R0µ0Ip/(2π).

At the edge, withψ̇(1, t) a last possibility to set the edge boundary condition is to use
ψ̇(1, t) = Vloop(t). In this case we have

ψN, j+1 − ψN, j − δtVloop, j = 0

and the matrix coefficients are

AN−1,N, j = BN−1,N, j = AN,N−1, j = BN,N−1, j = 0, AN,N, j = BN,N, j = 1 and SN, j = δtVloop, j .

6. Model inputs

The model inputs considered in this work are the boundary conditions at the plasma edge
(ψ′(1, t) or ψ̇(1, t), see subsection 2.2) and the non inductive currents generated by the LHCD
and ECCD systems. Both systems current deposits can be roughly modelled with Gaussian
curves, described in Appendix B, whose shape depends on the global plasma parameters and
power inputs.
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6.1. Inductive current input

The magnetic flux at the boundarẏψ(1, t) is set by the coils surrounding the plasma and
constitutes the inductive current input. This can be described by the classical transformer
model where the coils generate the primary circuit while theplasma is the secondary, modelled
as a single filament. The dynamics of the coils currentIc(t) is then set by [46]

Lcİc + Mİp + RcIc − Vc = 0

Mİc + Lpİp + Rp

(

Ip − INI

)

= 0

whereRc andLc are the coils resistance and internal inductance,Rp andLp are the plasma
resistance and inductance,M is the matrix of mutual inductances,Vc is the input voltage
applied to the coils andINI is the current generated by the non inductive sources. Note that
the values ofRc andLc are given from the coil properties whileM is obtained thanks to an
equilibrium code (i.e. CEDRES on Tore Supra). The magnetic fluxat the plasma boundary
close to the coilsψac is then obtained witḣψac = Mİc. Considering the effects of the plasma
current and inductance variations, the loop voltageVloop is obtained from [47]

Vloop(t) = ψ̇(1, t) = − 1
Ip

∂

∂t













LpI2
p

2













+ ψ̇ac

whereLp = µ0R0l i/2 andl i is the normalized internal inductance. In practice, a localcontrol
law is set on the poloidal coils to adjust the value ofVc according to a desired value ofVloop,
which can be measured with a Rogowski coil. If the reference isset on the plasma currentIp

instead, thenVc is such that the coils provide for the current necessary to complement the non
inductive sources.

6.2. ECCD deposit

The total EC current is the sum of several deposits due to several EC beams, which parameters
are denoted by the subscriptm. Each current deposit is determined by the position of the
steering mirror (Rant,m,Zant,m), its orientation in the poloidal and toroidal plane (φpol,m, φtor,m),
and the emission powerPcd,m, as presented in Figure 2. The results presented in this section
are derived from [48] and [49]. The assumption is that the wave is absorbed by the plasma
(and generates current) for

Rc > R> R∗m

where

Rc = nh
eµ0nbnt

4π2me

I ind

f
and R∗m =

Rant,m√
2| sinφtor,m|

















1−

√

1−
4R2

c

R2
ant,m

sin2 φtor,m

















1/2

with nh = 1, 2 the harmonic considered,nb the number of toroidal coils,nt the number of wire
loops per coil,f the antenna frequency (inGHz) andI ind the coil induction current. For high
magnetic field (O-mode) the first harmonic is absorbed (nh = 1) while for low magnetic field
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(Rant,Zant)

(Rabs,Zabs)

φpol

R∗Rc

R0 R

Z

Figure 2. Poloidal deposit of the ECCD antenna (one mirror).

(X-mode) the deposit is generated by the second harmonic. The maximum is considered to
happen atRabs,m = (Rc + R∗m)/2 and theZ coordinate of each point is computed from

Zm(R) = Zant,m+ (Rant,m− R) tanφpol,m

The flux coordinates of the deposit are then obtained from

ρm(R) =

∣

∣

∣

∣

∣

∣

R− R0

Zant,m+ (Rant,m− R) tanφpol,m

∣

∣

∣

∣

∣

∣

.

The global efficiency factorγcd,m(t) is computed as

γcd,m(t) =
Γ1Te(xabs,m)

Te(xabs,m) + 105















1− Γ2

[

ρm(Rabs,m) + Rabs,m− R0

Rabs,m

]Γ3














where

xabs,m = ρm
Rabs,m

a
, Γ1 =

6

5+ Z̄
, Γ2 =

4(2+ Z̄)

3(1+ Z̄)
and Γ3 =

5+ Z̄

2(1+ Z̄)

and the amplitude of the current depositIcd,m(t) is obtained from

γcd,m =
Icd,m

Pcd,m
Ron̄e× 10−20 ⇔ Icd,m =

γcd,mPcd,m

Ron̄e× 10−20
= 2πa2

∫ 1

0
x jcd,m(x, t)dx

where jcd,m(x, t) is the current density induced by ECCD.
The next step is to express the coefficients of the Gaussian fitting curve

jcd,m = ϑcd,me−(µcd,m−x)2/2σcd,m

in terms of the engineering parameters derived previously.The mean and the variance are
obtained as

µcd,m =
ρm(Rabs,m)

a
and σcd,m = −

(µcd,m− ρm(Rc)/a)2

2 lnβ



A control-oriented model of the current profile in Tokamak plasma 17

whereβ is chosen such thatjcd,m(xc) = ϑcd,mβ ≈ 0 (i.e. β = 1/10, which is equivalent to
set the Gaussian curve close to zero atRc). The maximum value of the current deposit is
consequently computed as

ϑcd,m =
γcd,mPcd,m

Ron̄e

[

2πa2

∫ 1

0
xe−(µcd,m−x)2/2σcd,mdx

]−1

.

Finally, the ECCD source is positive if the antenna is directedagainst the plasma current
Ip (which means that it emits in the same direction as the plasmaelectrons) and the total
current density profile induced by ECCD is

jcd(x, t) =
6

∑

m=1

jcd,m(x, t) × sign(φtor,m).

Example 1 Tore Supra tokamak ECCD system is currently working with two beams. The
current deposit is set with

max(Pcd) = [250 300]× 103, Rant = [3.53 3.53] and Zant = [0 0.2].

Furthermore, Iind = 137× Bφ0R0, nB = 18and nt = 2028.

6.3. LHCD deposit

The current profile generated by this system cannot be adequately described with an analytical
formula as it is the case for ECCD. Indeed, it strongly depends on the operating conditions
and current density profile [50]. A more realistic way to estimate this profile is to use the
emission of suprathermal electrons provided by the Hard X-Ray (HXR) measurements [51]
to build up a scaling law from engineering control parameters. A classical guess is to suppose
that the LH power deposit corresponds to the emission of electrons with an energy ranging
from 60 to 80keV, which is measured with the HXR diagnostic. It is motivated by the fact
that LHCD system specifically generates a population of electron in this range of energies.
Neglecting the thermal effect, we then consider that the radial Hard X-Ray emission profile
corresponds to the current density profilej lh(x, t) [50].

The first step is to determine the shape of the current depositfrom the HXR
measurements. This can be done empirically from the global parameters thanks to the curve
fitting approach described in Appendix C, where the widthwhxr(t) and centre of the deposit
µhxr(t) are estimated as

ŵhxr(t) = 0.53B−0.24
φ0

I 0.57
p n̄−0.08P0.13

LH N 0.39
∥

µ̂hxr(t) = 0.20B−0.39
φ0

I 0.71
p n̄−0.02P0.13

LH N 1.20
∥

where N∥ is the parallel refractive index that can be computed from phase difference
measurements. Note that a direct measurement of the parameters involved in the scaling
law is available in real-time for advanced control schemes.

The total current depositI lh(t) is computed from the plasma and LHCD parameters thanks
to the current drive efficiencyηlh(t) with the fitting laws proposed in [52] (for Tore Supra and
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Figure 3. Measured LH deposit vs. its Gaussian approximation.

JET)

ηlh(t) = 3.39D0.26
n τ 0.46

th Z̄−0.13 or ηlh(t) = 1.18D0.55
n I 0.43

p Z̄−0.24

whereDn(t) ≈ 2.03− 0.63N∥ is the normalized directivity. The total current is then obtained
as I lh(t) = ηlhPlh/ (n̄eR0). The LHCD profile j lh(x, t) is finally described by the Gaussian
approximation

j lh(x, t) = ϑlhe−(µhxr−x)2/2σlh

with

σlh(t) =
(µhxr − whxr)2

2 ln 2
and ϑlh(t) = I lh

[

2πa2

∫ 1

0
xe−(µhxr−x)2/2σlhdx

]−1

.

Note that the integral term can be computed using numerical integration techniques or with
the relationship
∫ 1

0
xe−(µhxr−x)2/2σlhdx= −σ

(

e−(1−µ)2/2σ − e−µ
2/2σ

)

+ µ

√

σπ

2

[

er f

(

1− µ
√

2σ

)

− er f

(

−µ
√

2σ

)]

A comparison between the measured and estimated HXR emission profile is presented
on Figure 3, whereEmax is the maximum emission value, for a typical LHCD pulse. The
uncertainty on the measured values close to the origin is high, which further supports the
choice of a Gaussian curve to fit the measurements.

6.4. Resulting model properties

To summarize the results obtained in the previous sections,the proposed model is mainly
based on a physical analysis of the plasma flux diffusion and current sources. This
analysis is completed with some scaling laws to compute the LHCD current deposit, and
possibly the temperature profiles. The shape of LHCD deposit is based on experimental
measurements carried on Tore Supra while its amplitude is established from both Tore Supra
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and JET measurements. For control design purposes, the temperature profiles can be roughly
approximated thanks to the proposed scaling laws or an analytical model. Another possibility,
which should be preferred for advanced control design sinceit fully uses the available
diagnostics, is to consider the temperature profiles as somereal-time inputs to the model,
provided by ECE.

The use of scaling laws, even if they imply that the model is not fully predictive, is
motivated by the fact that a large amount of experimental data is available for the actual
tokamaks and their use in the design of future facilities, asillustrated in [38]. The large
amount of physical properties included in the model allows reducing the error and operation
dependency induced by such laws to a level that is acceptablefor control design purposes,
where global dependencies are more important then detailedmodels.

Such an approach is also motivated by the results obtained in[18] and similar works,
where encouraging closed-loop performances for theq-profile control were obtained using
a simple linearised model identified from experimental data. Even if linear approaches
structurally imply a strong dependency on the operating conditions, the previous results have
shown the interest of model-based control design to regulate the plasma profiles. Our aim is
then to contribute to further progresses in this direction by providing for a model with strong
physical dependencies and not restricted to the linear framework, that still allows for real-time
implementation and can be used in non-linear control schemes.

7. Model outputs

Several outputs of major interest for control applicationsare presented in this section, as
well as a practical method to compensate for the cylindricalapproximation and estimate the
security factor and current densities profiles in toroidal coordinates.

7.1. Total current and effective current density

For an arbitrary current denoted with the subscripts to indicate the source (ohmic, LHCD,
ECCD or effective), the total currentIs(x, t) is obtained, with the cylindrical approximation,
by integrating the current densityjs(x, t) on the surfaceπa2x2 as

Is(x, t) = 2πa2

∫ x

0
x js(x, t)dx.

The effective current density of the plasmajφ(x, t) is obtained from the spacial derivative of
the previous equality and Ampere’s law (4) as

jφ(x, t) =
1

2πa2x
∂I
∂x
=

1
2πa2x

∂

∂x

[

− 2πx
µ0R0

∂ψ

∂x

]

= − 1
µ0R0a2x

∂

∂x

[

x
∂ψ

∂x

]

.

Note that the toroidal current at the plasma edgejφ(1, t) can be used to estimate the model
precision since it is usually measured using a continuous Rogowski coil or a discrete set of
magnetic coils surrounding the plasma.
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7.2. Toroidal induced voltage

It is induced by changes in both the primary circuit current and plasma current, and writes as
V(x, t) = ∂ψ/∂t. It is computed using the results of Section 5 as

Vi, j = hη∥ i, j

(

e1ψi+1, j − e2ψi, j + e3ψi−1, j + R0 jni i, j

)

+ (1− h)η∥ i, j+1

(

e1ψi+1, j+1 − e2ψi, j+1 + e3ψi−1, j+1 + R0 jni i, j+1

)

for i = 2 . . .N − 1 and with the appropriate boundary conditions forV1, j andVN, j. Note that
the voltage at the edge of the plasmaV(1, t) is the loop voltageVloop(t), which is measured
with a toroidal loop of wire parallel to the plasma.

7.3. Ohmic current

This current is usefull to analyse the various components ofthe total current profile and is
computed from

< j · B >Ω= σ∥ < E · B >= σ∥E∥Bφ0

whereE(x, t) is the electric field. Introducing the voltage profile, we obtain, equivalently,

jΩ(x, t) =
< j · B >Ω

Bφ0

= −
σ∥

R
V(x, t) ≈ −

σ∥

R0
V(x, t).

7.4. Normalized internal inductance

Defined as [40]

l i(x, t) �
B̄2
θ
(x, t)

B2
θ
(1)
=

2
∫ 1

0
B2
θ(x, t)xdx

B2
θ
(1)

it is expressed is terms of the poloidal flux using Biot-Savartlaw Bθ(x, t) = ψ′/(aR0) as

l i(x, t) =
2
∫ 1

0
ψ′2(x, t)xdx

ψ′2(1, t)
=

8π2

µ2
0R

2
0I2

p

∫ 1

0
ψ′2(x, t)xdx.

7.5. Confinement efficiency

This is a global parameter that evaluates the confinement of the plasma pressure by the
magnetic field. It is defined as the ratio between the average perpendicular pressure and the
edge poloidal magnetic pressure [53, 40]

βθ(t) �
< p >

B2
θ
(1, t)/2µ0

=
4

µ0R0I2
p

∫

V
p dV=

8Wth

3µ0R0I2
p

where the last equality is obtained from the cylindrical approximation.
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7.6. Grad-Shafranov (GS) shift and geometrical correction

An alternative to the computation of the GS equilibrium is toapproximate the GS shift∆(x, t)
from the global parameters defined above. This allows for a comparison between the profiles
obtained with the cylindrical approximation and those obtained in toroidal coordinates. The
central value of the GS shift∆(0, t) is approximated with

∆(0, t) ≈ a2

2R0

(

βθ +
li
2

) (

1− a
R0

)

.

Assigning a profile shape to the GS shift, it is computed as∆(x, t) ≈ ∆(0, t)(1− x2).
The GS shift can be used to estimate theq-profile in toroidal coordinatesqtor(x, t).

Indeed,qtor is given by [34]

qtor(ρ, t) = −
Bφ0R0

∂ψ/∂x















∆′ +
ρ − (R0 + ∆)∆′
√

(R0 + ∆)2 − ρ2















.

The toroidal approximation is then obtained thanks to the relationship

qtor(x, t) =
R0

ax















∆′ +
ax− (R0 + ∆)∆′

√

(R0 + ∆)2 − (ax)2















× q(x, t) (10)

where q(x, t) is the safety factor profile considered previously and computed from the
dynamics ofψ.

The effective plasma current density is more difficult to express in toroidal coordinates
with a GS shift. Indeed, this would require to compute

< j φ · Bφ >= −
FC2 tor

µ0V′tor

(

∂2ψ

∂ρ2
+
∂ln(C2 tor)

∂ρ

∂ψ

∂ρ

)

with

C2 tor = 4π2















ρ
√

(R0 + ∆)2 − ρ2
− ∆′
√

1− ∆′2















ρ

ρ − (R0 + ∆)∆′

andV′tor = 4π2ρ (R0 + ∆ + ρ∆
′/2). A simpler way to take into account the geometry issues

is to use the definition of the effective currentIφ(x, t) = V′ < B2
φ > /2πµ0 and the

ratio Iφ tor(1, t)/Iφ cyl(1, t) = 1 − ∆0(t)/2 to set the boundary condition (6) asψ′(1, t) =
−R0µ0Ip(t)/2π × (1− ∆0(t)/2).

8. Simulations and comparisons with experimental results

The control-oriented model derived in this paper is now compared with some experimental
measurements and the results obtained with the CRONOS code [54], an integrated modelling
tool that solves the transport equations along with the Grad-Shafranov equilibrium in toroidal
coordinates. The complexity of this solver prevents any real-time implementation but it is an
experimentally-based reference that we can use to validateour results. We refer to our model
results withψsim, as name and subscript for the associated simulator, and compare them with
the experimental (exp) and CRONOS signals.
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This comparison does not intend to be exhaustive but focuseson two specific cases of
main interest. The first one is an ohmic shot with ICRH modulations and illustrates the
diffusive behaviour of the plasma model as well as some discretisation issues. The second
one is a LHCD shot, to illustrate the impact of the proposed scaling laws related to this
system and of a non-inductive current source. In both cases the boundary condition of the
diffusion equation is set with the plasma currentIp(t) and a test case withVloop(t) illustrates
the LHCD shot. The simulations are carried with 20 uniformly distributed space steps and
with a sampling time of 10ms.

8.1. Ohmic and bootstrap effects

We analyse here the model results on Tore Supra shot 33632, which doesn’t involve ECCD nor
LHCD. In this shot, the temperature and density profiles are modulated with the ICRH power
and the plasma has the following steady-state characteristics: Ip = 1.0 MA, Bφ0 = 3.19T and
ne0 = 4.5− 3.0× 10−19 m−3.
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Figure 4. Comparison ofψsim (—) with experimental measurements (−−) and CRONOS
signals (−·−) for shot TS-33632, based on the loop voltage (top), the measurement ofβθ+ l i/2
(middle) and the safety factor at the edge of the plasma (bottom).

The first comparison is performed on the magnetic measurement and presented in
Figure 4, where the top part depicts the loop voltage, the middle part isβθ + l i/2 and the
bottom part is the safety factor at the edge of the plasmaqtor(1, t) (computed with the corrected
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formula (10)). ψsim is run both using the temperature and density profiles measurements
(Figure 4(a)) and in a fully predictive way (Figure 4(b)). The later case means thatψsim has
only the global parameters of the plasma andPicrh as inputs but doesn’t use the temperature
and density measurements. The proposed shape scaling laws and ITERL-96P(th) (for the
thermal confinement time) set the temperature and density profiles. This test case is a worst-
case example since the central safety factor is less than oneand there is a high frequency
saw tooth effect on the temperature profiles, which is not explicitly taken into account in the
temperature model.
The results ofψsim and CRONOS are equivalent forVloop, except during the current ramp up
and ramp down (not represented here) phases, which imply some particular phenomena that
we didn’t consider. The magnetic measurement ofβθ + l i/2 is best represented withψsim, even
in the predictive mode. The constant bias onq(1, t) due to the cylindrical approximation
(reported in [34]) is successfully compensated by the geometrical correction proposed in
Subsection 7.6.
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Figure 5. Comparison ofψsim (—) with CRONOS (− · −) for shot TS-33632 att = 7 s,
based on the safety factor profiles (top) and the current densities (effective jφ and bootstrap
jbs) profiles (bottom).

The second comparison is focused on the safety factor and current densities profiles.
There is no experimental measurements available for these physical variables so we compare
ψsim with CRONOS only. The difference between the use of the temperature and density
profiles, and the use of their approximation is also illustrated and is more significant than in
the first comparison. Theq-profile is presented on top of Figure 5: we have an almost perfect
matching between CRONOS andψsim when the measured profiles are used (Figure 5(a)) and
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Mode Discretisation N eVloop (%) Simulation time (s)
Meas. prof. Uniform 20 7.37 1.09
Predictive Uniform 100 5.56 8.53
Predictive Non-uniform 100 5.46 8.81
Predictive Uniform 20 5.84 1.77
Predictive Non-uniform 20 5.18 1.76
Predictive Uniform 10 5.64 1.30
Predictive Non-uniform 10 4.66 1.27

Table 2. Effect of the spatial distribution

a small difference, located at the centre of the plasma, for the predictive mode (Figure 5(b)).
The same conclusion is verified for the effective current density profile, with a more important
mismatching at the centre. This illustrates the influence ofthe temperature on the flux
diffusion, throughη∥ (which is proportional theT3/2

e ). Nevertheless, the accuracy of theq-
profile may be sufficient for most control applications, especially considering that this specific
case study includes saw teeth and that the model can be updated with real-time measurements
from the Hard X-rays in advanced control setups.

The impact of the spatial discretisation strategy is presented in Table 2. The non-uniform
distributionδxi = 2/N +

√
ai, wherea is such that

∑

δxi = 1, is compared with the uniform
distribution for different numbers of discretisation pointsN thanks to the resulting error on
the loop voltage

eVloop �

∫ t f

t0

(

Vloop−ψsim(t) − Vloop−exp(t)
)2

dt
∫ t f

t0
V2

loop−exp(t)dt

and to the simulation time (obtained when the simulator is built with Matlabr on an Intelr

2CPU - 2GHzPC operated with Windows NTr). In each case, the non-uniform distribution
is performing better than the uniform one in terms of the error on Vloop, and increasing the
number of points does not necessarily decrease the error. This issue would clearly deserve
further analysis, as the optimal discretisation would depend on the system properties and
dynamics, but will not be investigated in this work. Instead, we proposed a discretisation
scheme that allows for various possibilities and refer to [55, 56], where the effects of PDE
models discretisation is thoroughly investigated.

8.2. Lower Hybrid effect

The LH system is now introduced inψsim and compared with CRONOS and experimental
results. The simulator behaviour is tested for the operating conditions of Tore Supra shot
35109, which is characterized by some variations inN∥, a constantIp (0.6 MA) and a constant
power input (1.8 MW).

The magnetic measurementsVloop(t), βθ + l i/2 andq(1, t) are presented in Figure 6,
where experimental measurements, CRONOS andψsim are compared. The cases with



A control-oriented model of the current profile in Tokamak plasma 25

5 10 15 20 25 30
0

0.2

0.4

0.6

Lo
op

 v
ol

ta
ge

 (
V

)
V

loop

 

 

5 10 15 20 25 30
0.9

1
1.1
1.2
1.3
1.4
1.5

βθ + l
i
 / 2

 

 

5 10 15 20 25 30

7.2

7.4

7.6

7.8

8

Time (s)

q(
1,

t)

Edge safety factor q

 

 

(a) With measuredTe profile

5 10 15 20 25 30
0

0.2

0.4

0.6

V
loop

 

 

5 10 15 20 25 30
0.9

1
1.1
1.2
1.3
1.4
1.5

βθ + l
i
 / 2

 

 

5 10 15 20 25 30

7.2

7.4

7.6

7.8

8

Time (s)

Edge safety factor q

 

 

(b) With estimatedTe profile

Figure 6. Comparison ofψsim (—) with experimental measurements (−−) and CRONOS
signals (−·−) for shot TS-35109, based on the loop voltage (top), the measurement ofβθ+ l i/2
(middle) and the safety factor at the edge of the plasma (bottom).

measured and estimated temperature profiles are both considered, in Figures 6(a) and 6(b),
respectively. In both cases there is no significant difference onVloop(t) while q(1, t) is
slightly underestimated (the correction proposed in Subsection 7.6 only partially compensate
the cylindrical approximation effect). The main difference appears onβθ + l i/2, which is
underestimated when the temperature profile is estimated.

The safety factor and current densities profiles forψsim (run with measured and estimated
temperature profiles) and CRONOS are presented in Figure 7. The q-profile provided by
ψsim has a small difference with CRONOS close to the centre, especially on Figure 7(b). The
peculiar behaviour of CRONOS current profiles forx < 0.5 may be due to some computational
artefacts and should not be taken into account into this comparison. The profile ofj lh is
reasonably well represented as well as the bootstrap profile, which is particularly accurate
when the measured temperatures and densities are available.

The last profiles, presented on Figure 8, are obtained usingVloop(t) to set the boundary
condition. While these profiles are not as close to CRONOS results as those obtained with
Ip(t), they are still consistent with the plasma behaviour. The difference between the two cases
(Ip andVloop) mainly comes from the fact that the scaling laws are set withIp, which means
that the computation error induced on the plasma current when it is considered as an output
is fed back into the model through the inputs and more specially in the predictive mode, as



A control-oriented model of the current profile in Tokamak plasma 26

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3

4

5

6

7

q−profile

S
af

et
y 

fa
ct

or

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

16

x 10
5

Normalized radius x

C
ur

re
nt

 d
en

si
ty

 (
A

/m
2 )

Currents profiles

 

 
j
φ

j
ω

j
lh

j
bs

(a) With measuredTe profile

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

2

3

4

5

6

7

q−profile

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
2
4
6
8

10
12
14
16
18

x 10
5

Normalized radius x

Currents profiles

 

 
j
eff

j
bs

j
lh

j
ω

j
φ

j
ω

j
lh

j
bs

(b) With estimatedTe profile

Figure 7. Comparison ofψsim (—) with CRONOS (− · −) for shot TS-35109 att = 7 s, based
on the safety factor profiles (top) and the current densities(effective jφ, LH j lh, ohmic jω and
bootstrapjbs) profiles (bottom).

illustrated in Figure 8(b).
To conclude on this comparison betweenψsim and experimental results or CRONOS,

the proposed model provide for some satisfactory results (accurate enough for control
applications), even with a long sampling time and a small number of discretisation points.
The effects of the main control inputs are well represented and the computation time is small
(5 s for shot TS-35109). Comparing the errors on the safety factorprofiles introduced by the
use of the temperature scaling laws show that the model, at least for theq-profile, is not too
much sensible to these laws, as long as the orders of magnitude are suitably represented. For
the magnetic measurementβθ + l i/2, the scaling laws introduce a constant bias.

9. Conclusions

We proposed in this work a new, control-oriented, model of the current diffusion in
tokamak plasma. The current profile dynamics was modelled bythe 1D magnetic flux
diffusion equation, using approximate formulae of the neoclassical resistivity coefficient
and the bootstrap current. The non-inductive current sources were considered as Gaussian
distributions depending on the control inputs, which are derived either from approximate
theoretical formulae for the ECCD or from experimental scaling laws specifically developed
from Hard X-ray Tore Supra data for the LHCD term (the proposedmethod is detailed and can
easily be applied to other tokamaks, provided that Hard X-ray measurements are available).
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Figure 8. Comparison ofψsim usingVloop as a boundary condition (—) with CRONOS (− · −)
for shot TS-35109 att = 28.2 s, based on the safety factor profiles (top) and the current
densities (effective jφ, LH j lh, ohmic jω and bootstrapjbs) profiles (bottom).

The input-output relationships and the discretisation issues (in time and space) were
detailed to provide for a model that is computationally efficient and robust, and particularly
suited for advanced control of the plasma profiles. For example, it can be used directly
to estimate the plasma evolution over a short time-range from real-time measurements and
included in model-based predictive control schemes. The model structure also suggests that
nonlinear analysis may be an interesting tool for further developments in plasma profile
control and to estimate the associated performance limitation.

A new simulation tool was developed according to this model,to allow for a comparison
with Tore Supra experimental data and CRONOS code outputs. Based on two different shots,
this comparison was carried out on the magnetic measurements as well as the safety factor
and current densities profiles. The precision of the model and its computational efficiency
have shown to be particularly satisfying for future controlapplications. Such a tool can also
estimate the safety factor, current densities, toroidal voltage and confinement efficiency in real
time from the global parameters and temperature profiles measurements.

Appendix A. Discretisation method

This section presents a discretisation method that has a variable step in the spatial domain and
is implicit-explicit in the temporal domain. The spatial discretisation method is motivated by
the fact that an improved resolution may be desired in specific regions (such as the plasma
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centre) with a limited number of discretisation points. Thechoice of these points can be
determined by the actuators/sensors placement or by the control objectives. The temporal
discretisation method allows for a trade-off between numerical stability and precision. We
consider the functionf (x, t) and denote byfi, j its value atxi, i = 1, . . . ,N, and at timejδt,
whereδt is the sampling time andj ∈ N+ is the time index considered.

Appendix A.1. Variable-step spatial differentiation

The sampling interval is defined asδxi = xi − xi−1, with δx1 = x1 = 0. Using Taylor’s series,
we can write the general formula

f (x+ ∆x, t) = f (x, t) + ∆x f ′(x, t) +
∆x2

2
f ′′(x, t) +O(3)

where f ′(·) � ∂ f (·)/∂x and O(3) denotes 3rd and higher order terms. At timejδt, we have that

fi+1, j = fi, j + δxi+1 f ′(xi , t) +
δx2

i+1

2
f ′′(xi , t) +O(3)

fi−1, j = fi, j − δxi f
′(xi , t) +

δx2
i

2
f ′′(xi , t) +O(3).

The first order spatial derivative off (·) is then computed by subtractingfi+1, j from fi−1, j, which
gives

f ′(xi , t) =
fi+1, j − fi−1, j

δxi+1 + δxi
+O(1).

Similarly, the second order derivative is obtained by adding fi+1, j and fi−1, j:

f ′′(xi , t) = 2
fi+1, j − 2 fi + fi−1, j − (δxi+1 − δxi) f ′(xi , t)

δx2
i+1 + δx2

i

+O(1).

Neglecting O(1), we finally write

f ′(xi , t) = d1( fi+1, j − fi−1, j) (A.1)

f ′′(xi , t) = d2 fi+1, j − d3 fi, j + d4 fi−1, j (A.2)

with

d1(i) =
1

δxi+1 + δxi
, d2(i) =

4δxi

(δx2
i+1 + δx2

i )(δxi+1 + δxi)
,

d3(i) =
4

δx2
i+1 + δx2

i

and d4(i) =
4δxi+1

(δx2
i+1 + δx2

i )(δxi+1 + δxi)
.

Note that the same formulas hold if the discretisation grid is time-varying.

Appendix A.2. Variable-step spatial integration

The spatial integration off (x, t) is performed based on the principle of Simpson’s rule, which
is to find a polynomial that fits the curve in three points. Sucha polynomial is taken in
Lagrange basis and writes as

P(x) = fi, j
x− xi+1

xi − xi+1

x− xi+2

xi − xi+2
+ fi+1, j

x− xi

xi+1 − xi

x− xi+2

xi+1 − xi+2
+ fi+2, j

x− xi

xi+2 − xi

x− xi+1

xi+2 − xi+1
.
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The integral between two pointsxi andxi+2 is then
∫ xi+2

xi

f (x, t) dx≈
∫ xi+2

xi

P(x) dx

≈ δxi+2 + δxi+1

6

[

2δxi+1 − δxi+2

δxi+1
fi, j +

(δxi+1 + δxi+2)2

δxi+1δxi+2
fi+1, j +

2δxi+2 − δxi+1

δxi+2
fi+2, j

]

.

For the general case where the integration is carried out between the two locationsxm

andxn,
∫ xn

xm

f (x, t) dx≈
αint−1
∑

k=0

∫ xm+2k+2

xm+2k

P(x) dx+ βint
δxn

δxn + δxn+1

∫ xn+1

xn−1

P(x) dx

where














αint = (n−m)/2 and βint = 0 if (n−m) is even,

αint = (n−m− 1)/2 and βint = 1 if (n−m) is odd.

This integration method is particularly computationally efficient and useful from a
control point of view since it allows to approximate the integral operator with a linear operator
as

∫ xi

0
f (x, t) dt ≈ Mint(i,1 : i)



























f1, j
...

fi, j



























whereMint ∈ RN×N is the integration matrix, constructed with the previous equations, and
Mint(i,1 : i) denotes the columns 1 toi of row i.

Appendix A.3. Temporal differentiation

It is performed using animplicit-explicit scheme, as proposed in [33]. For the general case
where the function to be discretised writes asḟ (x, t) = g(x, t), the time derivativeḟ (·) is
obtained with

(

fi, j+1 − fi, j
δt

)

= h

(

fi, j+1 − fi, j
δt

)

ex

+ (1− h)

(

fi, j+1 − fi, j
δt

)

im

(A.3)

whereh ∈ [0,1] and
(

fi, j+1 − fi, j
δt

)

ex

= gi, j ,

(

fi, j+1 − fi, j
δt

)

im

= gi, j+1.

Note that for the special case of the diffusion equation,g typically depends onf ′, f ′′ and the
source terms. The temporal discretisation method described here corresponds to the Crank-
Nicholson scheme ifh = 0.5.

Appendix B. Gaussian distribution

The ECCD and LHCD systems generate distributed plasma current deposits, which are
represented as Gaussian distribution. The general equation describing such a distribution
is given by

j′ni(x, t) = jni(x, t)
µ(t) − x
σ(t)
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where, in the classical probabilistic terminology,µ(t) is the mean andσ(t) is the variance of
the function considered. Integrating the previous equation, we have

jni(x, t) = ϑ(t)e−(µ(t)−x)2/2σ(t)

whereϑ(t) sets the maximum value ofjni(x, t) (at x = µ). A discretised version is obtained
thanks to the central difference method as
jni,i+1, j − jni,i−1, j

δxi+1 + δxi
= jni,i, j

µ j − xi

σ j
⇔ jni,i+1, j = (δxi+1 + δxi)

µ j − xi

σ j
jni,i, j + jni,i−1, j

with the boundary conditions

jni,1, j = ϑ j e
−µ2

j /2σ j and jni,2, j = ϑ j e−(µ j−x2)2/2σ j

for both CD systems.

Appendix C. Optimal fitting method

Given a set of experimental measurements and an appropriatefitting function, this section
describes an optimal identification method to determine thefitting function parameters. Some
proper references on numerical solutions by iterative search and gradient methods can be
found in [57]. More specifically, a similar design method wasused in [58] for the optimal
control of systems with stochastic components in the dynamics. We consider here the steady
state (time-invariant) behaviour of a physical quantity asa function described by a set ofnm

measurements (i.e. the sampling times), which has to be large enough to ensure that the
resulting fitting function represents the physical phenomena. The set of measured inputs is

I =
{

I1, I2, . . . , Ini

}

∈ Rnm×ni

where ni is the number of physical quantities that influence the identified one, and the
measured outputs are denoted byy ∈ Rnm. The estimated output is then

ŷ(ϑ, i) = f (I (i), ϑ), i = 1 . . . nm

where f (·) is the fitting law,I (i) corresponds to the input measurements of thei th experiment
andϑ is the vector of design parameters.

Appendix C.1. General formulation

A classical identification problem is to findϑ that minimizes the difference between the
measured and estimated data. This is done in this section by choosing a cost functionJ
which reflects the variance of the estimation error from a given set of measurements:

J(ϑ) =
1
nm

nm
∑

i=1

||y(i) − ŷ(ϑ, i)||2
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The output error is then minimized forϑ∗ satisfying

ϑ∗ = arg min
ϑ

J(ϑ)

This optimization problem can be solved with a descent algorithm, using the sensitivity of ˆy(i)
with respect toϑ, expressed asS(ϑ, i) � ∂ŷ(i)/∂ϑ. The gradient writes as

∇J(ϑ) = − 2
nm

nm
∑

i=1

(y(i) − ŷ(ϑ, i))S(ϑ, i)

and the optimal parameterϑ∗ is obtained by moving along the steepest slope−∇J(ϑ) with
a stepα, which has to be small enough to ensure thatϑ̇ = −α∇J(ϑ) converges toϑ∗. This
step is chosen according toNewton’s methodand writes asα � (ΨJ(ϑ) + υI )−1, whereυ is
a positive constant introduced to ensure strict positiveness andΨJ(ϑ) is the pseudo-Hessian,
derived using the Gauss-Newton approximation as

ΨJ(ϑ) =
2
nm

nm
∑

i=1

S(ϑ, i)S(ϑ, i)T

The optimal set of fitting parameters is finally obtained withthe variation law

ϑl+1 = ϑl − αl∇J(ϑl) (C.1)

αl = (ΨJ(ϑl) + υI )−1 (C.2)

for l sufficiently large.

Remark 4 The convergence speed of the algorithm is inversely proportional to the design
parameterυ but choosing this parameter too small may create some oscillations in the
algorithm.

Appendix C.2. Linear regression

The previous method is particularly efficient when the output is estimated with a linear
regression technique. Indeed, in that case we can write ˆy(ϑ, i) = f (I (i))×ϑ, i = 1 . . . nm, and
the sensitivity function is simplified as

S(ϑ, i) = S(i) = f (I (i)) (C.3)

Consequently, the pseudo-Hessian functionΨJ andα do not depend on the design parameters.
A commonly used fitting function is given by

Ô = α0Iα1
1 Iα2

2 Iα3
3 . . . I

αni
ni

The linear regression is then performed with the output
{

y = ln(O)
ŷ(ϑ) = ln(α0) + α1 ln(I1) + α2 ln(I2) + . . . + αni ln(Ini )

whereO is the measured output, and the previous algorithm is applied with

α = [ln(α0) α1 α2 . . . αni ]
T

f (I ) = [1nm ln(I1) ln(I2) . . . ln(Ini )] (C.4)

where 1nm is a column vector ofnm ones.
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Appendix C.3. LH deposit estimation

The proposed method is applied to the estimation of the lowerhybrid current deposit width
Wx with the fitting function (with 6 parameters)

ŵhxr = α0Bα1
φ0

Iα2
p n̄α3Pα4

LHNα5
∥

The optimal parameter vector is computed from the variationlaw (C.1)-(C.2) with the
sensitivity function (C.3)-(C.4). A set of 111 averaged measurements, performed on Tore
Supra shots ranging between the shot numbers 34496 and 36165, determines the values ofI

andO. This optimal parameter determination method is also applied to estimate the centre
of the deposit profile (radial position of the maximum value)and provide for the coefficients
α0, . . . , α5 of the relationship

µ̂hxr = α
′
0B

α′1
φ0

I
α′2
p n̄α

′
3P

α′4
LHN

α′5
∥
.
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