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Abstract— A new model-based controller for the magnetic
flux profile in a Tokamak plasma was developed using a simpli-
fied model of the magnetic flux dynamics. This simplified model
is based on physically relevant dynamics that take into account
the distributed nature of the system. Shape constraints on the
controlled inputs are introduced, representing the limitations
on the shape of the deposed current profiles by non-inductive
current sources on the plasma. Some simulation results are
presented and discussed.

I. INTRODUCTION

Controlled thermonuclear fusion is based on the fusion of
light nuclei such as those of tritium and deuterium at very
high energies to form a heavier nucleus, such as helium.
The abundance of deuterium in water and the possibility
to produce tritium from lithium could make it an almost
inexhaustible source of energy. Although several different
nuclear fusion schemes exist (in experimental form), the
Tokamak configuration is of particular interest and it has
been chosen for the ongoing ITER project [12]. This project
aims to demonstrate the scientific feasibility of nuclear
fusion.

A detailed explanation of tokamak physics, including an
overview of existing experimental facilities, can be found
in [18]. An overview of current challenges in Tokamak
Plasma control as well as an introduction and justification
for advanced control strategies can be found in [17]. In
particular, the development of suitable control schemes for
sustaining what is known as advanced Tokamak operation
[5, 16, 20] over long periods of time is necessary to achieve
high performance in the fusion reaction. These configurations
attempt to maintain a high confinement level while preserv-
ing magnetohydrodynamic (MHD) stability.

Recent advances in steady steady-state profile control can
be found for instance in [7, 10, 13, 14] for JET and DIII-D.
Some reviews of Tore Supra feedback control achievements
can be found in [4,8]. Yet most of these approaches are based
on linear models (both discrete and distributed) identified
from experimental data and are, therefore, very sensitive to
operating conditions.

To address this issue, a simplified control-oriented model
based on the physics of the Tokamak plasma that preserves
the non-linearities of the system was developed in [19].
Using this new model, our aim is to build an adequate control
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law to regulate the magnetic flux profile in steady-state oper-
ation. This is a first step toward safety-factor profile control,
which has been observed to impact both the plasma energy
confinement performance and the appearance of MHD in-
stabilities. Scenarios for advanced Tokamak operation rely
on non inductive current drive heating methods such as
Electron Cyclotron Current Drive (ECCD), Ion Cyclotron
Radio Heating (ICRH) and the Lower Hybrid Current Drive
(LHCD). The latter acts both as a current source and as a heat
source. The proposed results consider the LHCD operational
parameters as control inputs, since we focus on the plasma
current and magnetic flux control and LHCD is the most
powerful steady state current drive method.

A particularity of the proposed solution is the computation
of a pseudo-optimal regulator by considering the solution
to an algebraic Riccati equation (ARE) in real time. The
cost function used to build the dynamical version of this
ARE, in the constrained version, considers the evolution of
three points in the magnetic flux profile (at the center, edge
and mid-radius), as well as the integral of the error at those
three points. Also, shape constraints are considered for the
LHCD deposition. The regulator is then tested by numerical
simulation following the guidelines of [19].

This article is organized as follows: in Section II, the
physical model describing the magnetic flux dynamics is
presented, as well as its discretized version. In Section III,
an unconstrained control law is presented and its limitations
are underlined. In Section IV, a more realistic version of the
control law is presented, including shape constraints on the
LHCD deposition profiles. In Section V simulation results
with both the unconstrained and constrained versions of the
control law are presented and discussed.

II. PROBLEM DESCRIPTION

In this article, we focus on the problem of the closed-loop
regulation of the poloidal magnetic flux profile in a Tokamak
plasma, defined as the flux per radian of the magnetic field
B(R,Z) through a disc centered on the toroidal axis at height
Z and having a radius R and surface S as seen in Fig. 1.

The poloidal magnetic flux is denoted ψ and defined as:

ψ(R,Z) .=
1

2π

∫
S

B(R,Z) · dS

where B is the magnetic field with poloidal component Bθ
and toroidal component Bφ.

Using the Grad-Shafranov equilibrium equation, see [18],
we can parametrize the magnetic flux ψ(R,Z) using the
parameter ρ defined as ρ = (2φ/Bφ0)1/2, where φ(ρ, t) is



the toroidal flux per radian and Bφ0(t) is the central toroidal
magnetic field, due to external coils.

Our goal is to regulate the magnetic flux profile using the
non-inductive current sources, in particular the LH current
drive.

A. Magnetic Flux Dynamics

Under the assumption of negligible diamagnetic effect
(caused by poloidal plasma currents) we can consider ρ to be
a geometric coefficient. Also, under a large aspect ratio hy-
pothesis (ρ << R0) we can use a cylindrical approximation
of the plasma geometry. The resulting simplified diffusion
equation describing the dynamics of the poloidal flux is, as
stated in [19]:

∂ψ

∂t
(ρ, t) =

η‖

µ0

∂2ψ

∂ρ2
+

η‖

µ0ρ

∂ψ

∂ρ
+ η‖R0jni

where η‖(ρ, t) is the plasma resistivity, µ0 = 4π ×
10−7Hm−1 is the permeability of free space, R0 is the
geometric center of the plasma torus and jni is the source
term due to non inductive current sources (bootstrap effect
and microwave current drives).

Fig. 1. Disc coordinates (R,Z) and poloidal magnetic flux surface S.

The spatial index ρ is replaced with the normalized vari-
able x = ρ/a, where a is the minor radius corresponding to
the last closed magnetic surface. a is considered constant.

The following equation is used as the reference distributed
model for the system dynamics throughout this article:

∂ψ

∂t
(x, t) =

η‖(x, t)
µ0a2

(
∂2ψ

∂x2
+

1
x

∂ψ

∂x

)
+ η‖(x, t)R0jni (1)

for t ≥ t0 and with initial and boundary conditions:

ψ(x, t0) = a2Bφ0

∫ 1

x

r

q(r, t0)
dr + ψ(1, t0) ,

∀x ∈ [0, 1]
∂ψ

∂x
(0, t) = 0 , ∀t ≥ t0 (2)

∂ψ

∂x
(1, t) = −R0µ0Ip(t)

2π
, ∀t ≥ t0 (3)

where Ip(t) is the total plasma current and q(r, t0) is the
safety factor profile at time t0.

The safety factor is defined as:

q(x, t) .=
dφ

dψ
=
∂φ/∂x

∂ψ/∂x
(4)

An alternative boundary condition at x = 1, instead of (3),
can be chosen as:

∂ψ

∂t
(1, t) = Vloop(t)

where Vloop is the flux variation at the plasma edge due
to the voltage applied to the external coils. Both boundary
conditions are equivalent since the voltage applied to the
coils is locally regulated to maintain a desired Ip(t).

Remark: In the model (1) the terms jni and η‖ introduce
couplings (between magnetic flux diffusion, temperature and
density profiles) as well as non-linearities in the diffusion
equation (since η‖ is a function of several variables including
ψ).

Remark: For a more detailed description of the model used
and the effect of the simplifications and assumptions made,
see [19].

B. Discretized Time-varying Dynamics

The distributed model (1) is then spatially discretized (in
N+2 points) using the midpoint rule to approximate the
operators ∂2

∂x2 and 1
x
∂
∂x . The calculations are made to allow

for a non-uniform spatial step distribution. Details of the pro-
cess used for the discretization and relevant implementation
details can be found in [19].

When discretizing the PDE (1) with the boundary condi-
tions (2) and (3) and solving the finite dimensional system
for the points x = 0 and x = 1 (using the boundary
conditions), the dynamical behavior of the remaining states
can be expressed as follows:

ψ̇ = A(t)ψ +B(t)jni +W (t) (5)

where A(t) is an N ×N matrix that takes into account both
the approximated differential operators and the influence of
η‖/(µ0a

2). B(t) is an N × N matrix representing η‖R0.
W (t) is an N × 1 column vector representing the effect of
the PDE boundary conditions on the system.

III. OPTIMAL AND PSEUDO-OPTIMAL PROFILE
REGULATION WITHOUT CONSTRAINTS

Let us consider the system represented in (5). Our goal
is to regulate the profile ψ(t) around a reference operating
point profile ψ. In order to have a zero steady-state error
(ψ − ψ), an integrator is added to the system.

The extended system is then:[
ψ̇

Ė

]
=
[
A(t) 0
−I −λ(t)

] [
ψ
E

]
+
[
B(t)

0

]
jni +

[
W (t)
ψ

]
(6)

where E is the integral of the error. A new parameter
λmax ≥ λ(t) ≥ 0 has been introduced as a "forgetting
factor" for the integrator. The purpose of this term is to
avoid high overshoots when changing the operating point by
weighting down past accumulated errors. It is clear that, to



avoid steady-state errors, we must have λ(t)→ 0 as t→∞.
This parameter is designed to vanish in finite time.

Remark: A bounded λ(t), nonzero only when changing
operating point and vanishing in finite time, allows us to
preserve the overall stability of the system (provided that we
change operating points only when we have already reached
steady state).

Let us now detail the components of the term jni as
considered in [19]:

jni = jbs + jlh + jECCD

where jECCD is the current due to ECCD, jlh is the current
deposit due to LHCD and jbs is the auto-induced bootstrap
current. For the purposes of this paper, we focus solely on
the use of LHCD for the control of the system.

Since we have not yet introduced any input constraints,
we can consider controlling the system directly with the non-
inductive input u .= jlh + jbs, given that jECCD is not used.
We express the extended system in the more compact form:

Ẋ = Ae(t)X +Be(t)u+We(t) (7)

where

X =
[
ψ
E

]
Ae(t) =

[
A(t) 0
−I −λ(t)

]
Be(t) =

[
B(t)

0

]
We(t) =

[
W (t)
ψ

]
We now consider a feedback minimizing the cost function:

J =
1
2

∫ ∞
t0

(
XTQX + uTRu

)
dt (8)

with Q = QT ≥ 0 and R = RT > 0. Classical optimality
conditions for tracking control [9] lead to the following set
of equations, for the optimal feedback u∗:

u∗ = −R−1BTe (PX + γ)
−Ṗ = PAe +ATe P − PBeR−1BTe P +Q

−γ̇ = PWe − PBeR−1BTe γ +Aeγ (9)

Since we are interested in implementing the resulting
controller in real time, two simplifications are made in order
to accelerate the online solving of the equations:
• W (t) is considered almost constant, which allows us to

set γ̇ = 0 (this is justified since the boundary conditions
depend on the operating point and since a constant value
of Ip is typically desired for steady-state operation);

• Ṗ is set to zero. An algebraic Riccati equation (ARE)
is thus considered (that can be solved in real time).

With these two assumptions, the resulting pseudo-optimal
feedback has both feedback and feedforward terms and is:

u = −R−1BTe

[
PX +

(
PBeR

−1BTe −ATe
)−1

PWe

]
0 = PAe +ATe P − PBeR−1BTe P +Q (10)

Remark: We should stress that, since Ae and Be are time
varying, this is an approximation and, in general, not an
optimal solution of the optimization problem.

Remark: An alternative formulation of the model could be:

∂ψ

∂t
= A(x, t)ψ + B(x, t) (11)

where A(x, t) is the linear operator:

Aψ .=
η‖

µ0a2

(
∂2ψ

∂x2
+
∂ψ

∂x

)
and:

B .= η‖(x, t)R0

The dynamics of ψ as described in (11) would be a
linear infinite-dimensional system on a Hilbert space. Similar
results to those presented here could then be obtained, based
on the analytical framework proposed in [2].

Although this feedback has been found to adequately
regulate the system under simulation, the inputs are not
physically realizable (the current deposition from LHCD
has a particular form constraint). The shape constraints are
introduced in the next section.

IV. PSEUDO-OPTIMAL PROFILE REGULATION UNDER
SHAPE CONSTRAINTS

To include the shape constraints, an equilibrium of the
original system (X,u,W e), obtained from experimental
data is considered (therefore with jlh respecting the shape
constraints). Defining the variables (X̃, ũ, W̃e) as follows:

X̃
.= X −X

ũ
.= u− u

W̃e
.= We −W e

the resulting state dynamics are:

˙̃
X = Ae(t)X̃ +Be(t)ũ+ W̃e(t) (12)

From the hypothesis that We is constant, used in the
simplification of the feedback equations, the term W̃e(t)
can be neglected. For more details on this assumption, see
the remark at the end of this section. Furthermore, around
the equilibrium point, we can consider the variations in the
bootstrap current as a perturbation, equating ũ directly to a
variation in jlh.

It has been established in [19] that the shape of LHCD
deposit can be adequately approximated to a gaussian curve
with parameters µ, σ and Alh:

jlh = Alh(t)e−(x−µ(t))2/(2σ2(t)) (13)

Linearizing with respect to variations of the equilibrium
parameters up = (µ, σ,Alh), and defining ũp as a variation
of these parameters, the system can be rewritten as:

˙̃
X = Ae(t)X̃ +Be(t)∇u |u=u ũp



For simplicity in notation, we refer to Be(t)∇u |u=u as
Bp(t) and thus present the system as:

˙̃
X = Ae(t)X̃ +Bp(t)ũp (14)

The function u(up) being a gaussian curve, the three
vectors representing the partial derivatives of u with respect
to the parameters are linearly independent, which implies that
the rank of Bp(t) is 3 (recall that B(t) is a diagonal matrix
of rank N that accounts for η‖R0). In turn, this guarantees
that the controllability matrix of the system has at least a
rank 3.

Building on the properties of the matrix A(t) we choose
as a reference three points in the ψ profile: ψ1, ψN and
ψfloor(N/2). It can be checked that the pair (Ae(t), Bp(t))
is stabilizable for all t ≥ t0. Changing the integrator in
equation (6) to evolve as Ė = −Kψ−λ(t)E, where Kψ =
(ψ1, ψfloor(N/2), ψN )T , we can choose Q = CTC ≥ 0 such
that the pair (Ae(t), C) is observable (in our case, weighting
only the three chosen states and their integral). The fact that
the pair (Ae(t), Bp(t)) is stabilizable and the pair (Ae(t), C)
is observable for all t ensures the existence of a positive
definite solution to the ARE for all t ≥ t0 (see for instance
[11]).

Remark: Even though the pair (Ae(t), Bp(t)) is stabilizable
and there exists a positive definite solution to the ARE
at all times the stability of the time-varying system is not
guaranteed. In particular, having all closed-loop eigenvalues
with negative real parts at all times is not a sufficient
condition to determine the stability of such systems without
an additional condition of slow-enough variation, see for
instance [1, 3, 6, 15].

Using the same cost function (8) with the new value for
Q and under analogous hypotheses, we can obtain a pseudo-
optimal feedback for our constrained system:

ũp = −R−1BTp PX

0 = PAe +ATe P − PBpR−1BTp P +Q (15)

Remark: Since we are neglecting the effect of W̃e around
our equilibrium, the feedforward term is no longer used, but
the extension to the case where W̃e is not negligible is trivial
and should introduce a feedforward term analogous to the
one presented in equation (10) without a huge computational
impact. Nevertheless, tested in simulation, the improvement
in the response was negligible, which seems to support the
original hypotheses and therefore the proposed simplifica-
tion.

V. SIMULATION RESULTS

The proposed control laws were numerically simulated
with global parameters obtained from Tore Supra shot TS-
35109 (Ip = 0.6 MA, power input around 1.8 MW) and a
simulator built on [19]. For all the simulations, boundary
conditions (2) and (3) where chosen (and not the alternate
form depending on Vloop). The references were chosen as
well from estimations drawn from the same experimental
run TS-35109, so they represent realistic values.
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Fig. 2. Regulation around ψ with the unconstrained controller (plain
line: numerical simulation, dashed line: the reference). (a) Evolution and
reference of the state ψ1; (b) evolution and reference of the state ψN/2;
(c) evolution and reference of the state ψN ; (d) applied control signal u.

A. Controller without shape constraints

The unconstrained controller (10) was tested by numerical
simulation, with its output considered directly to be jni. First,
the reference was set to ψ̄. At time t = 20 s a reference
change was applied. Fig. 2 shows the results: 2(a), (b) and
(c) show the evolution of ψ1, ψN/2 and ψN over time and
their respective references.

It is interesting to underline that the oscillations present
before the reference change are due to the fact that, when
the controller is started, the "forgetting factor" λ(t) is set
to zero and, for the unconstrained case, the regulator is



started when the system has a state far away from the
desired value (since it is not the product of a linearization
around some reference position). This causes a large error to
accumulate and, consequently, a large overshoot followed by
oscillations is seen. Nevertheless, once the reference changes
(and λ with it) the oscillations are greatly reduced and the
system reaches the desired reference with a much better
performance. Tweaking the values of the weighting matrices
can also improve somewhat the transient response.

Fig. 2(d) shows the values of the unconstrained input
during the simulation. This input does not respect the shape
constraints imposed in Section IV so it is not implementable.

B. Controller with shape constraints

Next, the controller with shape constraints was tested by
numerical simulation. This time, the system is allowed to
almost reach the desired operating point by using an open-
loop control (feeding the system the actual parameters from
the experimental run) before activating the controller at t = 8
s. This is done since the constrained version of the controller
is designed to work around a particular operating point.
Again, Fig. 3(a), (b), and (c) show the evolution of ψ1, ψN/2
and ψN with their respective references. The results of the
regulation around ψ are quite satisfactory, even when a small
change in reference is introduced (the same one used in the
unconstrained simulation, also at t = 20 s).

Of particular interest is the shape of jlh shown in Fig.
3(d). The input to the system is always a gaussian curve,
calculated from the reference parameters plus the parameter
variations given by the controller. In order to compare the
current profile used with both approaches (constrained and
unconstrained), Fig. 3(e) shows the resulting total jni current
profile when using the controller under shape constraints.

The robustness of the controller with respect to estimation
errors was tested by using for the control calculations a value
of η‖ differing in function of x (linearly) by +10% at x = 0
and −10% at x = 1 from the one used to simulate the system
evolution. The results can be appreciated in Fig. 4 (a), (b)
and (c). In Fig. 4(a) negligible differences in the transitory
behavior of the perturbed system can be appreciated, and the
stabilisation time remains unchanged.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, a new controller has been developed for
the stabilization of the poloidal magnetic flux profile ψ in
a Tokamak plasma, using a physically-relevant, simplified
distributed model of the system dynamics. For this model,
a pseudo-optimal feedback was constructed, based on the
online solution of an ARE for the spatially discretized time-
varying system. Furthermore, the introduction of a variable
"forgetting factor"-like term in the integration of the error
allows for an improvement in the transient behavior of the
system. In Section III no shape constraints were considered
on the current deposition of the non-inductive current sources
and a global feedback-feedforward law was constructed.
In Section IV a Gaussian distribution was imposed as a
constraint for the jlh current profile linearizing the system
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Fig. 3. Regulation around ψ with the shape-constrained controller (plain
line: numerical simulation, dashed line: the reference). (a) Evolution and
reference of the state ψ1; (b) evolution and reference of the state ψN/2;
(c) evolution and reference of the state ψN ; (d) applied control signal u;
(e) resulting jni.
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Fig. 4. Reference and perturbed output caused by an error in the estimation
of η‖ (dashed line: reference, solid line: numerical simulation).

dynamics around an equilibrium based on experimental data
(Tore Supra shot TS-35109). It should be stressed that the
time-varying nature of the system was preserved (a linear
time-varying model was used as a reference). Finally, in the
last section, simulation results for both the unconstrained and
the constrained case are presented and discussed.

Further works will be directed to extend these results in
order to provide stability guarantees for the system in general
and to study its robustness. Experimental validation on Tore
Supra is also expected.
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