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Abstract

In this work, we consider the problem of particle source
identification from distributed electron density mea-
surements in fusion plasmas, such as the ones obtained
in Tore Supra tokamak. A transport model, suitable
for identification purposes, is first proposed based on
a simplification of classical particle transport models.
We then derive a quasi-steady state (QSS) description,
which is shown to converge exponentially towards the
true solution. Finally, an identification method is pro-
posed based on the QSS model and a shape approxima-
tion of the source term. Tore Supra data is used to il-
lustrate the different results with experimental measure-
ments.

1. INTRODUCTION

Recent developments in control theory and con-
trolled thermonuclear fusion research are naturally
leading to research topics of common interest that are
particularly challenging for both scientific communi-
ties. For example, new modeling and identification
tools are needed for the understanding and analysis of
complex physical phenomena that occur in thermonu-
clear fusion. The representation (qualitative and quan-
titative) of particles transport at the plasma edge is an
example of such topics.

Tokamak experiments, such asTore Supraor JET,
are equipped with Lower Hybrid (LH) antennas to heat
the plasma and create the toroidal current. The LH
waves are recognized as the most efficient non-inductive
current drive sources and their use is forecasted for
ITER experiment. The efficiency of such antennas is
strongly related to our ability to ensure an appropri-
ate coupling between the waves on the plasma, which
directly depends on the electron density in a region
called thescrape-off layer (SOL), located between the
last closed magnetic surface (theseparatrix) and the
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wall. This region, as well as the key elements dis-
cussed in this paper, are depicted in Fig. 1. The impor-
tance of local density control in the SOL is discussed in
[1], where dedicated experimental conditions are estab-
lished for long distance shots (plasma experiments) on
Tore Supra. It is further emphasized in [2], where the
coupling efficiency is improved thanks to gas puffing in
front of the launcher on JET (reduced reflected power).
A first attempt to control the coupling between LH and
the SOL is proposed in [3], based on a scalar model.

Figure 1. SOL, limiter and LH launcher in a toka-
mak cross section (i.e. Tore Supra).

The electron density in the SOL is directly influ-
enced by the LH input powerPLH [1]. Indeed, a small
but significant part of this power is absorbed in the
plasma edge during the wave propagation to the core.
A possible effect of this absorption is the gas ioniza-
tion, which results in an increased electron density. This
suggests thatPLH is a key parameter for the local con-
trol of the electron density, and consequently for the
coupling efficiency, which motivates the development
of new modeling tools based on experimental measure-
ments. On Tore Supra, the electron density is measured
by using a microwave reflectometer that has both a good
spatial (r ≈ 1 cm) and temporal resolution (t ≈ 2 msfor
the shot considered).



The aim of this paper is to develop an identification
method for determining thesource term, i.e. the num-
ber of electrons created per unit time and volume, when
the high frequency heating is switched on. To achieve
this, we derive a particle transport model for the area of
non-confined plasma (SOL) and develop an appropri-
ate parametric identification method for distributed sys-
tems, based on the reflectometer measurements. The re-
sulting algorithm then provides an efficient tool for ana-
lyzing the coupling associated with the electron density
in the SOL, even if the detailed physical relationships
are unknown.

Our approach is based on a quasi-steady-state
(QSS) approximation of the diffusive transport phenom-
ena. The density is considered as the boundary layer
while the source term is supposed to have relatively
smooth variations. A similar approach has been pre-
sented, in the feedback control framework, in [4]. The
QSS model is then used to set an optimal shape iden-
tification method for the source term. The identifica-
tion algorithm is validated on a Tore Supra shot that has
been specifically set for such research (LH power mod-
ulation).

The paper is organized as follows. First, the simpli-
fied particle transport dynamics is presented in Section
2, along with some background on classical models.
The QSS approximation and the convergence analysis
are then detailed in Section 3. Finally, the identification
method based on shape estimation is derived in Section
4.

2. SIMPLIFIED TRANSPORT MODEL

The aim of this section is first to present classical
models that are used in thermonuclear fusion to deter-
mine the particle transport. Thanks to specific hypothe-
ses associated with the physical properties of the SOL,
we then propose simplified model that will be used for
the particle source identification.

2.1. Energy conservation

The temperature and density behavior are generally
set by the transport equation:

3
2
∂nT
∂t
= ∇ (nχ∇T)+ST (1)

wheren(x, t) is the density,χ(x, t) is the temperature dif-
fusivity andST (x, t) corresponds to heat sources. Var-
ious approaches have been proposed for the computa-
tion of χ andST but their number illustrates the diffi-
culty to model the heat diffusion for tokamak plasmas.
Some existing fitting laws provide for the volume av-
erage temperature estimation [5] but traditional fitting

curve methods are strongly dependent on the operating
conditions.

2.2. Linearized model

If we consider relatively small variations ˜n(x, t) and
T̃(x, t) of the temperature and density around their aver-
aged valuen0(x) andT0(x), we have that:

n(x, t) = n0(x)+ ñ(x, t), T(x, t) = T0(x)+ T̃(x, t).

The conservation law can then be expressed using the
linearized model [6, 7]:
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whereS andQ denote the particle and heat sources,
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withVi j andDi j , {i, j} ∈ {n, T} the second order gradi-
ents.

2.3. Density behavior in the SOL

In the scrape-off layer, we can simplify the previous
model thanks to the following hypotheses:

• the convective effects are neglected, i.e.V = 0;

• the density gradients play a more important role
than the temperature gradients in the sink term:
∂S/∂T << ∂S/∂n;

• similarly, we also consider thatDnT <<Dnn;

• the diffusivity termDnn is constant.

The linearized model (2) is then simplified, for the den-
sity dynamics, as:

∂ñ
∂t

= S u(t)+
∂S
∂n

ñ+Dnn
∂2ñ

∂r2
.

Considering the static case without sources, the trans-
port coefficients∂S/∂n andDnn can be related to the
model proposed in [8]. The final model is described by
the dynamics:

∂ñ
∂t
= D⊥(t)

∂2ñ

∂r2
− cs(r, t)

2Lc(r, t)
ñ+S(r, t) (3)



whereD⊥ is the cross-field diffusion coefficient (typi-
cally ∼ 1 m2s−1), cs is the sound speed,Lc is the con-
necting length along the flux tube to the flow stag-
nation point andS = Sl + SLH reflects the particle
source induced by the limiterSl and the LH antenna
SLH. The sound speed can be approximated ascs ≈√

(Te+Ti)/mi, whereTe andTi are the electron and ion
temperatures, andmi is the ion mass. The ratioTi/Te

is obtained thanks to the experimental measurements
described in [9]. Lc is deduced from the safety fac-
tor q (which typically varies by 10 % in the SOL) as
Lc = 2πrq.

A Neumann boundary condition∂ñ(0, t)/∂r = 0 is
set close to the center while a Dirichlet one ˜n(L, t) =
ñL(t), whereñL(t) is given by the measurements, gov-
erns the plasma edge. Note thatr = 0,L denote relative
coordinates with respect to the model domain of valid-
ity (i.e. r = 0 at the separatrix location). The data set
considered in this paper is characterized by repeated LH
impulses, which highlight the impact of LH antenna.

2.4. Problem statement

The problem considered in this paper is to deter-
mineS(r, t) in (3) from the given signals ofn(r, t). The
transport parameters (supposed constant according to
the quasi-steady state behavior described in the next
section)D⊥, cs andLC are obtained from existing mod-
els and measurements.

3. QUASI-STEADY STATE BEHAVIOR

The model (3) belongs to a more general class of
transport systems that involves diffusion, mass losses
and a distributed source. We suppose that averaged val-
ues of diffusion and sink terms can provide for a good
enough approximation. Taking into account the fact that
we are interested in the averaged impact of the source
term, its time-scale is denoted byt′. Using the sub-
scriptst andx to denote the time and space derivatives,
respectively, wherex = r/L ∈ [0, 1] is the normalized
radius, the class of systems considered can be described
as:



















ñt(x, t) = α ñxx(x, t)−γ(t′) ñ(x, t)+S(x, t′),
ñx(0, t) = 0, ñ(1, t) = ñL(t),
ñ(x,0)= ñr0,

(4)

whereα = D⊥/L2 is the diffusion,γ = cs/(2LC) > 0 is
the sink term andA(t) �

∫ L
0

A(x, t)dx.
In this section, we investigate the transport model’s

properties along the lines suggested in [4] in a control
design framework. More precisely, we supposeslow
variationson the time-scale of the inputt′ to determine

the quasi-steady state behavior of (4). It is then shown
that the true model converges exponentially towards its
equilibrium value.

3.1. Quasi-steady state (QSS) solution

In order to find the QSS of (4), we consider the
variables in the time-scalet′ as constant and determine
the steady-state behavior of ˜n. The model considered
consequently writes as:

{

α ñe,xx−γ ñe+S = 0,
ñe,x(0, t) = 0, ñe(1, t) = ñL(t′).

(5)

The homogeneous solution ˜neh is determined by
settingS = 0, which implies the solution:

ñeh(x, t′) = k1(t′)coshλx+k2(t′)sinhλx,

with λ(t′) �
√

γ/α. Applying the boundary conditions
to the previous equation, the constant coefficients are
k1(t′) = ñL(t′)/coshλ andk2(t′) = 0. Note that this ho-
mogeneous solution can be used to compute the density
profile n0(x) based on averaged experimental measure-
ments of the boundary conditions.

The distributed source is taken into account thanks
to thevariation of parametersmethod (created by La-
grange and available in classical textbooks, such as
[10]) by considering the set of solutions:

ñenh(x, t
′) = u1(x, t′)coshλx+u2(x, t′)sinhλx.

The non-homogenous solution is obtained as follows.
Substituting the previous equation into (5) and assum-
ing that

0 =
∂u1

∂x
coshλx+

∂u2

∂x
sinhλx,

− 1
√
αγ

S =
∂u1

∂x
sinhλx+

∂u2

∂x
coshλx,

with the previous definition ofλ, then u1 and u2 are
given as

u1(x, t′) =
1
√
αγ

∫ x

0
sinh(λη)S(η, t′)dη,

u2(x, t′) = − 1
√
αγ

∫ x

0
cosh(λη)S(η, t′)dη.

We then obtain:

ñenh(x, t
′) =

1
√
αγ

∫ x

0
sinh[λ(η− x)]S(η, t′)dη.



Solving for the boundary conditions, the QSS behavior
is finally given by:

ñeqss(x, t
′) =

ñL−C(S)
coshλ

coshλx (6)

+
1
√
αγ

∫ x

0
sinh[λ(η− x)]S(η, t′)dη,

with C(S) � 1√
αγ

∫ 1
0 sinh[λ(η−1)]S(η, t′)dη.

3.2. Convergence properties

In this section, we investigate the convergence of
the actual model (4) towards the QSS approximation
(6). Defining the difference between the model and its
approximation as:

z(x, t) � ñ(x, t)− ñe(x, t),

the dynamics ofz is directly given by:
{

zt = αzxx−γz,
zx(0, t) = z(1, t) = 0.

Convergence properties and PDE stability condi-
tions are particularly difficult to establish directly. In-
stead, the use of norms may greatly simplify the prob-
lem and allows for the definition of specific criteria [4].
In this analysis, we consider the convergence analysis
in theL2 sense, with the Lyapunov functional (orL2

norm):
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Its dynamics is derived as:
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where the third equality is obtained by applying inte-
gration by part ((zxz)x = zxxz+z2

x) and from the bound-
ary conditions, and the inequality comes from the appli-

cation of Poincaré’s inequality (
∫ 1
0 f (x)2dx≤ 2 f (0)2+

4
∫ 1
0 fx(x)2dx). As a direct consequence:

L(t) ≤ e−
α+4γ

2 tL(0),

or, equivalently in terms of the convergence error:

||z(x, t)||22 ≤ e−
α+4γ

2 t||z(x,0)||22.

The transport model then converges exponentially
towards the QSS approximation (6) ifα+4γ > 0 (which
is the case for the particles transport sinceα andγ are
positive), at a rate (α+ 4γ)/2. In order to verify the
QSS approximation, the time constant associated with
the source dynamicsτS has to verify the constraint:

τS >>
2

α+4γ
=

2L2LC

D⊥LC+2L2cs

. (7)

For the data considered, we obtainτS >> 10.3 ms. The
data sampling time being 2ms, τS is an important pa-
rameter to take into consideration when estimating the
source term.

4. IDENTIFICATION OF THE SOURCE
TERM

Supposing a given shape for the source term, a
parametric identification method is established in this
section to determine the parameter set from experimen-
tal data and the QSS model.

4.1. Shape estimation

As an approximation, the source term is considered
as the sum of two curves (limiter and LH sources) de-
termined from the QSS description. Our analysis is re-
stricted to the functions described as:

S(x, t′) ≈
∑

i=l,LH

ϑi(t′)eβ(x,µi (t′),σi (t′)),

wherel andLH denote the limiter and the LH source,
respectively,ϑi sets the amplitude,β(·) is the dilatation
function,σi a dilatation coefficient andµi the transla-
tion. Note that this family of curves could easily be ex-
tended to sigmoids or splines. A similar approach was
used in [11], to obtain an approximation of temperature
profiles in a current density model. The set of param-
etersθ(t′) � {ϑl , µl , σl , ϑLH , µLH , σLH} is obtained by
solving the least squares problem:

min
θ

{

J(θ, t′) =
1
2

∫ 1

0
(ñem(x, t′)− ñeqss(x, θ, t

′))2dx

}

for each sampling instantt′, using the experimen-
tal measurements ˜nem and with boundary constraints
on θ given by the physical properties of the system.
This is done thanks toMatlabr function fmincon,
a subspace trust-region method based on the interior-
reflective Newton method described in [12, 13]. Similar
gradient-based methods can be used, with the constraint
that they apply to large-scale nonlinear systems. The



gradient and pseudo-Hessian (Gauss-Newton approxi-
mation) are obtained, respectively, as:

∇θJ(θ, t′) = −
∫ 1

0
Sθ(x, t′)(ñem− ñeqss)dx,

ΨθJ(θ, t′) =

∫ 1

0
Sθ(x, t′)Sθ(x, t′)Tdx,

whereSθ � ∂ñeqss/∂θ is the sensitivity of ˜neqss with re-
spect toθ. The sensitivity function is derived as:
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In order to fulfill the constraint on the source dy-
namics, the resulting optimal set of parametersθ∗ is
smoothed using thenearly equal ripple approximation
proposed in [14] with a passband edge much smaller
than (α+4γ)/2, to satisfy the QSS condition (7).

4.2. Example: Gaussian fit

The results presented in the previous section are il-
lustrated by considering the source term as a sum of
Gaussian distributions:

S(x, t′) ≈
∑

i=l,LH

ϑi(t′)e−(µi (t′)−x)2/2σi (t′). (8)

The optimal set of parametersθ∗ is obtained using:

β(x, µi (t
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.

The time evolution of the resulting Gaussian parame-
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Figure 2. Shape parameters for the Gaussian ap-
proximation.

ters is presented in Fig. 2. We can see that the source
locations are clearly distinct, with a wider source closer
to the plasma center that is due to the limiter. The am-
plitudes illustrate properly the LH impulses, with peaks
corresponding to their time location, but are clearly cor-
related. This may motivate further investigation on the
chosen optimal algorithm that may give only a subopti-
mal result, due to the system nonlinearities. Note also
that the standard deviation is very tight, resulting in a
high amplitude ofϑi . Finally, the Gaussian parameters
are strongly related to the transport coefficients (i.e. in-
creasingγ results in an increasedσi and a decreased
ϑi), which may be considered as optimized parameters
to decrease the estimation error.

The source term is introduced in the QSS model
(6) and compared with the experimental data on Fig. 3.
We can see that the estimation error is acceptable in the
region between 3.11 and 3.15m, which corresponds ap-
proximately to the domain of validity of the model. In-
deed, we may cross the separatrix when going closer
to the center and the plasma shell at the edge may act
as a particle source not considered explicitly. Note that
the “accurate region” (where the error is less than 10%)
is increased after 16.5 s. This may be correlated with
the higher amplitude of the source and imply that the
transport coefficients values are an important source of
error, as their relative importance is consequently re-



duced. Unfiltered data have been used for the source
determination: the proposed approach is then relatively
robust to measurement noise. Finally, the LH modula-
tions do not create a significant associated error, which
confirms that our approach is suited for their analysis as
a source term.

Figure 3. Comparison of the ñeqss(x, t) with the ex-
perimental data (normalized error).

5. CONCLUSIONS

In this work we considered the problem of particle
source identification in the scrape-off layer from dis-
tributed measurements, which is a topic of main im-
portance in the field of controlled thermonuclear fusion.
Based on existing physical models, we proposed a sim-
plified one that implies diffusive transport and a sink
term, additionally to the source term. A QSS model was
derived and proven to converge exponentially towards
the exact solution of the dynamic model. A parametric
identification method based on least squares approxi-
mation and the QSS model was proposed, supposing a
given shape for the source term. The accuracy of the
final model was discussed based on experimental mea-
surements and shown to validate specific model proper-
ties.
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