
     

Receding Horizon Control: an Effective Methodology 
for Energy Management in Complex Systems 

 
Guillaume Sandou*, Sorin Olaru*, Emmanuel Witrant**, Silviu-Iulian Niculescu*** 

 

*SUPELEC, Automatic Control Department, 3 rue Joliot Curie 
91192 Gif-sur-Yvette, France, {guillaume.sandou, sorin.olaru}@supelec.fr 

**Control Systems Department, Université Joseph Fourier/GIPSA-lab, 
38000 Grenoble, France, emmanuel.witrant@gipsa-lab.grenoble-inp.fr 

***LSS,CNRS-SUPELEC, 3 rue Joliot Curie 
91192 Gif-sur-Yvette, France, niculescu@lss.supelec.fr 

Abstract: The optimization and control of complex systems represents a crucial issue in the industry 
community. The classical approaches make use of the decomposition of the system into several 
subsystems, each of them being locally optimized. However, this idea can lead to strong suboptimal 
control laws. In this paper, a generic method based on the receding horizon principles is developed, 
which allows to take into account the system as a whole and to exploit the interconnection dynamics. 
Several industrial examples are given, showing the versatility of the method. 
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1. INTRODUCTION 

A classical control design approach largely adopted in the 
industry makes use of simplified models and appropriate 
linear techniques, as, for examples PID, H∞ methods, to cite 
only a few. However, industrial systems become more and 
more complex, and such standard techniques may be 
intractable (large scale systems) or even inappropriate (wide 
operating domain). For such systems, a current trend is the 
use of optimization techniques to compute open loop 
solutions. It is well known that such a control law is highly 
non robust due to modelling errors, parameters uncertainties 
or disturbances. Thus, a closed loop structure is often 
required. In the industry community, Proportional-Integral 
controllers are often used for that purpose. Although effective 
for the reference tracking and disturbance rejection, such 
controllers may lead to bad quality results when considering 
the economical aspects. 

In this paper, the main idea is to adopt the receding horizon 
principle for control design in such a closed-loop framework. 
The method is the basis of predictive control techniques; see 
(Clarke, at al., 1987; Maciejowski, 2002). It is able to define 
a closed-loop control law while explicitly taking into account 
the economical objectives in the design. Further, the 
proposed approach is able to consider the complex system as 
a whole, whereas classical approaches divide the system into 
several sub-systems and optimize them separately without 
any guarantee on the overall behaviour. It is worth to mention 
that this methodology can lead to strongly suboptimal 
solutions when applied to the initial system. 

The remaining paper is organised as follows. The overall 
methodology is briefly presented in section 2. The proposed 
solution relies on solving successive on-line optimization 

problems. Several examples of industrial application are 
given. Due to the complexity of the optimization problems to 
be solved, a special attention has to be paid on the 
optimization methods. An ant colony and a genetic algorithm 
are used in section 3 for the control of energy production sites 
(hybrid systems based representation), a particle swarm 
algorithm is chosen in section 4 for the control of district 
heating networks (partial differential equations based 
representation), and a Nelder Meald simplex is used for the 
control of mining ventilation systems in section 5. These 
examples, exhibiting various mathematical difficulties, 
illustrate both the viability and versatility of the proposed 
approach for the control of complex systems, and its 
efficiency especially in the case where energy management 
appears as a crucial issue. 

2. OVERALL METHODOLOGY 

The core of the proposed model-based feedback control 
methodology is depicted in figure 1. It is based on an 
optimization philosophy, exploited through the receding 
horizon principle as the open loop optimal control problem is 
first solved over a finite horizon. More precisely, the optimal 
control is computed over a given time interval [m,m+N-1], 
based on a model of the system and predicted values for the 
disturbances. The objective function can be generally 
expressed by:  
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Fig. 1. Receding horizon methodology synopsis. 

• des
ny  : desired output for the system; 

• nŷ  : predicted output of the system; 

• nu  : degrees of freedom of the control law. 

The economical aspects are explicitly considered through the 
penalization on nu  variables. Next, the first values of the 
solution are applied to the real system. The outputs of the 
system are then measured and, from the available 
information, the state variables of the system are estimated to 
provide an update for the optimization model (feedback 
principle). Finally, the whole procedure is performed again at 
the next sampling time. Note that numerous results have been 
reported on the study of stability for the corresponding closed 
loop, but no solution exists in the general case. The aim of 
this work is to illustrate the fact that such approach can be 
efficiently used to control complex systems where energy 
management appears as a crucial issue. 

3. CONTROL OF ENERGY PRODUCTION SITES 

3.1 Case study 

Unit Commitment refers to the optimal scheduling of K  
production units, while satisfying a global consumer demand. 
It can be expressed (see (Sen and Kothari, 1998)) as:  
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k
nu  (resp. k

nQ ) is the on/off status (resp. produced power) of 
the production unit k at time interval n. Production costs and 

start up and shut down costs are defined by: where 
k
off

k
on

kkk ccaaa ,,,, 210  are technical data of production unit k. 

The constraints of the problem are: 

• capacity constraints: 
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• consumer demand satisfaction: 
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• time up and time down constraints: 
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• ramp constraints: 
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Note that the consumer demand can only be predicted over 
the whole time horizon. Thus, a closed-loop structure is 
required for the control of the production site. 

3.2 Choice of optimization method 

Numerous methods have been applied to solve Unit 
Commitment and related problems (such as facility location). 
They are listed for instance in (Sen and Kothari, 1998). Here, 
an ant colony has been hybridized with a genetic algorithm. 
Indeed, the exact solution of the problem is intractable due to 
numerous binary variables. Thus, a stochastic algorithm is 
often required. The difficulty of such algorithms is the 
handling of constraints as the algorithm “moves” randomly in 
the corresponding search space. Ant colony (see, for instance 
(Dorigo, 1996)) appears to be an efficient way to solve the 
Unit Commitment, as it is able to find near-optimal solutions 
with an explicit handling of the whole set of constraints. 
From this initial population of "medium quality solutions" 
fast computed by the ant colony, a feasibility criterion is 
optimized by an appropriate genetic algorithm to intensively 
explore the search space. Finally, the developed optimization 
method allows for the simultaneous use of the ant colony 
interesting properties (explicit handling of the constraints) 
and of the genetic algorithm (deep exploration of the search 
space, and related high quality of the solution). For more 
details, see (Sandou and Olaru, 2007). 

3.3 Main results 

A "four unit" academic case is considered with the 
characteristics given in table 1.  



 
 

     

 

Table 1.  Characteristics of the “four unit” case 

Unit 0α  1α  downT  upT  

1 25 2.6 4 2 

2 25 7.9 4 2 

3 25 13.1 4 3 

4 25 18.3 4 3 

 

The capacity and ramp constraints are set for the 4 units as: 
MWh10,MWh10,MWh40 minmax =Δ== QQQ . For 

illustration a worst case study is considered: the consumer 
load is always underestimated. The prediction error is a 
random value in the range [-5%, 0%]. The time horizon is N 
= 24 hours and the consumer load has a daily oscillation. 
Thus, the dynamics of the system is set with periodic events 
over 24 hours and the time horizon has to be greater: a high 
value has to be given to N. The simulation is performed on a 
4-days total horizon. The results, obtained with Matlab 6.5 on 
a PIV 2GHz, are given in figure 2. It clearly appears that the 
production is very close to the real demand, except for some 
peaks that have been underestimated. The optimisation of the 
96 binary variable problem is performed in just 25 seconds 
with the proposed ant colony/genetic algorithm method. Due 
to the computation of successive economical near-optimal 
solutions and real time slight updates, the global costs are 
very close to global optimal costs which can be computed by 
classical Mixed Integer Linear programming in a few 
particular cases. 

4. CONTROL OF ENERGY NETWORKS 

4.1 Case study 

In this section, a district heating network, represented in 
figure 3 is considered. The simulation model has been fully 
defined in previous work (Sandou, et al., 2004), which main 
results are summarized below. 

Production model. Production sites are made of several 
production units (see section 3). In this section, production 
models are aggregated: production site k can be globally 
modelled by a non dynamic characteristic, identified from 
technical data with a least square method. For hour n, the 
production costs can be derived from produced thermal 
power k

nQ  [W]: 
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The thermal power given to primary network is related to the 
network temperatures by:  
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Fig. 2. Results of the “4 unit” case. 

where ms [kg.s-1] is the mass flow, Ts [K] the supply 
temperature and Tr [K] the return temperature in primary 
network; cp [J.kg-1.K-1] is the specific heat of water. 

Pressures and mass flows. Mechanical losses in pipes are:  

2
ppinout mZHH −=  (10) 

where mp [kg.s-1] is the mass flow in the pipe, Hin (resp. Hout) 
[m] the pressure at the beginning (resp. the end) of the pipe, 
and Zp [m.kg-2.s2] the friction coefficient. For a valve, this 
coefficient is Zp/d, where d is the opening degree of the valve 
(0 for a closed valve to 1 for an open one). Pumps are 
installed in the network, which leads to a pressure increase:  
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where m [kg.s-1] is the mass flow through the pump, ω  
[rad.s-1] its rotation speed and ω0 its nominal rotation speed. 
For the mass flows computation, nodes are modelled by mass 
flows balance equations. Finally, mass flows and pressures 
have to be computed from an important non linear system of 
algebraic equations obtained from all these static equations. 

Thermal energy propagation. The thermal energy 
propagation is associated with the simulation of partial 
differential equations. Let Rp be the radius of the pipe, pμ  
[J.m-2.s-1.K-1] its thermal loss coefficient, ρ [kg.m-3] the 
relative density of water and T0 [K] the external temperature. 
The temperature in the pipe ( )txT ,  can then be modelled as:  
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Fig. 3. District heating network. 
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From the energy propagation point of view, nodes are 
modelled thanks to an energy balance equation. 

Consumer model. Secondary networks of consumers are 
connected to the primary network through a heat exchanger. 
The following equation is the classical one for a counter flow 
heat exchanger with S [m2] the surface of the heat exchanger 
and e [W.K-1.m-2] its efficiency (h stands for “hot” or 
primary, and c for “cold” or secondary): 
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Assuming no thermal energy loss between primary and 
secondary networks, the thermal power given by the primary 
network can also be expressed by:  

)( ,, outhinhhpc TTmcQ −=  (14) 

Finally, the power received by the secondary network is:  

)( ,, incoutccpc TTmcQ −=  (15) 

Assuming that mc and Tc,out are given, and that the mass flow 
mh is determined by the opening ratio of the consumer valve, 
then Tc,in, Qc and Th,out can be computed from Th,in. Qc is an 
increasing function of mh and the maximal thermal power that 
can be given to a consumer is obtained for mh = ms. There is a 
local regulation, which is not of interest in this study, so that 
the consumer can choose the value of mh in the possible range 
by controlling the valve opening. Consequently, the given 
power is finally expressed by:  

),min( maxQQQ demc =  (16) 

where Qdem is the heat demand of the consumer and Qmax is 
the maximum power that can be given by the primary 
network. Qmax is computed by solving the system made of 
(13), (14) and (15), in the particular case where mh = ms. Note 
that once again the consumer demand Qdem is only predicted 
and thus a closed loop is required for the control of the 
system. 

4.2 Choice of the optimization method 

The control objective for this system is to minimize the 
operating costs, given by equation (8) under the technical 
constraints of the network (pressures, mass flows and 
temperatures in the acceptable range) and the satisfaction of 
the consumer’s demands. The model of the system 
necessitates the simulation of non linear algebraic equations 
coupled with partial differential equations. Thus, the 
computation of the constraints can only be made by a 
simulator. The number of variables to be optimized is 
relatively high, and consequently a metaheuristic method, the 
particle swarm optimization (PSO) has been used for the 

optimisation1.. This optimization method is inspired by the 
social behavior of bird flocking or fish schooling. The choice 
of parameters is very important to ensure the satisfying 
convergence of the algorithm. Lots of work have been done 
on the topic; see for instance (Shi and Eberhart, 1998; 
Eberhart and Shi, 2000). In the following, standard values, 
which are given in (Kennedy and Clerc, 2006) will be used. 

4.3 Main results 

The receding horizon based control law has been applied for 
the control of the district heating benchmark depicted in 
figure 3. Tests have been performed for a total time horizon 
of 24 or 48 hours, with a sampling time of one hour. The 
prediction horizon for the optimization problem is 12 hours. 
Thus, as the benchmark includes 2 producers and 2 valves, 
the optimization problem is made of 12*(2+2) = 48 
optimization variables. The solution of the optimization 
problem is performed in 120 seconds on a Pentium IV, 2.5 
GHz with Matlab 2007, for 50 iterations of the PSO 
algorithm. 

To validate the control law, a worst case experiment has been 
performed. It is assumed that all consumer demands are 
always underestimated by a factor of 10 %. This represents a 
worst case experiment as long as in the real world load error 
predictions can partially compensate each other. Tests of the 
proposed approach have shown that consumers’ demands are 
always fulfilled, by using the receding horizon control 
structure.  

In the district heating network, producer 1 is a cogeneration 
site. Cogeneration refers to the simultaneous production of 
electric and thermal powers, leading to high global 
efficiencies. Roughly speaking, the main goal of the producer 
is to satisfy the thermal power demand. But he has the 
opportunity to use the exhaust fumes to produce and to sell 
electric power. Finally, for the thermal power point of view, 
the higher the price of sold electricity is, the lower the 
thermal power production costs. The simulation has been 
performed for different electricity prices, and corresponding 
total productions over the whole horizon (24 or 48 hours) are 
given in table 2. 

Table 2. Results of the district heating network control 

Electricity
price 

Production 1 over Production 2 over 

24 hours 48 hours 24 hours 48 hours 

0 €/MWh 535MWh 947MWh 537MWh 1016MWh 

40 €/MWh 541MWh 963MWh 492MWh 950MWh 

The price 40 €/MWh corresponds approximately to the price 
in France from November 1st to March 31st, whereas the null 
price corresponds to the price from April 1st to October 31st. 
Results show that the higher the price is, the higher the 

                                                 
1 PSO was firstly introduced by Eberhart and Kennedy 
(Eberhart and Kennedy, 1995) 



 
 

     

 

production of the cogeneration site. The control law uses the 
interconnection valves to make the extra amount of power to 
pass from sub-network 1 to sub-network 2. Although 
obvious, the possibility is not used in classical district heating 
networks: controls laws only use local information, and the 
interconnections are often viewed as safety means, and are 
rarely used. The receding horizon law is able to take into 
account the whole technological chain "production - 
distribution - consumption" and the whole system through the 
solution of the optimization problem. The solution of this 
problem is made tractable by the use of a stochastic 
approximated optimization method. Note that in the future, 
the price of sold electricity may depend on the electricity 
market. In such a situation, production costs would be 
predicted, and the closed loop structure is also a good trend to 
get a robust behaviour against cost uncertainties. For more 
details, see (Sandou and Olaru, 2008). 

5. CONTROL OF MINING VENTILATION SYSTEMS 

5.1 Case study 

In this section, the focus is on the optimization and control of 
a mining ventilation system represented in figure 4. The 
ventilation is achieved by a turbine and a heater connected on 
the surface to a vertical shaft. The heater is introduced (in 
winter time at least) to avoid freezing in the upper part of the 
shaft and air cooling devices are used at high depths (more 
than 1000 meters) to compensate the geothermal effect (the 
temperature increases by 1°C every 30m as we go down). 
From the ventilation shaft, fans located at each extraction 
level pump fresh air to the extraction rooms via tarpaulin 
tubes. Bad quality air naturally flows because of the pressure 
gradient from the extraction rooms back into the decline and 
to the exhaust ventilation shaft. 

The overall objective of the mining ventilation control system 
is to provide good air quality for the extraction rooms. For a 
future wireless automation supporting the ventilation control, 
it is also desirable to increase safety by using the wireless 
system for personal communication and localization. We 
specify the objective as the control of air quality (O2, NOx 
and/or COx) in the extraction rooms at different levels. The 
objective is then to regulate the ventilation fans based on 
chemical sensors to ensure air quality in extraction rooms. 
The concentration of pollutant j  at height z is modelled by:  
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where )(tjα  is the amplitude, )(tjβ  is the dilatation, )(tjγ  
and is the inflection of the distribution. The state space 
representation of the problem with n pollutants is given by:  
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Fig. 4. Mining ventilation system. 

where )(tu  is the control input of the fan, and )(tmin&  refers 
to the incoming pollutant. This value is only predicted as it 
depends on the number of trucks in the room, and so a closed 
loop framework is required. The control objective is to 
minimize the fan energy consumption while ensuring an 
acceptable air quality. Due to the height-dependent model, 
the air quality objective is rephrased as guaranteeing a 
maximum pollutant concentration at a given height rz :  

max),()( jrjj ytzcty ≤=  (19) 

where max
jy  is the threshold value on pollutant j. The idea is 

now to solve the following optimization problem and to use 
the receding horizon principle:  
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with uN  the number of degrees of freedom in the control 
law, N : the prediction horizon, T  the sampling time in the 
receding horizon strategy, )(ˆ τjy  the predicted concentration 
of pollutant based on predictions of incoming pollutant rate, 

)(τu : the fan control input, )(, τdesjy : the desired 
concentration of pollutant and λ : the weighting factor. 

5.2 Choice of optimization method 

The cost function given in equation (20) can only be 
computed by a simulator. However, the number of 
optimization variables remains relatively small (typically 

5to2=uN ). Thus, it has been decided to choose a Nelder 
Mead Simplex method to solve the problem. 

5.3 Main results 

We consider two pollutants, namely COx and NOx. The 
thresholds are defined as: 
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Fig. 5. Number of trucks in the mine. 

max
, 9.0)( jdesj yy =τ  (20) 

With 3max kg.m000234.0 −=
xCOy , and 3max kg.m0059.0 −=

xNOy . 

The pollutant sources are depicted in figure 5. For the 
prediction model, we consider a number of trucks equal to 2. 
The tuning parameters are set to N=100, Nu=2 and λ=10-7. 
The corresponding results are given in figure 6. The level of 
pollutant, control inputs, power and energy consumed by the 
electric motor of the fan are given. Results are much than 
satisfactory with a smooth regulation satisfying the 
constraints over the whole time interval. As we have only one 
actuator to control two outputs, the regulator mostly takes 
into account the hardest constraint of COx. Computation 
times for the simulation of the 1500s (real time) is performed 
in 10 minutes with Matlab 2007a on a Pentium IV, 2.80 GHz. 
For more details, see (Witrant, et al., 2009). 

6. CONCLUSIONS 

In this paper, a generic methodology for the control of 
complex industrial systems has been presented. The method 
is based on the successive solutions of optimization 
problems. The main interest of this approach is the possibility 
to capture the whole system instead of controlling several 
subsystems. Thus, the quality of the solutions is better and 
can take into account the economical aspects. 
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Fig. 6. Results of the ventilation system control. 

The main point in the methodology is to solve an 
optimization problem at each sampling time. Thus, a special 
attention has to be paid on that topic to get a tractable control 
law. To overcome this difficulty, forthcoming works will deal 
with the use of hierarchical predictive control laws. 
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