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1. Introduction

Stabilization of the reversed-field pinch (RFP) plasma by magnetic feedback systems
is a proven concept in theory and in practice. Experimental control of multiple
resistive-wall modes (RWMs) have been shown feasible [1, 2]. Recently, a refurbished
implementation [3] of the original intelligent-shell (IS) [4] furthermore showed
successful sustainment of nonzero nonaxisymmetric radial magnetic field boundary
conditions throughout plasma discharges. The work described here primarily strives
to design and deploy the fourier-mode decoupled controller, a reconfiguration enabled
by harnessing results from novel experiments that measure the external plasma
response in the RFP [5, 6]. Although fourier mode-controllers (MCs) have been tested
before, these are quite far away from the set of controllers synthesised in this work.
First, previous RFP MCs have not been (rigorously) tuned based on plasma-response
identification data and second, controller synthesis methods have been spartan [7], at
best, but mostly absent.

A central assumption adhered to when designing MCs is the concept of mode
rigidity. Mode rigidity means that the MHD mode structure remains intact during
instability (RWM) onset and controller intervention. The hypothesis of mode rigidity
is central to the formulation of modal circuit equations required for MCs, e.g. [8].
Recent experiments [9] indicate that the concept is not, for tokamaks at least, entirely
robust. In this work we assume that modal circuit equations are a sound starting-
point. This is conventional for RFPs.

State-of-the-art magnetic control for the RFP is at the time of writing
encapsulated in the acronym CMC or clean mode control, as introduced in [10]. We
will parallel this design from a quite different (and in some sense generalised) language
here.

Provisional studies of experimental behaviour is found in the last section, and
we will comment on potential inadequacies of pure discrete fourier transform (DFT)
type decoupling. Though FFT-decoupling is nice in theory, the real-world anisotropic
vacuum vessel could severly challenge the attained performance in practice. The
studies of 3D conducting structures’ influence for tokamak RWM control [11] is related
to this issue.

1.1. EXTRAP T2R reversed-field pinch

EXTRAP T2R RFP, housed in the Alfvén Laboratory, Stockholm, Sweden, is built
upon the skeletal remainings of the OHTE experiment originally constructed at
General Atomics in San Diego [12]. T2R is a relatively small experiment with
major toroidal radius R = 124 cm, a circular cross-section, and a confined-plasma
minor radius of a = 18cm. As a high-aspect ratio R/a ≈ 7 RFP machine, the
cylindrical 1D-magnetohydrodynamic (MHD) plasma approximation is believed to be
a suitable approximation for macroscopic behaviour on the resistive-shell time-scale.
An assortment of key parameters for T2R are listed in table 1. Plasma discharge
lengths τpl & 20ms are only attained with magnetic feedback stabilization activated.
This is a direct implication of the relatively short eddy-decay shell time-constant τw.
The experimental success of feedback RWM stabilization is loosely quantified by the
ratio τpl/τw . 10.

The minor radii listed in table 1 can be size-sorted as a < rs < rw < rc. This
relates to figure 1: rs (blue), rw (grey), rc (red) and plasma a (vaguely pink). The



Synthesis of an FFT-decoupled RFP controller 3

plasma-containing vacuum vessel is positioned just inside the sensor coils at rs, and
is not depicted in figure 1. This means that the sensor coils are sandwiched between
the vessel and the resistive shell (a.k.a. wall) at rw [12]. The vessel magnetic field
diffusion time constant τv is about two orders of magnitude faster than the shell’s τw,
thus τv is ignored for the basic dynamical expression (4) encountered below.

Figure 1. T2R feedback accoutrements: a dense arrangement of active coils (red,
outermost) and sensor coils (blue, innermost).

Table 1. Machine parameters for T2R

Symbol Value/order Description/comment

Ipl ∼ 100 kA plasma current
τpl 10− 100ms plasma shot duration
τw ∼ 10ms resistive wall time
τv ∼ 50µs vessel wall time
Ts 100µs digital sampling time, controller cycle
a 0.183m plasma minor radius
R 1.24m plasma major radius
rw 0.198m resistive-shell radial position
rs 0.197m sensor coil radial position
rc 0.238m actuator coil radial position

1.2. Signal notations

Consider figure 1. We will denote by ỹ(t) and ũ(t) vector signals of sorted
stacked scalars ỹi and ũi corresponding to sensor values and actuator amplifier input
respectively. These signals are sorted in the sense that ỹi and ũi indexes the same
surface position on the torus. The vector dimension is 64 despite figure 1 depicts
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4 × 32 = 128-sized arrays. The reason is that, currently, T2R sensors and actuator
are economically connected by pairwise subtraction such that the outboard-inboard
and the up-down saddle coil pairs share signals. The result is 2 signals for each of the
32 equidistant positions along the toroidal angle, describing horizontal and vertical
magnetic field perturbations. A drawback is the loss of even-m mode numbers due
to the signal subtraction, but for T2R the set of m = 1 mode-numbers is the most
important. It is well known that the unstable portion of T2R RFP eigenmodes are
m = 1-modes with low |n| [13, 14]. Also encountered in this work are the signals r̃(t),
and w̃(t) respectively denoting reference and dither vectors.

The non-tilde signal vector y is the spatial DFT of its tilde companion and is
obtained as follows.

(T ỹ)i (t) =
∑N−1

j=0 Wji (ỹj,A(t) + ιỹj,B(t))

yj(t) =

{

Re (T ỹ)j (t), j = 0 . . . 31

Im (T ỹ)j−32 (t), j = 32 . . .63

(1)

In (1), ι2 = −1, Wji = e−2πjiι/N , N = 32 and pair-subscripts (j, A), (j, B) respectively
maps to the corresponding indexes for outboard-inboard A and top-down B signals at
toroidal angle j. Scalars yj , j = 0 . . . 63 then constitute the vector y. Vectors u, r, w
∈ R64 are similarly defined by replacement of y in (1). DFT vector index j is related
to MHD mode number n via the mapping n(j) = nj , nj being the jth component of
nT = ( 0 ) . . . 15,−16 . . .15,−16 . . .− 1.

We will denote by s the Laplace transform parameter [15] at any occurence of
continuous-time transfer functions throughout the text. z will be reserved for the
z-transform [15, 16] parameter where applicable for discrete-time system descriptions.
Recall that z−1x(k) = x(k−1), where k is the sample index. A sample index increment
for T2R represents a sample-interval of Ts = 100µs, or equivalently a sample-frequency
of fs = 1/Ts = 10 kHz.

1.3. Background and setting: the intelligent-shell and mode-control

Feedback emulation of a perfectly conducting boundary was first proposed in reference
[4], viz. the intelligent-shell (IS). The basic IS scheme utilizes an array of sensor and
current-carrying actuator saddle-shaped coils, figure 1, partially or fully covering the
surface of the toroidal resistive shell. Originally, the response of an actuator is only
affected by the sensor centered at the same toroidal and poloidal coordinate. The
actuator response is a magnetic field anti-directed relative to the radial magnetic
field perturbation detected by the incident sensor saddle coil. Thus, a ‘simulated’
perfect-conductor surface eddy-current counteracting the perturbation is produced,
and consequently magnetic field diffusion through the container is hindered.

At T2R the following IS feedback has been implemented [3].

ũ = MeqFPID(s) (r̃− ỹ) (2)

Compared to the classic IS, (2) is slightly generalised since a reference signal r̃ can be
tracked for any sensor. In (2), Meq is a tridiagonal (approximately diagonal) matrix
designed for two reasons: i) to detach (minimize) the influence of actuators to adjacent
sensors, ideally only exciting the incident sensor and ii) to equalize the individual
amplitudes of the power amplifiers driving the actuator coils [17]. Additionally,
FPID(s) is a diagonal proportional-integral-derivative (PID) [18] controller; tuned [3],
symptomatically, without knowledge of the experimental plasma response. The study
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[19] also had this weakness: no available experimental values for plasma growth-rates,
albeit the theoretical shape of the RFP spectrum was considered in this design.

In principle the counterworking actuator response could be improved by
harnessing knowledge of the spatial structure of the perturbation. In linear RFP
stability theory, independently growing helical fourier modes can be predicted, and
these structures have been observed experimentally. A feedback system that identifies
and reacts on predefined spatial patterns is generally denoted a mode-controller (MC).
Two complications arise when actually designing this system. First, experimental
parameters for the plasma dynamics are needed, and second, the experimental spatial
eigenmode structure is required. Technically, detailed tuning of IS designs also suffers
from this problem, however, omitting experimental plasma response identification
can perhaps be more easily motivated for IS since the decentralized nature of the
IS control system has no possibility of distinguishing between spatial perturbation
patterns anyway. With any MC controller comes the pretention to taylor the feedback
response to the modal dynamics which cannot be done unless experimental information
on this dynamics is acquired.

The scope of this study is the design and deployment of a statically decoupled
MC derived from experimental plasma parameters in this particular decoupling.
Specifically, the eigenmode structure will be discrete fourier modes, implemented via
the fast fourier transform (FFT) [20, 21]. The prescription of helical fourier modes
is theoretically sound when the plasma obeys cylindrical symmetry equilibrium, and
resistive-shell time-scale MHD contained in a cylindrical homogeneous thin shell. This
last assumption is known to be false for T2R. There are insulating cuts in the shell
to avoid electrical short-circuits. Nevertheless this type of spatial feedback has been
applied extensively in the literature, although usually in a more explorative manner
than will be presented below.

More specifically, we will, in section 2, design an FFT-decoupled control system
of the form

ũ = MeqW
−1
DFTFFO(s) (Lrr+WDFT ỹ) (3)

where matrix WDFT , implicitly defined by (1), betokens the linear FFT operation.
FFO(s) is a diagonal fixed-order controller and Lr is a diagonal constant matrix. The
elements of FFO(s) and Lr are developed in detail in section 2. Note that the reference
r is defined in mode-space here, in contrast to r̃ in (2).

1.4. Measured fourier-mode parametric external plasma response

The parametric external plasma response model prescribed for identification and
control synthesis here is the conventional [13, 22, 14] linear independent-mode
dynamics

τm,nẋm,n − γ̂m,nxm,n = xext
m,n, ∀m > 0, n ∈ Z (4)

where xext
m,n = xerr

m,n + xapp
m,n is a driving term dichotomized into an error part and

a externally applied known part (active coils). The normalized modal growth-rate
γ̂m,n encapsulates the MHD content of (4) and the modal time-constant τm,n stems
from electromagnetic diffusion through a passive resistive cylindrical shell. It must be
clearly understood that what is prescribed in this work is only the model structure of
(4). We do not trust any numerical values not originating from system identification
experiments interpreted in this form (4). Specifically, we impose dynamics (4) for
each fourier mode (m,n) and this implies aliasing to DFT component i which is
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approximated by truncation. A comparable truncation is invoked in [10]. It is neither
purpose nor scope here to detail identification algorithms and procedures [5, 6, 23] but
we will need to provide enough information on model parameterization to introduce
the matrices required in section 2. It is sufficient to consider here the model

Gi(z, θi) =
∑

(m,n)∈Kn(i)

Gm,n(z, θi) (5)

that takes the role of the plant G in figure 3. The parameter vector θi is detailed
below. System (5) is constituted by zero-order-hold discretizations [16] of (4)

Gm,n(z, θ) =
αĉm,nb̂m,n

1
γ̂m,n

(

d̂m,n − 1
)

z−1

1− d̂m,nz−1
(6)

using d̂m,n = e
γ̂m,nTs
τ̂m,nτ . In (6) ĉm,n, b̂m,n and τ̂m,n are constant geometric factors

[5] associated with T2R’s configuration. The truncated set of aliased mode-numbers
summed over in (5) is

Kn =







(1, n), (1, n− 32), (1, n+ 32),
(3, n), (3, n− 32), (3, n+ 32),
(5, n), (5, n− 32), (5, n+ 32)







(7)

throughout this study. For each fourier component i, the imposed first-order discrete-
time model of the disturbance system H in figure 3 is

Hi(z, θi) =
biz

−1

1− aiz−1
(8)

which is essentially modeling the specific part xerr
m,n of xext

m,n in (4). For the ith spatial
fourier component the parameter vector

θTi =
(

αi τi γ̂m=1,n(i) ai bi
)

(9)

has been estimated from experimental data. In addition to mode subset truncation
(7) another crucially simplifying approximation has been made. As suggested from
(9) only one plasma growth-rate parameter is determined; the one corresponding to
mode (m = 1, n), i.e. the very first one in subset (7). All other growth-rates are
defaulted to a constant value γ̂m,n = −1, basically the vacuum response to external
perturbations [5, 6].

For each fourier component i there is available

(i) a set of scalars
{

α
(j)
i

}

j=1...Nα

with arithmetic mean 〈αi〉

(ii) a set of scalars
{

τ
(j)
i

}

j=1...Nτ

with arithmetic mean 〈τi〉

(iii) a set of scalars
{

γ̂
(j)
i

}

j=1...Nγ̂

with arithmetic mean 〈γ̂i〉

(iv) two scalars ai, bi

denoting γ̂i = γ̂m=1,n(i) and where Nα = Nτ 6= Nγ̂ . These datasets were accumulated
from specialized T2R experiments as explained in subsection 1.5, and are presented
as scatter-plots in figure 2. Index j is essentially an enumeration of experiments such

that we obtain one estimation of θi ∀i for each j. Estimation of τ
(j)
i and α

(j)
i is

strongly interdependent and is depicted in figure 2(b), where the red circles are the
arithmetic means. Figure 2(a) shows the estimated growth-rates and the thick lines
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shows arithmetic mean values. As can be seen by the mapping n(i) this implies two
growth-rates for each considered n corresponding to spatial fourier mode n(i) real part
(black) and imaginary part (blue) respectively. This is interpreted as different phase-
locations of otherwise similar perturbations. The fact that the black and blue curves
do not coincide is in part plausibly due to the asymmetries of the shell. Horizontal and
vertical cuts in the resistive shell imply that eddy currents are constrained in a phase-
dependent way, seen in spatial fourier domain. The estimates of parameters ai, bi have
been obtained as an average over multiple experiments (and therefore do not carry
superscript j) by considering the control system’s nearly steady-state compensation
currents required for IS operation. As was suggested above, equation (8) is a model of
the frequency content of this compensation and so ai, bi expressly define the integrating
requirements of the controllers in section 2.
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Figure 2. Estimated parameters from external plasma response identification
experiment campaigns at T2R.

Fourier component single-input-single-output (SISO) controller synthesis (section
2) is solely based on the arithmetic mean parameters, while the robustness of the thus
synthesised controllers are evaluated over the entire respective parameter sets above
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(subsection 3.1).

1.5. Closed-loop identification and multivariable dithering

Dedicated experiments [5, 6] at T2R with pseudorandom [20] perturbations to the
vector output of the IS control system (2) were conducted to gather data for the
computations visualized in figure 2. Specifically the feedback system

ũ = Meq (FPID(s) (r̃− ỹ) + w̃) (10)

successfully stabilized the RWMs while simultaneously exciting spatial plasma modes.
The axisymmetric set-point of (10) was put r̃(t) = 0 together with perturbations on
(dithering) auxiliary vector input w̃(t).

2. Discrete-time fixed-order synthesis

Here is the backdrop of this section: we have acquired a set of parameter values
summarizing the external plasma response of T2R, subsection 1.4, and we have
quantified the active amplifier response [17, 3]. There is a fast decoupling operation
available (the FFT). The task at hand is to synthesize a bundle of digital controllers,
one for each of the 64 FFT-components, that achieves ‘good’ closed-loop performance.
Figure 3 illustrates the synthesis problem: devise a feedback controller K.

2.1. Expressing and achieving closed-loop performance

Given a SISO system in standard form

x(k + 1) = Ax(k) +Bu(k) +Nv1(k)
y(k) = Cx(k) + v2(k)

ym=1(k) = Mx(k)
(11)

the objective here is to search for a fixed-order controller

xK(k + 1) = AKxK(k) + BKy(k)
u(k) = CKxK(k) +DKy(k)

(12)

that minimizes some functional of the resulting closed-loop system. Order nK =
dimxK is given, not by the plant order but by the control system designer. As an
additional constraint, the controller should not only stabilize the closed-loop but also
be stable itself. This is known as strong stabilization and is beneficial in case of e.g.
sensor failures.

Signals u, y, ym=1, v1 and v2 in system (11) respectively correspond to actuator
amplifier input, time-integrated sensor coil voltage measurement, the part of y
attributed to the m = 1 mode, the driving process noise for the error-field, and finally
the measurement noise.

Merging (11) and (12) and denoting the disturbance-inport wT =
(

v1 v2
)

and

the performance-outport zT =
(

u y ym=1

)

yields

x̄(k + 1) = Ax̄(k) + Bw(k)
z(k) = Cx̄(k) +Dw(k)

(13)
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with augmented state x̄T =
(

xT xT
K

)

and matrices

A =

(

A+BDKC BCK

BKC AK

)

, B =

(

N BDK

0 BK

)

(14)

C =





DKC CK

C 0
M 0



 , D =





0 DK

0 1
0 0



 (15)

The transfer matrix associated with (13) is written

H(z) = C (zI −A)−1 B +D (16)

where I is the identity matrix. If (13) is stable then solving the discrete-time Lyapunov
equation [15]

Px = APxA
T + BPwB

T (17)

for Px = Ex̄(k)x̄(k)T , where Pw = Ew(k)w(k)T and E the expectation operator,
allows for the computation of the weighted matrix trace expression

trPzVz (18)

with Vz ≥ 0. The value of (18) is the central piece of the objective for the optimization
program of subsection 2.3. The output-covariance matrix Pz is computed from the
Lyapunov solution Px as

Pz = Ez(k)z(k)T = CPxC
T +DPwD

T (19)

Two particular weights of the trace (18) are considered here (q ≥ 0)

V (i)
z =





q 0 0
0 1 0
0 0 0



 , V (ii)
z =





q 0 0
0 0 0
0 0 1



 (20)

to distinguish between (i) IS-like and (ii) CMC-like controllers: subsection 2.4.
The extension to tracking is readily achieved by substitution of compensator input

y(t) with y(t) + lr(t) where l is a scalar constant defined by the steady-state gain as
follows.

l(i) =

{

(

C 0
)

(I −A)−1

(

BDK

BK

)}−1

(21)

l(ii) =

{

(

M 0
)

(I −A)
−1

(

BDK

BK

)}−1

(22)

Superscript indexing in (21) corresponds to the similarly indexed doublette in (20).
Now, having introduced the required notational bulk above, we provide a common

interpretation of objective (18). If v1 and v2 are white sequences with covariance Pw

then the output covariance of the closed-loop is Pz, hence the weighting defined by (20)
translates to a sum of variances. This is indeed parallel to standard LQG-synthesis
[15, 24], the main challenge here being the fixed-order requirement.
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Figure 3. Signal model for closed-loop synthesis.

2.2. Instantiation of system matrices for T2R

The signal routing of figure 3 with T2R-particular incarnations of F , G and H need
to be expressed in the form (11) prior to compilation of (14)-(15). The open-loop
version of figure 3, i.e. controller K removed leaving u and y as inport and outport
respectively, in format (11) is immediately given by

A =





AF 0 0
0 AH 0

BGCF BGCH AG



 (23)

B =





BF

0
0



 , N =





0
BH

0



 (24)

C =
(

0 0 CG

)

, M =
(

0 0 MG

)

(25)

for the state x =
(

xT
F xT

H xT
G

)T
. System matrices (AG, BG, CG,MG) for G

are derived from (5), (6) and (7). System F is constructed by zero-order-hold
discretization F ′(z) of the continuous-time representation of the bundled amplifier
plus coil model F ′(s) = kF

τF s+1 , where kF = 4.1 and τF = 1.1 × 10−3 s. A one-
sample delay augmentation to account for computational latency [19, 7] then defines
actuation-block F (z) = z−1F ′(z). The state space equivalent of F (z) is (AF , BF , CF ).
Equation (8) implicitly defines (AH , BH , CH). From eyeballing the above information
it follows that dimxF = 2, dimxH = 1, and dimxG = 9. Zero entries in (23) are
dimensioned according to respective state size.

2.3. Optimization program

An unconstrained nonlinear optimization program is readily distilled from the material
in the preceeding sections. This is achieved by relaxation of the two stability
constraints, which emerge as penalty terms in the merit function. We seek a solution
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to

min
K∈R

(nK+1)×(nK+1)
f(K) (26)

where

f(K) = c1tr (Pz(K)Vz) + c2p
T (K)Λp(K) (27)

with

K =

(

AK BK

CK DK

)

(28)

p(K) =

(

max (0,maxi |λi(A(K))| − 1)
max (0,maxi |λi(AK(K))| − 1)

)

(29)

and Λ ≥ 0. The notation λi(M) for a matrix M represents the ith eigenvalue of the
matrix. Program (27) is in general nonconvex and highly local suboptimum solutions
must be defenestrated. Note that the classical change of variables that would allow
for a linear formulation of the optimization problem [25] typically implies that the
controller rank is equal to the system rank and consequently cannot be applied here. A
two-step procedure has been devised for (26), (27) as explained in the next paragraph.

For the first stage: randomize a K = K(0) and put c1 = 0 and c2 = 1 and simply
search for anyK having zero merit value (zero penalty). Then put c1 = 1 and c2 = 103

and resume the minimization (now including the trace merit). See reference [26]
for more sophistication regarding fixed-order strong stabilization synthesis. Standard
BFGS‡ method [27, 20] with numeric finite differences has been employed and leads to
satisfactory results. The synthesis proceeds by randomly sampling initial controllers
for a preset maximum number of repetitions nmax. In this case nmax = 30 proved
sufficient, given sampling around a K(0) representing a blindly tuned nominal PID as
detailed in [3] and recapitulated below. For this study q = 10−6 in (20) and Λ = I in
(27) were chosen.

The reason for first finding a stable and stabilizing K without regard for the
trace term is that the trace term only makes sense if the system is already stable.
For unstable or marginally unstable systems the Lyapunov equation might have no
solution or a solution does not have to be positive. Having computed a valid trace
term in the stabilizing/stable region we try to stay there by severly penalizing any
exit from this region, while trying to minimize the trace term according to (27).

Due to the nonuniqueness of state-space system realizations, there can be no hope
to relapse into the same optimal parameter-value K?. Specifically, an arbitrary state-

space system (state x) representation K1 =
(

A B
C D

)

is equivalent to the coordinate-

transformed (state x′) system K2 =
(

TAT−1 TB

CT−1 D

)

for any |T | 6= 0, x′ = Tx. K1

and K2 are numerically different (K1 6= K2) realizations§ of the same system. The
synthesis algorithm will consequently, at best, produce different realizations of the
same dynamical system; by relapsing to the same (locally) minimum objective value.

Finally, the first-stage randomization was chosen as follows.

K(0) = KC + ρRρ (30)

‡ Broyden-Fletcher-Goldfarb-Shanno
§ It is sometimes favourable to seek some specific optimal realization, e.g. for numerical stability of
an implementation.
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where ρ = 0.1, Rρ ∈ R(nK+1)×(nK+1) with each matrix element a scalar independently
sampled from a normal distribution with zero mean and unit variance, and KC a
zero-order-hold discretization of the PID controller

C(s) = kp +
ki
s

+
kds

kds/Nd + 1
(31)

with kp = 40, ki = 5000, kd = 0.04 and Nd = 30. In this case, nKC
= 2.

2.4. Conformed nomenclature of synthesis flavours

As hinted above, the search for minima to (26) is performed in two different ways as
follows.

IS-like : Solve (26) using V
(i)
z of (20) and implement with scalar l(i) in (21) for

reference term.

CMC-like : Solve (26) using V
(ii)
z of (20) and implement with scalar l(ii) in (21) for

reference term.

The reason for introducing the bold-fonted adjectives above is to relate and align
to notations already encountered in the literature. IS-like synthesis is also known as
output-tracking [3] and can be equated to a generalised, but still classic, intelligent-shell
[4]. The aim for IS-synthesised feedback systems is to control the measured output
directly, i.e. the averaged radial magnetic field components precisely incident at the
sensor array. In contrast, the CMC-like controller attempts to relate this measured
output to a fictitious output of a model, as encompassed by (5), with the ambition
of tracking an inferred dynamic state; the ym=1 performance output of (13). The
acronym CMC is attached to this idea as concocted in [10]. The central problem
addressed by CMC is spatial aliasing due to finite sensor and actuator arrays. In this
work we use an experimentally identified plasma reponse model and quadratic cost
minimization of a closed-loop performance-channel while [10] proceeds by designing
a basic spatial filter prior to a manually tunable proportional feedback control with
no explicit considerations of the full closed-loop system properties. However, in [10],
versatile expressions for extrapolation of radial magnetic field for radial positions not
incident at the sensor array are developed. This could also be included in the design
presented here, but is a topic for further work.

3. Synthesis results and implementational aspects

There are two topics of this section. First, statistical issues and robustness of the
synthesis described in section 2 are addressed, and second, some information on the
real-time implementational details is provided, hopefully shedding light on why the
fixed-order controller constraint is imperative for T2R.

3.1. Postsynthesis bootstrap worst-case gain

The synthesis of section 2 handled a single system. Before allowing such a controller
to work on the plasma, it is desirable that it might robustly handle the variations in
the identification data sets. In order to evaluate some robust performance it is then
resonable to somehow the predict closed-loop behaviour using all the available data
points.
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The worst-case gain for any stable system (A,B,C,D) can be computed by solving
the convex program

minX,γ γ

s.t.







(

−X +ATXA+ CTC ATXB + CTD
BTXA+DTC BTXB − γ2 +DTD

)

< 0

X = XT > 0

(32)

where the LMI‖-constraints emerge by applying the discrete-time bounded-real lemma
[28]. The unique solution γ∗ to (32) is then the minimum γ fulfilling

∀ z ∈ C, |z| = 1 : σ̄
(

C (zI −A)−1 B +D
)

≤ γ (33)

i.e. the worst-case gain bound over frequency for discrete-time systems. Program (32)
is infeasible if A has eigenvalues outside or on the unit circle and σ̄ extracts the largest
singular value [15, 20] of a matrix.

We wish to estimate the expected closed-loop behaviour over the full identification
dataset for each fourier component dynamics. This verifies the robustness of the
synthesised controllers, with respect to available parameter data only. It can be done
thanks to bootstrap computation [29] of the worst-case gain distribution of the closed-
loop sensitivity transfer function. This proceeds as follows.

Randomly select three parameters αi, τi, γ̂i uniformly from the datasets in
subsection 1.4. Then assemble the ith closed-loop system matrices, using the
controller synthesised for component i, and recall from (16) H(z). Put Tyw(ω) =
(

0 1 0
)

H(eιω) and find minimal γ∗ such that ∀ω ∈ R : maxω σ̄ (Tyw(ω)) ≤ γ∗

by solving (32) with (A,B,C,D) representing Tyw. Repeat this Nboot times and the
set of γ∗ so obtained suggests what induced closed-loop performance variations can
be expected from the scattered parameters of figure 2.

The bootstrap histogram of γ∗ for i = 28 (n(28) = −5, real part) is presented
in figure 4(a), where Nboot = 5× 104. The minimum and maximum worst-case gains
together with a random system sample of σ̄Tyw for these simulations can be viewed
in figure 4(b). The results for this particular fourier component is representative
for the entire range of i = 1 . . . 64. In conclusion, the synthesised controllers
supposedly should behave robustly over the uncertain system data of subsection 1.4.
This postsynthesis certification is indeed very general, but we are here content with
a confirmation of un-dramatic H∞-performance. As should be clear from (32) a
stability-check is implicit in this procedure.

3.2. Real-time implementational tricks

As stated in the introduction, we are at the moment confined to use hardware-
accelerated [21] FFT-decoupling. CPU¶-cycle spendthriftness is, at the time
of writing, unacceptable at T2R. To gobble controller coefficients and magnetic
measurements into control output at the required rate in silico we have been forced
to SIMD+-specific programming tricks-of-the-trade. Storing the system coefficients
synthesised above with some precaution enables controller state and output to be
updated using only three vector multiply-accumulate [30] operations for nK = 2 as
detailed below.

‖ Linear matrix inequality
¶ Central processing unit
+ Single instruction multiple data
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Figure 5. Vector register splat and madd SIMD-operations illustrated.

We document this in (idiosynchratic) detail, figure 5, to emphasize the
importance of the fixed-order requirement. Apparently, if states, inputs and
outputs can be fitted within a single vector register of 4× floating-point
single-precision numbers (32-bit each), then the actual number of executed
CPU cycles can be greatly reduced. Indeed, the splat and the madd

(multiply and accumulate) instructions, with necessary interstitial loads provide
a rapid execution of parallel state update and output computation. In figure
5, the input register is

(

x1(k) x2(k) y′ = y(k) + lr(k) ∗
)

, the output is
(

x′
1 = x1(k + 1) x′

2 = x2(k + 1) u(k) ∗
)

, the control system is defined by the

system matrix K =

(

a11 a12 b1
a21 a22 b2
c1 c2 d

)

and finally ∗ means “unspecified”. Note that

the matrix coefficients are stored pretransposed and aligned in memory such that load
and store overhead is minimal.

It is seen, from figure 5, that any nK = 3-controller can be implemented by merely
repeating one more iteration of splat/madd: a very small extra computational time.
In this study, only nK = 2 controllers have been synthesised and operated.

4. Experimental results

First plasma operation with the digital controller developed here went smoothly. T2R
was stabilized using the new controller reconfiguration and we can declare a ‘first-pass
system success’ in this respect.

In order to investigate the experimental behaviours of the different designs, i.e.
IS- and CMC-like respectively, five shots were performed for each of the synthesised
sets of coefficents. The expected behaviour is that the ym=1, or CMC-like controller,
will be slightly worse at supressing the plant output compared to the y-synthesis
(which is exactly designed to do plant output minimization). Indeed, we can see this
particular relation in the experimental data, as presented in table 2. Output-energy
seems consistently larger for the CMC-like design. Admittedly, five shots is a very weak
statistical basis for strong claims, unless the plant is largely deterministic. Under the
assumption of applicability of the underlying linear model (4) this is however a firm
indication that the reconfigured control system was implemented correctly.

Definition of energy measure quoted in table 2 is

Py,n =
1

k2 − k1 + 1

k2
∑

k=k1

|yn(k)|
2 (34)
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Table 2. Summary of average measured field incident at the sensor array in
interval t ∈ [10, 70] ms. Five shots each for the two different synthesis cases.

synthesis shot-number Py [(mT)2 × 10−3] 〈Py〉

y

21821 2.80

3.23
21825 3.20
21826 3.42
21827 3.23
21828 3.50

ym=1

21829 3.55

3.68
21830 3.98
21831 3.86
21832 3.55
21833 3.45

Py =
∑

i∈{1,...32}, n(i) 6=0

Py,n(i) (35)

using a notation

yn = (T ỹ)i fy, such that n = n(i) (36)

and with k1 and k2 denoting the first and last sample indices corresponding to the
true time interval of interest. The bracket-notation 〈·〉 in header of table 2 takes
arithmetic average over the table row subset. The scalar multiplier fy in (36) converts
the measurements to units of millitesla [mT].

Tracking capabilities were also verified experimentally and are presented here
with two examples in figure 6. The first, figure 6(a), is an on-and-off toggled sequence
of assorted spatial fourier modes applied as a sustained stationary-phase boundary
condition. The second shows two spatial fourier modes with simultaneous phase-
rotation as a dynamic sustained boundary; figure 6(b). Both these examples were
enforced by running the CMC-like controller.

The shot in figure 6(b) deserves a companion visual. Figure 7 clearly shows
the rotating boundary field consisting of two fourier components n = 5 and n = 1.
Vertical black dashed lines bracket the duration of the plasma and white horizontal
line separates the toroidally sorted groups of measurement channels. Horizontal field
displacement being i = 1 . . . 32 and vertical i = 33 . . .64. Scrutinizing figures 6(b) and
7 it can be seen that the two concurrently tracked fourier modes have equal phase-
velocity magnitude (25Hz), but with opposite signs. To the best of the authors’
knowledge this clean-looking stabilized dynamic boundary tracking is unparalleled by
other toroidal plasma experiments, at the time of writing.

5. Conclusion and outlook

At T2R, this work is a breakthrough in several significant aspects. For the first time,
we have synthesised a control system directly inferred from measured plasma response
data. No ad hoc tampering with any control knob was required, the design ran out-of-
the-box. This is a point that should be emphasized. The general template for process
control system development was adapted for the RFP: system identification followed
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Figure 6. Measurements from radial field sensor coils.
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by controller setup based on the identification results. We here showed the last stage
of this procedure and deployed a control system that worked as it was supposed to,
at the first shot.

A natural sequel to this study is to develop plasma response identification
methods to relax the hitherto enforced clean fourier eigenmode structure. It can
furthermore be physically interesting to carefully search for systematic differences
in detailed plasma performance between the centralized designs presented here with
the rehashed/refurbished decentralized IS-design (RIS) hatched in [3]. What can
be immediately seen is that both [3] and the FFT-decoupled system developed here
stabilize the plasma similarly, in the sense that the same shot-length is attained for
the respective strategies.
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